×
20.03.2014
216.012.ac95

Результат интеллектуальной деятельности: НАДБАНДАЖНОЕ ЛАБИРИНТНОЕ УПЛОТНЕНИЕ ДЛЯ ПАРОВОЙ ТУРБИНЫ

Вид РИД

Изобретение

Аннотация: Лабиринтное надбандажное уплотнение для паровой турбины содержит уплотнительный кольцевой гребешок и уплотняющие блоки. Гребешок выполнен или установлен на бандаже лопаток ступени ротора турбины. Уплотняющие блоки установлены с уплотняющим радиальным зазором относительно кольцевого гребешка бандажа лопаток ступени ротора и закреплены пайкой в держателях уплотняющих блоков. Держатели выполнены в обойме статора турбины, каждый из которых выполнен с кольцевым сектором Т-образного в продольном сечении турбины хвостовика. Хвостовик установлен в кольцевом пазу обоймы статора турбины, имеющем Т-образную в продольном сечении турбины форму. Уплотняющие блоки выполнены из адгезионно соединенных между собой в монолитный материал частиц прирабатываемого порошкового материала в виде призмы, с трапецеидальным или прямоугольным поперечным сечением с боковыми опорными выступами, контактирующими с боковыми стенками держателей уплотняющих блоков. Уплотняющий блок имеет с каждой стороны по крайней мере но одному симметрично расположенному боковому опорному выступу. В качестве прирабатываемого порошкового материала используют материал состава в вес.%: Cr - от 12,0 до 14,0%, Мо - от 1,0 до 3,0%, Fe - остальное, с размерами частиц порошка от 10 мкм до 160 мкм в механической смеси с порошковым, с размерами частиц порошка менее 1 мкм, гексагональным нитридом бора - BN в количестве в вес.%: от 5,0 до 6,5% от общего объема смеси и стеарат цинка - Zn(CHO) с размерами частиц порошка от 1 до 75 мкм в вес.%: от 0,9 до 1,1% от общего объема материала уплотнения, причем уплотняющий блок выполнен холодным прессованием с последующим спеканием в вакууме или в защитной среде при температуре от 1050 до 1150°С, а в качестве защитной среды использована газовая смесь состава в об.%: аргон от 6 до 50%, аммиак - остальное. Изобретение позволяет повысить прочность и износостойкость уплотнения. 2 ил.
Основные результаты: Лабиринтное надбандажное уплотнение для паровой турбины, содержащее уплотнительный кольцевой гребешок, выполненный или установленный на бандаже лопаток ступени ротора турбины, уплотняющие блоки, установленные с уплотняющим радиальным зазором относительно кольцевого гребешка бандажа лопаток ступени ротора и закрепленные пайкой в держателях уплотняющих блоков, выполненных в обойме статора турбины, каждый из которых выполнен с кольцевым сектором Т-образного в продольном сечении турбины хвостовика, установленным в кольцевом пазу обоймы статора турбины, имеющем Т-образную в продольном сечении турбины форму, отличающееся тем, что уплотняющие блоки выполнены из адгезионно соединенных между собой в монолитный материал частиц прирабатываемого порошкового материала в виде призмы, с трапецеидальным или прямоугольным поперечным сечением с боковыми опорными выступами, контактирующими с боковыми стенками держателей уплотняющих блоков, причем уплотняющий блок имеет с каждой стороны по крайней мере по одному симметрично расположенному боковому опорному выступу, а в качестве прирабатываемого порошкового материала используют материал состава, вес.%: Cr - от 12,0 до 14,0%, Мо - от 1,0 до 3,0%, Fe - остальное, с размерами частиц порошка от 10 мкм до 160 мкм в механической смеси с порошковым, с размерами частиц порошка менее 1 мкм, гексагональным нитридом бора - BN в количестве, вес.%: от 5,0% до 6,5% от общего объема смеси и стеарат цинка - Zn(CHO) с размерами частиц порошка от 1 мкм до 75 мкм, вес.%: 0,9% до 1,1% от общего объема материала уплотнения, причем уплотняющий блок выполнен холодным прессованием с последующим спеканием в вакууме или в защитной среде при температуре от 1050°С до 1150°С, а в качестве защитной среды использована газовая смесь состава, об.%: аргон от 6% до 50%, аммиак - остальное.

Изобретение относится к средствам повышения эффективности паровых турбин, ограничивающим перетекание пара через зазоры между бандажом рабочих лопаток и статором турбины.

