×
20.03.2014
216.012.abe4

Результат интеллектуальной деятельности: СПОСОБ И УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ВОДОРОДА ИЗ ВОДЫ (ВАРИАНТЫ)

Вид РИД

Изобретение

Аннотация: Изобретение относится к области химии. Согласно первому варианту для получения водорода железные стержни изолируют от стенок реактора 1 и подают на них высоковольтный потенциал от трансформатора Тесла 14. Реактор 1 заземляют и заполняют водой до образования разряда между железными электродами и поверхностью воды. Согласно второму варианту плоский горизонтальный охлаждаемый электрод 18 изолируют от стенок реактора 1 и подают на него высоковольтный потенциал от трансформатора Тесла 14. Реактор заземляют, внутри реактора устанавливают вертикально тонкостенные трубы 23 из железа с устройством 24 перемещения, уменьшают расстояние между тонкостенными трубками и плоским электродом 18 до образования разряда. Через тонкостенные трубки подают водяной пар. Изобретение позволяет повысить чистоту водорода, снизить затраты энергии. 4 н. и 2 з.п. ф-лы, 2 ил., 2 пр.

Изобретение относится к области химической технологии, а более конкретно к способам и устройствам для получения водорода путем экзотермической реакции водяного пара с металлами.

Известен способ и устройство получения водорода электролизом воды, где электролитом служит водный раствор КОН (350-400 г/л), давление в элекролизерах от атмосферного до 4 МПа (Химическая энциклопедия в 5 томах под редакцией Н.П.Кнунянца. - М.: Сов. энциклопедия, 1988 г., т.1, с.401).

Производительность электролизеров в известном способе составляет 4-500 м3/ч, а расход электроэнергии для получения 1 м3 водорода равен 4,0-5,6 кВт/ч.

Недостатком известного способа является большой расход электроэнергии.

Известен способ получения водорода методом конверсии, которым в настоящее время получают более половины промышленного водорода (Путилова И.Н. Курс общей химии. Высшая школа, 1964, с.208). Этот способ включает получение водяного газа (смеси СО и Н2) из кокса и водяного пара при температуре 1000°С (С+H2O=СО-Н2).

Чистый водород получают, используя реакцию СО и H2O в присутствии катализатора Fe2O3 (СО+H2O=CO22). Образующуюся смесь Н2, CO2 и СО растворяют в воде под давлением.

Данный способ, несмотря на относительную дешевизну, многостадиен, экологически ущербен и сложен в управлении.

Известен способ и устройство получения водорода при химической реакции воды (H2O) и алюминия (А1), в результате которой получается водород (Н2) как топливо и гидроокись алюминия (A1OH) как сырье, пригодное для дальнейшей переработки и использовании в промышленных целях: А1+3Н2О=А1(OH)3+1,5H2.

В обычных условиях эта реакция не протекает из-за наличия на поверхности алюминия очень тонкой, но большой плотности оксидной пленки, образующейся почти мгновенно по реакции:

2А1+1,5O2=A12O3.

В известном способе и устройстве используют сплав алюминия и едкого натра, благодаря которому оксидная пленка вокруг алюминия растворяется, и к поверхности алюминия открыт доступ для воды (патенты РФ МПК С01В 3/08, №2407701, опубл. 27.12.2010, №2410325, опубл. 27.01.2011). В качестве растворителя в данном сплаве используется щелочь, а именно едкий натр (NaOH):

2А1+2NaOH+10Н2О=2Na[Al(OH)4(H2O)2]+3Н2.

Недостатком известного способа и устройства является использование химически вредного вещества - щелочи для получения водорода.

