×
20.03.2014
216.012.abe4

Результат интеллектуальной деятельности: СПОСОБ И УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ВОДОРОДА ИЗ ВОДЫ (ВАРИАНТЫ)

Вид РИД

Изобретение

Аннотация: Изобретение относится к области химии. Согласно первому варианту для получения водорода железные стержни изолируют от стенок реактора 1 и подают на них высоковольтный потенциал от трансформатора Тесла 14. Реактор 1 заземляют и заполняют водой до образования разряда между железными электродами и поверхностью воды. Согласно второму варианту плоский горизонтальный охлаждаемый электрод 18 изолируют от стенок реактора 1 и подают на него высоковольтный потенциал от трансформатора Тесла 14. Реактор заземляют, внутри реактора устанавливают вертикально тонкостенные трубы 23 из железа с устройством 24 перемещения, уменьшают расстояние между тонкостенными трубками и плоским электродом 18 до образования разряда. Через тонкостенные трубки подают водяной пар. Изобретение позволяет повысить чистоту водорода, снизить затраты энергии. 4 н. и 2 з.п. ф-лы, 2 ил., 2 пр.

Изобретение относится к области химической технологии, а более конкретно к способам и устройствам для получения водорода путем экзотермической реакции водяного пара с металлами.

Известен способ и устройство получения водорода электролизом воды, где электролитом служит водный раствор КОН (350-400 г/л), давление в элекролизерах от атмосферного до 4 МПа (Химическая энциклопедия в 5 томах под редакцией Н.П.Кнунянца. - М.: Сов. энциклопедия, 1988 г., т.1, с.401).

Производительность электролизеров в известном способе составляет 4-500 м3/ч, а расход электроэнергии для получения 1 м3 водорода равен 4,0-5,6 кВт/ч.

Недостатком известного способа является большой расход электроэнергии.

Известен способ получения водорода методом конверсии, которым в настоящее время получают более половины промышленного водорода (Путилова И.Н. Курс общей химии. Высшая школа, 1964, с.208). Этот способ включает получение водяного газа (смеси СО и Н2) из кокса и водяного пара при температуре 1000°С (С+H2O=СО-Н2).

Чистый водород получают, используя реакцию СО и H2O в присутствии катализатора Fe2O3 (СО+H2O=CO22). Образующуюся смесь Н2, CO2 и СО растворяют в воде под давлением.

Данный способ, несмотря на относительную дешевизну, многостадиен, экологически ущербен и сложен в управлении.

Известен способ и устройство получения водорода при химической реакции воды (H2O) и алюминия (А1), в результате которой получается водород (Н2) как топливо и гидроокись алюминия (A1OH) как сырье, пригодное для дальнейшей переработки и использовании в промышленных целях: А1+3Н2О=А1(OH)3+1,5H2.

В обычных условиях эта реакция не протекает из-за наличия на поверхности алюминия очень тонкой, но большой плотности оксидной пленки, образующейся почти мгновенно по реакции:

2А1+1,5O2=A12O3.

В известном способе и устройстве используют сплав алюминия и едкого натра, благодаря которому оксидная пленка вокруг алюминия растворяется, и к поверхности алюминия открыт доступ для воды (патенты РФ МПК С01В 3/08, №2407701, опубл. 27.12.2010, №2410325, опубл. 27.01.2011). В качестве растворителя в данном сплаве используется щелочь, а именно едкий натр (NaOH):

2А1+2NaOH+10Н2О=2Na[Al(OH)4(H2O)2]+3Н2.

Недостатком известного способа и устройства является использование химически вредного вещества - щелочи для получения водорода.