Эффективность работы паровых турбин зависит герметичности уплотнения между вращающимися лопатками и внутренней поверхностью корпуса в турбине. Одним из основных видов подобных уплотнений являются истираемые уплотнения, герметичность которых обеспечивается за счет прорезания выступами на торцах лопаток канавок в истираемом уплотнительном материале. Уплотнения турбин выполняют например, используя плетеные металлические волокна, соты [патент США N 5080934, МПК. F01D 11/08, 427/271, 1991] или спеченные металлические частицы. Приработка этих уплотнений происходит за счет его высокой пористости и его низкой прочности. Последнее обуславливает невысокую эрозионную стойкость уплотнительных материалов, что приводит к быстрому износу уплотнения. В качестве прирабатываемых уплотнений в современных двигателях и установках используют также газотермические покрытия, имеющих, по сравнению с вышеописанными материалами, меньшую трудоемкость изготовления.

Известно прирабатываемое уплотнение турбомашины [патент США №4291089], получаемое методом газотермического напыления порошкового материала. При этом уплотнение формируется в виде покрытия, которое наносится непосредственно на кольцевой элемент корпуса турбомашины в зону уплотнения между корпусом и лопаткой.

Недостатком известного уплотнения является невозможность одновременного обеспечения высокой прирабатываемости и износостойкости покрытия.

Известно также прирабатываемое уплотнение турбомашины [патент США №4936745], выполненное в виде высокопористого керамического слоя с пористостью от 20 до 35 объемных %.

Недостатком известного уплотнения является низкая эрозионная стойкость и прочность.

Для уплотнения зазоров между бандажом рабочих лопаток и статорными деталями корпуса турбины применяются различные типы надбандажных уплотнений (Тепловые и атомные электрические станции, Справочник под общей редакцией В.А. Григорьева и В.М. Зорина, 2-е издание, книга 3, М.: Энергоатомиздат, с.206-208). Для таких уплотнений радиальные зазоры назначаются таким образом, чтобы исключить касание уплотнительных гребешков с острыми кромками об ответную твердую уплотняющую поверхность. Опыт эксплуатации показывает, что избежать касаний при всех эксплуатационных и аварийных режимах за межремонтный период, как правило, не удается. Острые кромки гребешков притупляются и эффективность уплотнения падает.

Известно сотовое уплотнение для паровой турбины (патент РФ №2150627), содержащее установленную в корпусе статора обойму с сотовыми вставками, охватывающими с радиальным зазором кольцевые уплотнительные гребни бандажа рабочих лопаток ротора. При этом обойма выполнена кольцевыми уплотнительными гребешками, охватывающими бандаж рабочих лопаток ротора с зазором, превышающим радиальный зазор уплотнения, а сотовые вставки размещены между уплотнительными гребешками обоймы. В этих уплотнениях, из-за незначительной величины радиального зазора в процессе эксплуатации происходит касание гребешков бандажей лопаток о сотовые вставки. Сотовые вставки, состоящие из сотовых ячеек, выполнены из жаропрочного листового материала толщиной всего 0,05 мм. Касание гребешков приводит к прорезанию канавки по поверхности сотовой вставки без притупления острой кромки гребешка. Фиксация каждой сотовой вставки в осевом и окружном направлениях осуществляется пальцем-фиксатором, в случае разрушения которого, а исключить подобное за длительный период эксплуатации невозможно, происходит смещение сотовой вставки назад по ходу пара и выпадение ее в проточную часть. Это приводит к серьезной аварии (патент РФ №2287063).

Известно крепление с Т-образным кольцевым пазом (Паровые и газовые турбины. Атлас конструкций, под редакцией проф. С.А. Кантора, М.: Машиностроение, 1970, с.27…30) находит применение в концевых и диафрагменных уплотнениях. Эти уплотнения состоят из сегментов, зафиксированных от проворота шпонками. В радиальном направлении сегменты поджимаются к выступу Т-образного кольцевого паза. Однако, недостатком таких уплотнений является их низкая технологичность, поскольку невозможно изготовить необходимое количество готовых сегментов из одной кольцевой заготовки, поэтому приходится дополнять его еще одним сегментом из дополнительной кольцевой заготовки заготовки.