Известен способ получения водорода, заключающийся в подаче в реактор металлосодержащих веществ и водной среды и последующем осуществлении взаимодействия металлосодержащих веществ с водной средой, в котором перед подачей в реактор металлосодержащих веществ осуществляют покрытие последних водорастворимой полимерной пленкой, а при осуществлении взаимодействия с водной средой в качестве последней используют водную среду, параметры которой соответствуют параметрам ее сверхкритического состояния для обеспечения возможности создания процесса послойного горения металлосодержащих веществ с выделением водорода. В качестве металлосодержащих веществ используют порошкообразный алюминий, а в качестве водорастворимой полимерной пленки - раствор полиэтиленоксида в диоксане или метиловом спирте, а давление сверхкритического состояния водной среды составляет более 22,12 МПа, температура - более 647,3°К (Мазалов Ю.А. Способ получения водорода. Патент РФ №2165888, опубл. 20.04.2001).

Недостатком известного способа является необходимость использования ультрадисперсного порошка алюминия с размером частиц 0,2 мкм, а также высокое давление и большая температура в реакторе, что увеличивает затраты энергии и создает проблемы безопасности при осуществлении процесса.

Наиболее близким по технической сущности и числу общих признаков является способ, принятый в качестве прототипа и заключающийся в реакционном взаимодействии водяного пара с раскаленным железом (Путилова И.Н. и др. Курс общей химии. Изд. «Высшая школа», 1964 г., с.209).

Реакция выглядит следующим образом:

4H2O+3Fe=Fe3O4+4H2.

Недостатком известного способа является ограниченность его использования в промышленности из-за больших затрат энергии и сложности технологического процесса.

Задачей, на решение которой направлен предлагаемый способ и устройство, является безопасное, экологически чистое получение водорода путем одностадийной реакции с возможностью регенерации исходного сырья.

Технический результат от использования заключается в реализации прямого окисления металлосодержащего вещества без предварительного его нагревания, требующего энергозатрат и использования растворов щелочи в воде.

Вышеуказанный технический результат достигается за счет того, что в способе получения водорода путем реакционного взаимодействия в реакторе водяного пара с раскаленным железом железные стержни изолируют от стенок реактора и подают на них высоковольтный потенциал от трансформатора Тесла с напряжением 1-500 кВ при частоте 1-500 кГц, реактор заземляют и заполняют водой до образования холодноплазменного высокочастотного разряда между железными электродами и поверхностью воды и осуществляют реакцию: 3Fe+4H2O=Fe3O4+4H2 в зоне холодноплазменного разряда.

В варианте способа получения водорода в качестве железных стержней используют множество игольчатых электродов из железа диаметром 1-10 мм, установленных на общем проводящем электроизолированном от стенок реактора основании.

В способе получения водорода путем реакционного взаимодействия в реакторе водяного пара с раскаленным железом плоский горизонтальный охлаждаемый электрод изолируют от стенок реактора и подают на электрод высоковольтный потенциал от трансформатора Тесла с напряжением 1-500 кВ при частоте 1-500 кГц, реактор заземляют, внутри реактора устанавливают вертикальные тонкостенные трубы из железа с устройством перемещения, уменьшают расстояние между тонкостенными трубками и плоским электродом до образования холодноплазменного высокочастотного разряда, подают через тонкостенные трубки водяной пар и осуществляют реакцию: 3Fe+4H2O=Fe3O4+4H2 в зоне холодноплазменного разряда.

В устройстве получения водорода из воды путем реакционного взаимодействия водяного пара с раскаленным железом, содержащем реактор с патрубками для подвода воды и отвода продуктов реакции и куски железа с устройством нагрева, куски железа выполнены в виде стержней, которые изолированы от стенок заземленного реактора, соединены с высоковольтным выводом высокочастотного резонансного трансформатора Тесла с напряжением 1-100 кВ и частотой 1-100 кГц и установлены вертикально над поверхностью воды на регулируемом расстоянии от воды 10-500 мм, для инициирования холодноплазменного разряда между стержнями и поверхностью воды.

В варианте устройства получения водорода железные стержни выполнены в виде игольчатых электродов диаметром 1-10 мм, установленных на общем проводящем электроизолированном от стенок реактора основании.