Известен способ получения водорода, заключающийся в подаче в реактор металлосодержащих веществ и водной среды и последующем осуществлении взаимодействия металлосодержащих веществ с водной средой, в котором перед подачей в реактор металлосодержащих веществ осуществляют покрытие последних водорастворимой полимерной пленкой, а при осуществлении взаимодействия с водной средой в качестве последней используют водную среду, параметры которой соответствуют параметрам ее сверхкритического состояния для обеспечения возможности создания процесса послойного горения металлосодержащих веществ с выделением водорода. В качестве металлосодержащих веществ используют порошкообразный алюминий, а в качестве водорастворимой полимерной пленки - раствор полиэтиленоксида в диоксане или метиловом спирте, а давление сверхкритического состояния водной среды составляет более 22,12 МПа, температура - более 647,3°К (Мазалов Ю.А. Способ получения водорода. Патент РФ №2165888, опубл. 20.04.2001).

Недостатком известного способа является необходимость использования ультрадисперсного порошка алюминия с размером частиц 0,2 мкм, а также высокое давление и большая температура в реакторе, что увеличивает затраты энергии и создает проблемы безопасности при осуществлении процесса.

Наиболее близким по технической сущности и числу общих признаков является способ, принятый в качестве прототипа и заключающийся в реакционном взаимодействии водяного пара с раскаленным железом (Путилова И.Н. и др. Курс общей химии. Изд. «Высшая школа», 1964 г., с.209).

Реакция выглядит следующим образом:

4H2O+3Fe=Fe3O4+4H2.

Недостатком известного способа является ограниченность его использования в промышленности из-за больших затрат энергии и сложности технологического процесса.

Задачей, на решение которой направлен предлагаемый способ и устройство, является безопасное, экологически чистое получение водорода путем одностадийной реакции с возможностью регенерации исходного сырья.

Технический результат от использования заключается в реализации прямого окисления металлосодержащего вещества без предварительного его нагревания, требующего энергозатрат и использования растворов щелочи в воде.

Вышеуказанный технический результат достигается за счет того, что в способе получения водорода путем реакционного взаимодействия в реакторе водяного пара с раскаленным железом железные стержни изолируют от стенок реактора и подают на них высоковольтный потенциал от трансформатора Тесла с напряжением 1-500 кВ при частоте 1-500 кГц, реактор заземляют и заполняют водой до образования холодноплазменного высокочастотного разряда между железными электродами и поверхностью воды и осуществляют реакцию: 3Fe+4H2O=Fe3O4+4H2 в зоне холодноплазменного разряда.

В варианте способа получения водорода в качестве железных стержней используют множество игольчатых электродов из железа диаметром 1-10 мм, установленных на общем проводящем электроизолированном от стенок реактора основании.

В способе получения водорода путем реакционного взаимодействия в реакторе водяного пара с раскаленным железом плоский горизонтальный охлаждаемый электрод изолируют от стенок реактора и подают на электрод высоковольтный потенциал от трансформатора Тесла с напряжением 1-500 кВ при частоте 1-500 кГц, реактор заземляют, внутри реактора устанавливают вертикальные тонкостенные трубы из железа с устройством перемещения, уменьшают расстояние между тонкостенными трубками и плоским электродом до образования холодноплазменного высокочастотного разряда, подают через тонкостенные трубки водяной пар и осуществляют реакцию: 3Fe+4H2O=Fe3O4+4H2 в зоне холодноплазменного разряда.

В устройстве получения водорода из воды путем реакционного взаимодействия водяного пара с раскаленным железом, содержащем реактор с патрубками для подвода воды и отвода продуктов реакции и куски железа с устройством нагрева, куски железа выполнены в виде стержней, которые изолированы от стенок заземленного реактора, соединены с высоковольтным выводом высокочастотного резонансного трансформатора Тесла с напряжением 1-100 кВ и частотой 1-100 кГц и установлены вертикально над поверхностью воды на регулируемом расстоянии от воды 10-500 мм, для инициирования холодноплазменного разряда между стержнями и поверхностью воды.

В варианте устройства получения водорода железные стержни выполнены в виде игольчатых электродов диаметром 1-10 мм, установленных на общем проводящем электроизолированном от стенок реактора основании.