Наиболее близким по технической сущности и достигаемому результату к заявляемому является уплотнение для паровой турбины (патент РФ №2287063, МКИ F16D 11/08), содержащее уплотнительный кольцевой гребешок, выполненный или установленный на бандаже лопаток ступени ротора турбины, уплотнительные блоки, установленные с уплотняющим радиальным зазором относительно кольцевого гребешка бандажа лопаток ступени ротора, держатели уплотнительных блоков в обойме статора турбины, каждый из которых выполнен с кольцевым сектором Т-образного в продольном сечении турбины хвостовика, установленным в кольцевом пазу обоймы статора турбины, имеющем Т-образную в продольном сечении турбины форму. Уплотнение выполнено в виде соединенного со статором слоя сотовой структуры.

Однако гребешки на роторе при взаимодействии с сотовой структурой притупляются, что снижает герметичность уплотнения. Ячейки сотовой структуры могут иметь различные форму и размер площади поперечного сечения, глубину и толщину стенок. Сотовая структура, может быть выполнена из стальной жаростойкой фольги, или сверлением, прожитом, травлением или литьем. При значительной толщине стенок ячеек сот условия работы гребешков ужесточаются. Сильный износ гребешков так или иначе связан с необоснованно высокой прочностью материалов, используемых для производства сот, а также методов их изготовления вызывающих утолщение толщины стенок ячеек. Кроме того, процесс изготовления и прикрепления сотовой структуры достаточно сложен, трудоемок, а также связан с большими временными затратами. При этом, сотовая структура может быть соединена как с кольцевым элементом турбомашины, так и с отдельными, образующими кольцо вставками.

Недостатками прототипа являются невозможность одновременного обеспечения высокой прирабатываемости, механической прочности и износостойкости материала уплотнения, а также необходимости использования сотовых ячеек.

В этой связи, использование уплотнения, не содержащего слоя сотовой структуры, а выполненного из монолитного материала допускающими врезание в него выступов лопатки и снижающими их износ в процессе эксплуатации, привело бы к дальнейшему повышению эффективности работы турбомашин.

Техническим результатом заявляемого изобретения является одновременное обеспечение высокой прирабатываемости, механической прочности и износостойкости уплотнения, а также снижения трудоемкости его изготовления.

Технический результат достигается тем, что лабиринтное надбандажное уплотнение для паровой турбины, содержащее уплотнительный кольцевой гребешок, выполненный или установленный на бандаже лопаток ступени ротора турбины, уплотняющие блоки, установленные с уплотняющим радиальным зазором относительно кольцевого гребешка бандажа лопаток ступени ротора и закрепленные пайкой в держателях уплотняющих блоков, выполненных в обойме статора турбины, каждый из которых выполнен с кольцевым сектором Т-образного в продольном сечении турбины хвостовика, установленным в кольцевом пазу обоймы статора турбины, имеющем Т-образную в продольном сечении турбины форму, в отличие от прототипа уплотняющие блоки выполнены из адгезионно соединенных между собой в монолитный материал частиц прирабатываемого порошкового материала в виде призмы, с трапециидальным или прямоугольным поперечным сечением с боковыми опорными выступами, контактирующими с боковыми стенками держателей уплотняющих блоков, причем уплотняющий блок имеет с каждой стороны по крайней мере по одному симметрично расположенному боковому опорному выступу, а в качестве прирабатываемого порошкового материала используют материал состава, в вес.%: Cr - от 12,0 до 14,0%, Mo - от 1,0 до 3,0%, Fe - остальное, с размерами частиц порошка от 10 мкм до 160 мкм в механической смеси с порошковым, с размерами частиц порошка менее 1 мкм, гексагональным нитридом бора - BN в количестве в вес.%: от 5,0% до 6,5% от общего объема смеси и стеарат цинка - Zn(C18H35O2)2 с размерами частиц порошка от 1 мкм до 75 мкм, в вес.%: 0,9% до 1,1% от общего объема материала уплотнения, причем уплотняющий блок выполнен холодным прессованием с последующим спеканием в вакууме или в защитной среде при температуре от 1050°С до 1150°С, а в качестве защитной среды использована газовая смесь, состава, в объем.%: аргон от 6% до 50%, аммиак - остальное