В устройстве получения водорода из воды путем реакционного взаимодействия водяного пара с раскаленным железом, содержащем реактор с патрубками для подвода воды и отвода продуктов реакции и куски железа с устройством нагрева, в верхней части реактора установлен плоский горизонтальный охлаждаемый электрод, который изолирован от стенок реактора и соединен с высоковольтным выводом резонансного высокочастотного трансформатора Тесла с напряжением 1-100 кВ и частотой 1-100 кГц, реактор снабжен устройством заземления и содержит вертикально установленные, тонкостенные трубы диаметром 5-50 мм, которые удалены на расстояние 10-500 мм от плоского электрода, тонкостенные трубки соединены с парогенератором для подачи водяного пара и снабжены устройством перемещения вдоль оси реактора.

Способ и устройство для получения водорода из воды иллюстрируется фиг.1, фиг.2.

На фиг.1 представлена блок-схема способа и устройства для получения водорода нагревом в парах воды с помощью холодноплазменного разряда игольчатых электродов из железа, на фиг.2 - блок-схема способа и устройства для получения водорода с нагревом тонкостенных труб из железа в парах воды с помощью холодноплазменного разряда.

На фиг.1 устройство для получения водорода выполнено в виде реактора 1, который имеет корпус 2 с устройством заземления 3, проходным изолятором 4 с электрическим выводом 5, который внутри реактора 1 соединен с плоским электродом 6, на котором закреплены вертикально множество игольчатых электродов 7 из железа диаметром 1-10 мм. Плоский электрод 6 установлен горизонтально в верхней части реактора 1 на изоляторах 8. Реактор 1 содержит патрубок 9 для подачи воды 10, патрубок 11 для выхода водорода и патрубок 12 для удаления продуктов реакции водного окисления, содержащих окислы железа. Электрический ввод 5 соединен с высоковольтным выводом 13 трансформатора Тесла 14. Низковольтная обмотка 15 трансформатора Тесла 14 вместе с емкостью 16 образует последовательный резонансный контур, который соединен с высокочастотным источником питания 17.

На фиг.2 реактор 1 имеет плоский охлаждаемый электрод 18 в верхней части реактора, закрепленный горизонтально на изоляторах 19 на крышке 20 реактора 1. Охлаждение плоского электрода 18 производится через патрубки для входа 21 и выхода 22 охлаждающей жидкости. В нижней части реактора установлены вертикально тонкостенные трубы 23 из железа диаметром 5-50 мм с устройством перемещения 24 вдоль вертикальной оси реактора 1.

На фиг.2 показаны две тонкостенные трубы 23, которые перемещают в цилиндрических уплотняющих устройствах 25, установленных на нижнем фланце 26 реактора 1. Трубы 23 соединены с водяным парогенератором 27 с помощью трубопровода 28 для подачи пара в реактор 1, толщина труб составляет 1-10 мм. Расстояние между трубами 23 и плоским электродом 18 регулируется и составляет Н=5-50 мм.

Способ и устройство для получения водорода из воды реализуется следующим образом. Реактор на фиг.1 заполняют водой 10 через патрубок 9 таким образом, чтобы расстояние между концами игольчатых электродов 7 и поверхностью воды 10 составляло h1=5-50 мм и при работе устройства поддерживалось на заданном уровне. При подаче потенциала на Фиг.1 от высоковольтного вывода 13 трансформатора Тесла 14 на игольчатые электроды 7 между электродами и поверхностью воды 10 возникает зона холодноплазменного разряда, при этом концы игольчатых электродов 7 нагревают до температуры 600-700°С и происходит интенсивное выделение пара из воды 10. Происходит реакция водного окисления железных игольчатых электродов 7 с выделением водорода: 4Н2О+3Fe=F3O4+4Н2. Из 1 кг железа получается 1,07 м3 водорода. (1).

Скорость реакции окисления игольчатых электродов 7 в воде и выделения водорода регулируется изменением потенциала высоковольтного вывода 13 трансформатора Тесла 14 и изменением расстояния h1 между поверхностью воды 10 и концами игольчатых электродов 7.

Кроме реакции водного окисления железа происходит электролиз воды, что увеличивает выход водорода из реактора 1.