В устройстве получения водорода из воды путем реакционного взаимодействия водяного пара с раскаленным железом, содержащем реактор с патрубками для подвода воды и отвода продуктов реакции и куски железа с устройством нагрева, в верхней части реактора установлен плоский горизонтальный охлаждаемый электрод, который изолирован от стенок реактора и соединен с высоковольтным выводом резонансного высокочастотного трансформатора Тесла с напряжением 1-100 кВ и частотой 1-100 кГц, реактор снабжен устройством заземления и содержит вертикально установленные, тонкостенные трубы диаметром 5-50 мм, которые удалены на расстояние 10-500 мм от плоского электрода, тонкостенные трубки соединены с парогенератором для подачи водяного пара и снабжены устройством перемещения вдоль оси реактора.

Способ и устройство для получения водорода из воды иллюстрируется фиг.1, фиг.2.

На фиг.1 представлена блок-схема способа и устройства для получения водорода нагревом в парах воды с помощью холодноплазменного разряда игольчатых электродов из железа, на фиг.2 - блок-схема способа и устройства для получения водорода с нагревом тонкостенных труб из железа в парах воды с помощью холодноплазменного разряда.

На фиг.1 устройство для получения водорода выполнено в виде реактора 1, который имеет корпус 2 с устройством заземления 3, проходным изолятором 4 с электрическим выводом 5, который внутри реактора 1 соединен с плоским электродом 6, на котором закреплены вертикально множество игольчатых электродов 7 из железа диаметром 1-10 мм. Плоский электрод 6 установлен горизонтально в верхней части реактора 1 на изоляторах 8. Реактор 1 содержит патрубок 9 для подачи воды 10, патрубок 11 для выхода водорода и патрубок 12 для удаления продуктов реакции водного окисления, содержащих окислы железа. Электрический ввод 5 соединен с высоковольтным выводом 13 трансформатора Тесла 14. Низковольтная обмотка 15 трансформатора Тесла 14 вместе с емкостью 16 образует последовательный резонансный контур, который соединен с высокочастотным источником питания 17.

На фиг.2 реактор 1 имеет плоский охлаждаемый электрод 18 в верхней части реактора, закрепленный горизонтально на изоляторах 19 на крышке 20 реактора 1. Охлаждение плоского электрода 18 производится через патрубки для входа 21 и выхода 22 охлаждающей жидкости. В нижней части реактора установлены вертикально тонкостенные трубы 23 из железа диаметром 5-50 мм с устройством перемещения 24 вдоль вертикальной оси реактора 1.

На фиг.2 показаны две тонкостенные трубы 23, которые перемещают в цилиндрических уплотняющих устройствах 25, установленных на нижнем фланце 26 реактора 1. Трубы 23 соединены с водяным парогенератором 27 с помощью трубопровода 28 для подачи пара в реактор 1, толщина труб составляет 1-10 мм. Расстояние между трубами 23 и плоским электродом 18 регулируется и составляет Н=5-50 мм.

Способ и устройство для получения водорода из воды реализуется следующим образом. Реактор на фиг.1 заполняют водой 10 через патрубок 9 таким образом, чтобы расстояние между концами игольчатых электродов 7 и поверхностью воды 10 составляло h1=5-50 мм и при работе устройства поддерживалось на заданном уровне. При подаче потенциала на Фиг.1 от высоковольтного вывода 13 трансформатора Тесла 14 на игольчатые электроды 7 между электродами и поверхностью воды 10 возникает зона холодноплазменного разряда, при этом концы игольчатых электродов 7 нагревают до температуры 600-700°С и происходит интенсивное выделение пара из воды 10. Происходит реакция водного окисления железных игольчатых электродов 7 с выделением водорода: 4Н2О+3Fe=F3O4+4Н2. Из 1 кг железа получается 1,07 м3 водорода. (1).

Скорость реакции окисления игольчатых электродов 7 в воде и выделения водорода регулируется изменением потенциала высоковольтного вывода 13 трансформатора Тесла 14 и изменением расстояния h1 между поверхностью воды 10 и концами игольчатых электродов 7.

Кроме реакции водного окисления железа происходит электролиз воды, что увеличивает выход водорода из реактора 1.