Лабиринтное уплотнение для паровой турбины содержит по меньшей мере один, уплотнительный кольцевой гребешок, выполненный или установленный на бандаже лопаток ступени ротора турбины. С радиальным зазором относительно кольцевого гребешка бандажа лопаток ступени ротора установлены уплотнительные блоки. Для крепления одного или нескольких уплотнительных блоков служит каждый из держателей. Каждый из держателей уплотнительных блоков в обойме статора турбины выполнен с кольцевым сектором Т-образного в продольном сечении турбины хвостовика. Каждый из хвостовиков установлен в кольцевом пазу обоймы статора турбины. Паз обоймы имеет Т-образную в продольном сечении турбины форму. Кольцевой сектор хвостовика каждого держателя уплотнительных блоков выполнен с диаметром цилиндрической поверхности, охватывающей цилиндрическую поверхность обоймы статора со стороны ее кольцевого паза, превышающим диаметр охватываемой цилиндрической поверхности паза с возможностью упругой деформации краев кольцевого сектора при перемещении его в кольцевом пазу обоймы в процессе монтажа уплотнения. В этой связи, каждая вставка зафиксирована в радиальном направлении минимальной посадкой с зазором между канавкой в хвостовике вставки и выступом кольцевого паза обоймы. При этом каждая вставка поджата к выступу паза из-за разности кривизны дуг вставки и обоймы по базируемому диаметру.

Изобретение поясняется чертежами. На фигурах 1 и 2 представлено надбандажное лабиринтное уплотнение для паровой турбины.

Фигуры 1 и 2 содержат: 1 - уплотняющий блок; 2 - боковой опорный выступ; 3 - боковая поверхность уплотняющего блока; 4 - основание уплотняющего блока; 5 - рабочая поверхность уплотняющего блока; 6 - гребешок; 7 - бандаж; 8 - припой; 9 - держатель блоков; 10 - обойма; 11 - хвостовик держателя; 12-лопатка ротора турбины.

Уплотняющий блок 1 (фиг.1) снабжен по боковым поверхностям 3 боковыми опорными выступами 2 контактирующими с боковыми стенками держателя блоков 9 и обеспечивающими равномерное распределение припоя 8 в зазоре между уплотняющим блоком 1 и боковыми стенками держателя блоков 9. Надбандажное лабиринтное уплотнение для паровой турбины содержит (фиг.2) уплотнительные кольцевые гребешки 6. Гребешок 6 выполнен или установлен на бандаже 7 лопаток 12 ротора турбины. С уплотняющим радиальным зазором относительно гребешка 6 установлены уплотняющие блоки 1. Каждый из держателей 9 уплотняющих блоков 1 в обойме 10 статора турбины выполнен с кольцевым сектором. Сектор является частью Т-образного в продольном сечении турбины хвостовика 11 держателя 9. Сектор установлен в кольцевом пазу обоймы 10. Паз имеет Т-образную в продольном сечении турбины форму.

При вращении ротора турбины гребешки 6, уплотняющие зазор, по которому перетекает пар, могут касаться о уплотняющие блоки 1. Острая кромка гребешка 6 прорезает канавку в блоке 1 без притупления своей острой кромки, т.е. уплотняющие прирабатываемые блоки позволяют автоматически установить минимально возможные радиальные зазоры уплотнения. При этом создается дополнительная камера, в которой происходит расширение и турбулизация потока перетекающего пара, вследствие чего увеличивается гидравлическое сопротивление перетеканию.

Держатели 9 уплотняющих блоков 1 для одной ступени турбины изготавливаются из одной заготовки. Это приводит к снижению себестоимости. Крепление держателей в пазу обоймы исключает их выпадение в проточную часть в случае поломки штифта.

Пример. В качестве материалов для получения уплотняющего блока и корпуса уплотняющего блока использовался металлический порошок следующих составов: 1) [Cr - 11,0%, Mo - 0,6%, Fe - остальное] -неудовлетворительный результат (Н.Р.); 2)[Cr - 12,0%, Мо - от 1,0%, Fe - остальное] - удовлетворительный результат (У.Р.); 3) [Cr - 14,0%, Мо -3,0%, Fe - остальное] - (У.Р.); 4) [Cr - 15,0%, Мо - 3,7%, Fe - остальное] - (Н.Р.).

Размеры частиц составляли величины: 10 мкм; 30 мкм; 63 мкм; 100 мкм; 160 мкм; 180 мкм. Наилучшие результаты при содержании фракций порошка размерами: менее 40 мкм - от 30% до 40%, от 40 мкм до 70 мкм - 40% до 50%, от 70 мкм до 160 мкм - 10% до 20%, более 160 мкм - остальное - (У.Р.); при содержании частиц 180 мкм и больше - (Н.Р.). Гексагональный нитрид бора (BN) размерами частиц порошка менее 1 мкм в количестве вес.% от общего объема материала уплотнения: 4,0% - (Н.Р.); 5,0% - (У.Р.); 6,5% - (У.Р.); 7,0% - (Н.Р.). Стеарат цинка- Zn(C18H35O2)2 с размерами частиц порошка от 1 мкм до 75 мкм - (У.Р.); более 85 мкм - (Н.Р.); в вес.% от общего объема материала уплотнения: 0,7% (Н.Р.); 0,9% - (У.Р.); 1,1% - (У.Р.); 1,3% (Н.Р.).