Устройство на фиг.2 работает следующим образом. При подаче высокого напряжения на плоский электрод 18 между электродом 18 и тонкостенными трубами 23 возникает холодноплазменный разряд и стенки труб 21 нагревают до температуры 600-700°С. Водяной пар из парогенератора 27 по трубопроводу 28 поступает через тонкостенные трубы 23 в зону холодноплазменного разряда, где происходит реакция (1) водного окисления железа с выделением водорода. Одновременно происходит плазменный электролиз паров воды с образованием дополнительного количества водорода.

Устройство перемещения 24 поддерживает зазор между трубами 23 и электродом 18.

Примеры осуществления способа и устройства получения водорода из воды

Пример 1. Реактор 1 (фиг.1) выполнен в виде цилиндрической емкости из нержавеющей стали диаметром 300 мм и высотой 500 мм с толщиной стенок 0,6 мм. Внутри корпуса реактора 1 на изоляторах 8 установлен плоский электрод с шестью игольчатыми электродами из железа диаметром 5 мм. Расстояние от поверхности воды 10 до h1=40 мм, напряжение на высоковольтном выводе 13 трансформатора Тесла 14 составляет 40 кВ, частота 20 кГц, температура на концах игольчатых электродов 7 700°С, выход водорода 2 м3/ч.

Пример 2. Реактор 1 (фиг.2) имеет диаметр 400 мм, высоту 800 мм. В нижней части реактора вертикально установлено 10 труб 23 диаметром 15 мм с толщиной стенок 2 мм. Расстояние между концами труб 23 и плоским электродом 18h2=25 мм. Напряжение на электроде 18 30 кВ, частота 25 кГц. Температура на выходе стенок труб 23 составляет 700°С, выход водорода 4 м3/ч.

Образующиеся в результате реакции (1) оксиды железа могут быть легко восстановлены до железа при взаимодействии с синтез-газом.

Использование предложенного способа позволит снизить энергозатраты при производстве водорода, повысить управляемость и небезопасность процесса, а также осуществлять регенерацию исходного сырья. Изобретение может быть использовано в промышленности для получения водорода и на транспорте. При добавке водорода в количестве 5% к топливу количество вредных примесей в выхлопе двигателя внутреннего сгорания снижается в 10 раз, повышается КПД двигателя и снижается расход топлива на 8-10%. Использование водорода как 100% топлива в двигателе Стерлинга, газотурбинном двигателе или в топливных элементах позволяет исключить вредные выбросы.


СПОСОБ И УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ВОДОРОДА ИЗ ВОДЫ (ВАРИАНТЫ)
СПОСОБ И УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ВОДОРОДА ИЗ ВОДЫ (ВАРИАНТЫ)
Источник поступления информации: Роспатент

Показаны записи 71-77 из 77.
13.02.2018
№218.016.266f

Устройство и способ усиления электрических сигналов (варианты)

Изобретение относится к электротехнике, в частности к устройствам усиления электрических сигналов на основе резонансных преобразователей электрической энергии. Технический результат заключается в увеличении коэффициента усиления и снижении зависимости параметров от величины нагрузки....
Тип: Изобретение
Номер охранного документа: 0002644119
Дата охранного документа: 07.02.2018
04.04.2018
№218.016.31e7

Устройство и способ усиления электрических сигналов

Изобретение относится к электротехнике. Устройство содержит катушку индуктивности, соединенную последовательно с емкостью, с образованием резонансного контура и прибор для периодического изменения параметров резонансного контура. Резонансный контур соединен последовательно с высоковольтным...
Тип: Изобретение
Номер охранного документа: 0002645222
Дата охранного документа: 19.02.2018
04.04.2018
№218.016.3413

Солнечный модуль с концентратором

Изобретение относится к области гелиотехники, в частности к солнечным модулям с концентраторами и фотоэлектрическими и тепловыми приемниками солнечного излучения. Солнечный модуль с концентратором содержит кольцеобразный полутороидальный зеркальный отражатель и приемник излучения с двусторонней...
Тип: Изобретение
Номер охранного документа: 0002645800
Дата охранного документа: 28.02.2018
09.06.2018
№218.016.6052