Устройство на фиг.2 работает следующим образом. При подаче высокого напряжения на плоский электрод 18 между электродом 18 и тонкостенными трубами 23 возникает холодноплазменный разряд и стенки труб 21 нагревают до температуры 600-700°С. Водяной пар из парогенератора 27 по трубопроводу 28 поступает через тонкостенные трубы 23 в зону холодноплазменного разряда, где происходит реакция (1) водного окисления железа с выделением водорода. Одновременно происходит плазменный электролиз паров воды с образованием дополнительного количества водорода.

Устройство перемещения 24 поддерживает зазор между трубами 23 и электродом 18.

Примеры осуществления способа и устройства получения водорода из воды

Пример 1. Реактор 1 (фиг.1) выполнен в виде цилиндрической емкости из нержавеющей стали диаметром 300 мм и высотой 500 мм с толщиной стенок 0,6 мм. Внутри корпуса реактора 1 на изоляторах 8 установлен плоский электрод с шестью игольчатыми электродами из железа диаметром 5 мм. Расстояние от поверхности воды 10 до h1=40 мм, напряжение на высоковольтном выводе 13 трансформатора Тесла 14 составляет 40 кВ, частота 20 кГц, температура на концах игольчатых электродов 7 700°С, выход водорода 2 м3/ч.

Пример 2. Реактор 1 (фиг.2) имеет диаметр 400 мм, высоту 800 мм. В нижней части реактора вертикально установлено 10 труб 23 диаметром 15 мм с толщиной стенок 2 мм. Расстояние между концами труб 23 и плоским электродом 18h2=25 мм. Напряжение на электроде 18 30 кВ, частота 25 кГц. Температура на выходе стенок труб 23 составляет 700°С, выход водорода 4 м3/ч.

Образующиеся в результате реакции (1) оксиды железа могут быть легко восстановлены до железа при взаимодействии с синтез-газом.

Использование предложенного способа позволит снизить энергозатраты при производстве водорода, повысить управляемость и небезопасность процесса, а также осуществлять регенерацию исходного сырья. Изобретение может быть использовано в промышленности для получения водорода и на транспорте. При добавке водорода в количестве 5% к топливу количество вредных примесей в выхлопе двигателя внутреннего сгорания снижается в 10 раз, повышается КПД двигателя и снижается расход топлива на 8-10%. Использование водорода как 100% топлива в двигателе Стерлинга, газотурбинном двигателе или в топливных элементах позволяет исключить вредные выбросы.


СПОСОБ И УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ВОДОРОДА ИЗ ВОДЫ (ВАРИАНТЫ)
СПОСОБ И УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ВОДОРОДА ИЗ ВОДЫ (ВАРИАНТЫ)
Источник поступления информации: Роспатент

Показаны записи 21-30 из 77.
10.06.2014
№216.012.cff9

Способ и устройство для круглогодичных охлаждения, замораживания грунта основания фундамента и теплоснабжения сооружения на вечномерзлом грунте в условиях криолитозоны

Изобретение относится к устройствам регулируемой температурной стабилизации, охлаждения и замораживания грунта основания фундаментов, а также теплоснабжения сооружений на вечномерзлых грунтах (в условиях криолитозоны). Способ круглогодичных охлаждения, замораживания грунта основания фундамента...
Тип: Изобретение
Номер охранного документа: 0002519012
Дата охранного документа: 10.06.2014
27.06.2014
№216.012.d5b8

Способ и устройство для получения водорода из воды

Изобретение относится к области химии. Реактор 1 для получения водорода содержит корпус 2, патрубок 10 для подачи воды, патрубок 11 для выхода водорода и патрубок 12 для удаления продуктов реакции водного окисления. Внутри реактора 1 расположен контейнер 6 с металлом 9, который установлен на...
Тип: Изобретение
Номер охранного документа: 0002520490
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d6f1

Солнечный модуль с концентратором и способ его изготовления

Изобретение относится к гелиотехнике, в частности к солнечным модулям с концентраторами для получения электрической и тепловой энергии. В солнечном модуле с концентратором, содержащем прозрачные фокусирующие призмы с треугольным поперечным сечением, с углом входа лучей β и углом полного...
Тип: Изобретение
Номер охранного документа: 0002520803
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d822