Уплотняющие блоки были выполнены по следующим вариантам: по одному - (У.Р.), по два - (У.Р.), по три - (У.Р.), по четыре - (Н.Р.) бокового опорного выступа с каждой стороны, сегмента. Уплотняющие блоки выполнены размерами, мм: длина - 50 мм - (У.Р.),, ширина основания - 11,7 мм - (У.Р.), ширина рабочей части, - 11,5 мм - (У.Р.),, ширина средней части с боковыми выступами - 12,6 мм - (У.Р.),, высота - 6 мм - (У.Р.), радиус кривизна блока по основанию - 843 мм - (У.Р.),, радиус окружности сегмента бокового выступа: 0,5 мм - (У.Р.); 1 мм - (У.Р.); 2 мм - (У.Р.); 3 мм - (Н.Р.); высота бокового выступа: 0,3 мм - (Н.Р.); 0,5 мм - (У.Р.); 1,0 мм - (Н.Р.); расстояние от края выступа до поверхности рабочей части блока: 0,5 мм - (У.Р.); 1 мм - (У.Р.); 2,0 мм - (У.Р.); продольная ось сегмента параллельна продольной оси блока.

Размеры уплотнительного блока составляли: длина: 20 мм; 50 мм; 100 мм; 200 мм; 500 мм; 700 мм; ширина: 10 мм; 20 мм; 40 мм; 70 мм; высота: 5 мм; 10 мм; 30 мм; 50 мм; радиус кривизны по длине элемента, по его притираемой поверхности: 200 мм; 400 мм; 1200 мм; 2300 мм; 2500 мм.

Уплотнительные блоки был изготовлены спеканием в вакууме и в среде смеси аргона и аммиака при температуре от 1050 до 1150°С. Спекание заготовок, полученных методом холодного прессования, проводили при температуре 1200±1000°С в электропечи ОКБ 8086 в среде смеси газов аргона и аммиака, при содержании аргона в смеси в объемных процентах от общей смеси аргона с аммиаком: 5% - (Н.Р.); 6% - (У.Р.); 12% - (У.Р.); 25% - (У.Р.); 50% - (У.Р.); 55% - (Н.Р.). Давление прессования при изготовлении заготовок уплотнительного блока было равным: 40 кгс/мм2; 50 кгс/мм2; 60 кгс/мм2; 70 кгс/мм2.

Результаты испытаний надбандажного лабиринтного уплотнения в условиях эксплуатации показали сочетание высоких прочностных характеристик уплотнений, с хорошей прирабатываемостью и минимальным износом кольцевых гребешков на бандаже лопаток.

Таким образом, лабиринтное надбандажное уплотнение для паровой турбины, включающий следующие признаки: уплотнительный кольцевой гребешок, выполненный или установленный на бандаже лопаток ступени ротора турбины; уплотняющие блоки, установленные с уплотняющим радиальным зазором относительно кольцевого гребешка бандажа лопаток ступени ротора и закрепленные пайкой в держателях уплотняющих блоков; уплотняющих блоков, выполненных в обойме статора турбины, каждый из которых выполнен с кольцевым сектором Т-образного в продольном сечении турбины хвостовика, установленным в кольцевом пазу обоймы статора турбины, имеющем Т-образную в продольном сечении турбины формуж уплотняющие блоки выполнены из адгезионно соединенных между собой в монолитный материал частиц прирабатываемого порошкового материала в виде призмы, с трапециидальным или прямоугольным поперечным сечением с боковыми опорными выступами, контактирующими с боковыми стенками держателей уплотняющих блоков; уплотняющий блок имеет с каждой стороны по крайней мере по одному симметрично расположенному боковому опорному выступу; в качестве прирабатываемого порошкового материала используют материал состава, в вес.%: Cr - от 12,0 до 14,0%, Мо - от 1,0 до 3,0%, Fe - остальное, с размерами частиц порошка от 10 мкм до 160 мкм в механической смеси с порошковым, с размерами частиц порошка менее 1 мкм, гексагональным нитридом бора - BN в количестве в вес.%:

от 5,0% до 6,5% от общего объема смеси и стеарат цинка - Zn(C18H35O2)2 с размерами частиц порошка от 1 мкм до 75 мкм, в вес.%: 0,9% до 1,1% от общего объема материала уплотнения; уплотняющий блок выполнен холодным прессованием с последующим спеканием в вакууме или в защитной среде при температуре от 1050°С до 1150°С; в качестве защитной среды использована газовая смесь, состава, в объем.%: аргон от 6% до 50%, аммиак - остальное, позволяет достичь поставленного в изобретении технического результата - одновременного обеспечения высокой прирабатываемости, механической прочности и износостойкости уплотнения, а также снижения трудоемкости его изготовления.

Лабиринтное надбандажное уплотнение для паровой турбины, содержащее уплотнительный кольцевой гребешок, выполненный или установленный на бандаже лопаток ступени ротора турбины, уплотняющие блоки, установленные с уплотняющим радиальным зазором относительно кольцевого гребешка бандажа лопаток ступени ротора и закрепленные пайкой в держателях уплотняющих блоков, выполненных в обойме статора турбины, каждый из которых выполнен с кольцевым сектором Т-образного в продольном сечении турбины хвостовика, установленным в кольцевом пазу обоймы статора турбины, имеющем Т-образную в продольном сечении турбины форму, отличающееся тем, что уплотняющие блоки выполнены из адгезионно соединенных между собой в монолитный материал частиц прирабатываемого порошкового материала в виде призмы, с трапецеидальным или прямоугольным поперечным сечением с боковыми опорными выступами, контактирующими с боковыми стенками держателей уплотняющих блоков, причем уплотняющий блок имеет с каждой стороны по крайней мере по одному симметрично расположенному боковому опорному выступу, а в качестве прирабатываемого порошкового материала используют материал состава, вес.%: Cr - от 12,0 до 14,0%, Мо - от 1,0 до 3,0%, Fe - остальное, с размерами частиц порошка от 10 мкм до 160 мкм в механической смеси с порошковым, с размерами частиц порошка менее 1 мкм, гексагональным нитридом бора - BN в количестве, вес.%: от 5,0% до 6,5% от общего объема смеси и стеарат цинка - Zn(CHO) с размерами частиц порошка от 1 мкм до 75 мкм, вес.%: 0,9% до 1,1% от общего объема материала уплотнения, причем уплотняющий блок выполнен холодным прессованием с последующим спеканием в вакууме или в защитной среде при температуре от 1050°С до 1150°С, а в качестве защитной среды использована газовая смесь состава, об.%: аргон от 6% до 50%, аммиак - остальное.
НАДБАНДАЖНОЕ ЛАБИРИНТНОЕ УПЛОТНЕНИЕ ДЛЯ ПАРОВОЙ ТУРБИНЫ
НАДБАНДАЖНОЕ ЛАБИРИНТНОЕ УПЛОТНЕНИЕ ДЛЯ ПАРОВОЙ ТУРБИНЫ
Источник поступления информации: Роспатент

Показаны записи 61-70 из 83.
19.01.2018
№218.016.082f

Способ нанесения многослойного ионно-плазменного покрытия на поверхность гравюры штампа из жаропрочной стали

Изобретение относится к способу нанесения многослойного ионно-плазменного покрытия на поверхность гравюры штампа из жаропрочной стали и может быть использовано при изготовлении лопаток газотурбинных двигателей горячей штамповкой. Способ включает помещение штампа в вакуумную камеру, создание...
Тип: Изобретение
Номер охранного документа: 0002631572
Дата охранного документа: 25.09.2017
20.01.2018
№218.016.0fe9

Способ изготовления пустотелой лопатки турбомашины

Изобретение относится к способам изготовления пустотелых лопаток турбомашин. Способ получения пустотелой лопатки турбомашины, заключающийся в формировании элементов спинки и корыта лопатки путем придания пластинам заданного профиля и размеров, их фиксации, обеспечивающей заданный профиль и...
Тип: Изобретение
Номер охранного документа: 0002633564
Дата охранного документа: 13.10.2017
20.01.2018
№218.016.12f4

Способ ионного азотирования режущего инструмента из легированной стали

Изобретение относится к металлургии, а именно к способам химико-термической обработки деталей из легированных инструментальных сталей, и может быть использовано в машиностроении для поверхностного упрочнения режущего инструмента. Способ ионного азотирования режущего инструмента из легированной...
Тип: Изобретение
Номер охранного документа: 0002634400
Дата охранного документа: 26.10.2017
20.01.2018
№218.016.1d36