Резонансный усилитель мощности и способ усиления в нем электрических колебаний

Изобретение относится к электротехнике, в частности, к резонансным преобразователям электрической энергии на основе резонансных усилителей мощности. Техническим результатом является увеличение коэффициента усиления и снижение зависимости параметров преобразователя от величины нагрузки....
Тип: Изобретение
Номер охранного документа: 0002656975
Дата охранного документа: 07.06.2018
29.03.2019
№219.016.f860

Способ и устройство для передачи электрической энергии

Изобретение относится к области электротехники, в частности к способу и устройству для передачи электрической энергии. Технический результатом является создание способа и устройства для передачи электрической энергии без проводов и снижение затрат на передачу электроэнергии за счет исключения...
Тип: Изобретение
Номер охранного документа: 0002143775
Дата охранного документа: 27.12.1999
10.07.2019
№219.017.b1f9

Способ и устройство для передачи электрической энергии (варианты)

Использование: для передачи электрической энергии в вакууме за пределами земной атмосферы между космическими аппаратами или планетами, а также с Земли на космические тела и обратно из космического пространства на Землю, а также из одного пункта Земли на другой пункт Земли через атмосферу и...
Тип: Изобретение
Номер охранного документа: 0002183376
Дата охранного документа: 10.06.2002
11.07.2019
№219.017.b2b6

Солнечный дом

Изобретение относится к гелиоархитектуре и гелиоэнергетике, в частности к солнечным зданиям со встроенными солнечными энергетическими установками для получения электрической энергии и теплоты. В солнечном доме, содержащем ограждающие конструкции стен и крышу со встроенными солнечными модулями...
Тип: Изобретение
Номер охранного документа: 0002694066
Дата охранного документа: 09.07.2019
Показаны записи 61-65 из 65.
06.02.2020
№220.017.ff0f

Солнечный магнитный генератор (варианты)

Изобретение относится к области электротехники и может быть использовано в электрических машинах с постоянными магнитами и солнечными модулями. Технический результат заключается в более полном использовании энергии солнечных модулей и увеличении их мощности, в снижении ЭДС самоиндукции и...
Тип: Изобретение
Номер охранного документа: 0002713465
Дата охранного документа: 05.02.2020
06.02.2020
№220.017.ff5d

Устройство и способ передачи электрической энергии

Изобретение относится к области электротехники, в частности к устройству и способу передачи электрической энергии. Технический результат заключается в обеспечении одинаковой освещённости всех фотопреобразователей и в снижении внутреннего сопротивления и коммутационных потерь в фотоприёмнике...
Тип: Изобретение
Номер охранного документа: 0002713208
Дата охранного документа: 04.02.2020
23.02.2020
№220.018.0540

Устройство и способ преобразования ультрафиолетового излучения в электрическую энергию

Изобретение относится к гелиотехнике, в частности к устройству и способу преобразования ультрафиолетового излучения в электрическую энергию. Устройство для преобразования ультрафиолетового излучения содержит оптический фильтр и фотоэлектрический преобразователь, между оптическим фильтром и...
Тип: Изобретение
Номер охранного документа: 0002714838
Дата охранного документа: 19.02.2020
15.05.2023
№223.018.5b2f

Гибридный солнечный модуль

Изобретение относится к гелиотехнике, в частности к солнечным энергетическим модулям для получения тепла. Технический результат заключается в увеличении КПД, увеличении среднегодовой выработки тепловой энергии, снижении массогабаритных показателей. Технический результат достигается тем, что в...
Тип: Изобретение
Номер охранного документа: 0002763781
Дата охранного документа: 11.01.2022
05.06.2023
№223.018.774e

Солнечный энергетический модуль, встроенный в фасад здания

Изобретение относится к областям электротехники и гелиотехники, в частности к встроенным в здания солнечным энергетическим модулям. Технический результат заключается в повышении коэффициента использования установленной мощности, увеличении эффективности преобразования солнечной энергии,...
Тип: Изобретение
Номер охранного документа: 0002762310
Дата охранного документа: 17.12.2021
+ добавить свой РИД