Устройство передачи электрической энергии в ракетно-космических комплексах (варианты)

Изобретение относится к устройству для передачи электрической энергии. Технический результат - уменьшение количества и массы проводов для передачи электроэнергии в ракетно-космических (Р-К) комплексах, а также повышение качества электропитания бортовой аппаратуры. Указанный результат...
Тип: Изобретение
Номер охранного документа: 0002521108
Дата охранного документа: 27.06.2014
10.07.2014
№216.012.dc4a

Полупроводниковый фотоэлектрический генератор и способ его изготовления (варианты)

Изобретение относится к оптоэлектронным приборам. Полупроводниковый фотоэлектрический генератор содержит прозрачное защитное покрытие на рабочей поверхности, на которое падает излучение, и секции фотопреобразователей, соединенные оптически прозрачным герметиком с защитным покрытием. Секции...
Тип: Изобретение
Номер охранного документа: 0002522172
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.dd16

Солнечный модуль с параболоторическим концентратором в составе с двигателем стирлинга

Фотоэлектрический модуль солнечного концентрированного излучения относится к гелиотехнике и касается создания солнечных модулей с фотоэлектрическими и тепловыми приемниками и концентраторами солнечного излучения в виде параболоидов. Солнечный модуль с параболоторическим концентратором с...
Тип: Изобретение
Номер охранного документа: 0002522376
Дата охранного документа: 10.07.2014
20.07.2014
№216.012.e1d4

Способ и устройство для управления затворами полевых транзисторов или биполярных транзисторов с изолированными затворами (варианты)

Изобретение относится к силовой электронике, в частности к способам и устройствам для управления затворами полевых транзисторов или затворами биполярных транзисторов с изолированными затворами. Техническим результатом изобретения является создание способа и устройства для управления затворами...
Тип: Изобретение
Номер охранного документа: 0002523598
Дата охранного документа: 20.07.2014
20.08.2014
№216.012.ec0e

Трехконтактная штепсельная розетка европейского типа с заземляющим элементом и способ ее изготовления

Трехконтактная штепсельная розетка европейского типа с заземляющим элементом выполнена с корпусом из изоляционного материала, двумя металлическими гнездами (фазным и нулевым рабочим) и двойным заземляющим контактом. Внутри корпуса находится рестрикционный элемент (резистор), один конец...
Тип: Изобретение
Номер охранного документа: 0002526238
Дата охранного документа: 20.08.2014
27.08.2014
№216.012.ee6f

Двухштырьковая монолитная штепсельная вилка с заземляющим элементом и способ ее изготовления

Двухштырьковая монолитная штепсельная вилка содержит неразборный монолитный изоляционный корпус, внутри которого находится рестрикционный элемент, выполненный в виде скрытой цилиндрической полости, заполненной эластичным токопроводящим материалом. Один конец рестрикционного элемента...
Тип: Изобретение
Номер охранного документа: 0002526858
Дата охранного документа: 27.08.2014
20.11.2014
№216.013.067b

Способ и устройство для передачи электрической энергии

Изобретение относится к области электротехники, в частности к способам и устройствам для передачи электрической энергии. В способе передачи электрической энергии между источником и потребителем энергии с использованием в качестве проводящего канала трубопровода с жидким веществом путем...
Тип: Изобретение
Номер охранного документа: 0002533060
Дата охранного документа: 20.11.2014
Показаны записи 21-30 из 65.
27.12.2015
№216.013.9e59

Солнечный модуль с концентратором (варианты)

Солнечный модуль содержит на рабочей поверхности защитное покрытие, полупараболоцилиндрический зеркальный отражатель с параметрическим углом δ с поверхностью входа и выхода лучей и приемник излучения в виде полосы. Защитное покрытие выполнено в виде отклоняющей оптической системы из набора...
Тип: Изобретение
Номер охранного документа: 0002572167
Дата охранного документа: 27.12.2015
10.01.2016
№216.013.9f13