Способ изготовления полой лопатки газотурбинного двигателя

Изобретение относится к области обработки металлов давлением и может быть использовано для изготовления полой лопатки вентилятора газотурбинного двигателя из титанового сплава. Используют трехслойные заготовки обшивок и/или заполнителя, причем внешние слои заготовок выполняют из титанового...
Тип: Изобретение
Номер охранного документа: 0002640692
Дата охранного документа: 11.01.2018
20.01.2018
№218.016.1d66

Способ формирования нанокристаллического поверхностного слоя на деталях из алюминиевых сплавов (варианты)

Изобретение относится к способу формирования нанокристаллического поверхностного слоя на деталях из алюминиевых сплавов (варианты) и может быть использовано для обработки лопаток газотурбинных двигателей. Формируют аморфный поверхностный слой путем бомбардировки его ионами одного из следующих...
Тип: Изобретение
Номер охранного документа: 0002640687
Дата охранного документа: 11.01.2018
10.05.2018
№218.016.4182

Способ обработки лопаток турбомашин из железохромоникелевых сплавов

Изобретение относится к технологии электролитно-плазменного полирования поверхности деталей. Способ включает полирование поверхности пера лопатки электролитно-плазменным методом, включающим погружение лопатки в электролит, формирование вокруг обрабатываемой поверхности лопатки парогазовой...
Тип: Изобретение
Номер охранного документа: 0002649128
Дата охранного документа: 29.03.2018
01.03.2019
№219.016.c97f

Лабиринтное уплотнение

Изобретение относится к лабиринтным уплотнениям вала турбин. Кольцевой гребень ротора турбины установлен с осевыми зазорами между кольцевыми гребнями статора. Мелкоячеистые соты установлены в статоре между его кольцевыми гребнями с кольцевым радиальным зазором относительно кольцевого гребня...
Тип: Изобретение
Номер охранного документа: 0002244182
Дата охранного документа: 10.01.2005
01.03.2019
№219.016.cd6d

Лабиринтное надбандажное уплотнение для паровой турбины

Изобретение относится к лабиринтному надбандажному уплотнению для паровой турбины, содержащему уплотнительные кольцевые гребешки ротора турбины, сегменты уплотнения, включающие в себя мелкоячеистые сотовые блоки, припаянные к корпусам сотовых блоков между уплотняющих статорных гребней,...
Тип: Изобретение
Номер охранного документа: 0002362887
Дата охранного документа: 27.07.2009
01.03.2019
№219.016.d024

Вставка сотового надбандажного уплотнения паровой турбины и способ установки вставок сотового надбандажного уплотнения

Вставка сотового надбандажного уплотнения паровой турбины состоит из корпуса, который имеет в продольном сечении плоскую (прямую) форму, а в поперечном сечении - V-образную форму. Боковые поверхности корпуса имеют экономически обоснованную точность изготовления. Заодно с корпусом выполнены...
Тип: Изобретение
Номер охранного документа: 0002447294
Дата охранного документа: 10.04.2012
08.03.2019
№219.016.d59d

Способ электролитно-плазменного удаления покрытий из нитридов титана или нитридов соединений титана с металлами

Изобретение относится к технологии электролитно-плазменного удаления защитных покрытий из нитрида титана с поверхности деталей из титановых сплавов и может быть использовано при восстановлении деталей турбомашин, в частности рабочих и направляющих лопаток паровых турбин, лопаток...
Тип: Изобретение
Номер охранного документа: 0002467098
Дата охранного документа: 20.11.2012
Показаны записи 61-70 из 148.
10.05.2018
№218.016.4182

Способ обработки лопаток турбомашин из железохромоникелевых сплавов

Изобретение относится к технологии электролитно-плазменного полирования поверхности деталей. Способ включает полирование поверхности пера лопатки электролитно-плазменным методом, включающим погружение лопатки в электролит, формирование вокруг обрабатываемой поверхности лопатки парогазовой...
Тип: Изобретение
Номер охранного документа: 0002649128
Дата охранного документа: 29.03.2018
10.05.2018
№218.016.44c8

Способ упрочняющей обработки деталей из титановых сплавов с ультрамелкозернистой структурой

Изобретение относится к способу упрочняющей обработки деталей из титановых сплавов с ультрамелкозернистой структурой и может быть использовано в авиационном двигателестроении и энергетическом турбостроении для защитно-упрочняющей обработки пера рабочих лопаток компрессора ГТД или паровой...
Тип: Изобретение
Номер охранного документа: 0002649928
Дата охранного документа: 05.04.2018
10.05.2018
№218.016.4b27

Способ упрочнения деталей из жаропрочных сплавов

Изобретение относится к машиностроению и может быть использовано для упрочнения деталей из жаропрочных сплавов. Упрочнение деталей проводят дробеструйной обработкой шариками и микрошариками твердостью HRC 60-64, при давлении 0,6 МПа. Обработку проводят в несколько этапов: на первом этапе...
Тип: Изобретение
Номер охранного документа: 0002651847
Дата охранного документа: 24.04.2018
09.06.2018
№218.016.5aa2

Способ защиты блиска газотурбинного двигателя из титановых сплавов от пылеабразивной эрозии

Изобретение относится к способу защиты блиска газотурбинного двигателя из титановых сплавов от пылеабразивной эрозии. Осуществляют упрочняющую обработку микрошариками, полирование кромок лопаток блиска, ионно-плазменную модификацию материала поверхностного слоя лопаток блиска с последующим...
Тип: Изобретение
Номер охранного документа: 0002655563
Дата охранного документа: 28.05.2018
03.07.2018
№218.016.69c2

Способ изготовления раскатных колец с регулярной микроструктурой

Изобретение относится к способам раскатки заготовки в виде кольца. Раскатку заготовки осуществляют роликовыми инструментами. Вначале роликовым инструментом формируют регулярный микрорельеф поверхности за счет микрорельефа на его рабочей поверхности, а затем выглаживают поверхность микрорельефа...
Тип: Изобретение
Номер охранного документа: 0002659501
Дата охранного документа: 02.07.2018
13.07.2018
№218.016.70eb

Установка для ионно-плазменного модифицирования и нанесения покрытий на моноколеса с лопатками

Изобретение относится к технике для нанесения покрытий на детали машин, а именно к вакуумной ионно-плазменной обработке поверхностей, и может быть использовано для нанесения функциональных покрытий на моноколеса турбомашин. Установка для вакуумной ионно-плазменной обработки поверхности...
Тип: Изобретение
Номер охранного документа: 0002661162
Дата охранного документа: 12.07.2018
14.07.2018
№218.016.7164

Способ получения многослойной детали из титанового сплава

Использование: изобретение относится к способу получения многослойной детали из титанового сплава. Осуществляют ионно-имплантационное модифицирование листовой детали из титанового сплава путем ионной имплантации азота, углерода или бора с энергией 30-50 кэВ, плотностью тока 35-50 мкА/см и...
Тип: Изобретение
Номер охранного документа: 0002661294
Дата охранного документа: 13.07.2018
11.10.2018
№218.016.8fe7

Способ ионно-имплантационной обработки лопаток компрессора из высоколегированных сталей и сплавов на никелевой основе

Изобретение относится к машиностроению и может быть использовано в авиационном двигателестроении и энергетическом турбостроении для упрочняющей обработки пера рабочих лопаток компрессора газотурбинного двигателя или газотурбинной установки из высоколегированных сталей или сплавов на никелевой...
Тип: Изобретение
Номер охранного документа: 0002669136
Дата охранного документа: 08.10.2018
16.01.2019
№219.016.b07e

Способ нанесения защитного многослойного покрытия на лопатки блиска газотурбинного двигателя из титанового сплава от пылеабразивной эрозии

Изобретение относится к машиностроению и может быть использовано в авиационном двигателестроении и энергетическом турбостроении для защиты пера рабочих лопаток моноколеса компрессора ГТД из титановых сплавов от пылеабразивной эрозии. Способ нанесения защитного многослойного покрытия на лопатки...
Тип: Изобретение
Номер охранного документа: 0002677041
Дата охранного документа: 15.01.2019
24.01.2019
№219.016.b2d7

Способ химико-термической обработки детали из легированной стали

Изобретение относится к металлургии, в частности к способам химико-термической обработки деталей из легированных сталей, и может быть использовано в машиностроении для поверхностного упрочнения деталей машин, в том числе деталей, работающих в парах трения, режущего инструмента и штамповой...
Тип: Изобретение
Номер охранного документа: 0002677908
Дата охранного документа: 22.01.2019
+ добавить свой РИД