Способ и устройство для передачи электрической энергии (варианты)

Изобретение относится к области электротехники, в частности к устройствам и способам передачи электрической энергии с применением резонансных технологий между стационарными объектами, а также между стационарными питающими устройствами и мобильными агрегатами, принимающими электроэнергию. В...
Тип: Изобретение
Номер охранного документа: 0002572360
Дата охранного документа: 10.01.2016
10.03.2016
№216.014.bebf

Солнечный модуль с концентратором

Изобретение относится к гелиотехнике, в частности к солнечным энергетическим модулям с концентраторами для получения электрической энергии и теплоты. В солнечном модуле с концентратором, имеющим рабочую поверхность, на которую падает солнечное излучение, полупараболоцилиндрический концентратор...
Тип: Изобретение
Номер охранного документа: 0002576752
Дата охранного документа: 10.03.2016
27.02.2016
№216.014.bec5

Солнечный модуль с концентратором и способ его изготовления

Изобретение относится к гелиотехнике, в частности, к солнечным модулям с концентраторами для получения электрической и тепловой энергии. В солнечном модуле, содержащем фокусирующую призму с острым углом Ψ, и коэффициентом преломления n с эффектом полного внутреннего отражения на рабочей...
Тип: Изобретение
Номер охранного документа: 0002576072
Дата охранного документа: 27.02.2016
10.03.2016
№216.014.bf60

Солнечный модуль с концентратором

Изобретение относится к гелиотехнике, в частности к солнечным модулям с концентраторами солнечного излучения для получения электричества и тепла. В солнечном модуле с концентратором, имеющем рабочую поверхность, на которую падает солнечное излучение, концентратор и приемник излучения, на...
Тип: Изобретение
Номер охранного документа: 0002576742
Дата охранного документа: 10.03.2016
10.03.2016
№216.014.c052

Солнечный модуль с концентратором

Изобретение относится к гелиотехнике, в частности к солнечным модулям с концентраторами солнечного излучения для получения электричества и тепла. В солнечном модуле с концентратором, имеющем рабочую поверхность, на которую падает солнечное излучение, приемник излучения, согласно изобретению на...
Тип: Изобретение
Номер охранного документа: 0002576739
Дата охранного документа: 10.03.2016
20.03.2016
№216.014.cb5a

Способ и устройство для передачи электрической энергии

Изобретение относится к области электротехники, в частности устройствам и способам передачи электрической энергии с применением резонансных технологий между стационарными объектами, а также между стационарными питающими устройствами и мобильными агрегатами, принимающими электроэнергию....
Тип: Изобретение
Номер охранного документа: 0002577522
Дата охранного документа: 20.03.2016
10.04.2016
№216.015.2ee6

Солнечный модуль с концентратором

Изобретение относится к гелиотехнике, в частности к солнечным модулям с концентраторами солнечного излучения для получения электричества и тепла. Солнечный модуль с концентратором имеет рабочую поверхность, на которую падает излучение, на рабочей поверхности установлены миниатюрные зеркальные...
Тип: Изобретение
Номер охранного документа: 0002580462
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3097

Способ и система сетевой интеллектуальной графики для обеспечения безопасности производства

Изобретение относится к системе сетевой интеллектуальной графики для обеспечения безопасности производства. Технический результат заключается в повышении эффективности формирования графических образов для обеспечения унификации их поиска. Система содержит блоки сетевых автоматизированных...
Тип: Изобретение
Номер охранного документа: 0002580007
Дата охранного документа: 10.04.2016
12.01.2017
№217.015.5d0d

Способ и сетевая система обеспечения безопасности производства с применением интеллектуальных графических описаний нештатных ситуаций

Изобретение относится к средствам организации безопасного производства. Технический результат - повышение эффективности систем обеспечения безопасности производства и систем электронного обучения. Система содержит блок автоматизированных рабочих мест, компьютерные и телекоммуникационные системы...
Тип: Изобретение
Номер охранного документа: 0002591008
Дата охранного документа: 10.07.2016
+ добавить свой РИД