×
20.03.2014
216.012.ab86

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНОГО ПОРОШКА ЖЕЛЕЗОИТТРИЕВОГО ГРАНАТА

Вид РИД

Изобретение

Аннотация: Изобретение относится к получению порошков для микроволновой техники и магнитооптики. Способ получения наноразмерного порошка железо-иттриевого граната включает приготовление водного раствора солей иттрия (III) и водного раствора солей железа (III). Сначала реагент-осадитель, в качестве которого используют сильноосновный гелевый анионит АВ-17-8 в гидроксидной форме, приводят в контакт с раствором солей иттрия (III) при комнатной температуре в течение 60 мин, затем добавляют раствор солей железа (III). Из полученного раствора осаждают продукт-прекурсор, отделяют его от раствора, промывают водой, сушат и обжигают при температуре не менее 700°C. Ионообменный способ обеспечивает получение наноразмерного порошка железо-иттриевого граната, не содержащего катионов осадителя, без применения агрессивных сред, высоких температур и давлений. 4 ил., 3 пр.
Основные результаты: Способ получения наноразмерного порошка железоиттриевого граната, включающий приготовление исходных реакционных водных растворов, содержащих соли иттрия (III) и железа (III) в молярном отношении (3:5), приведение растворов в контакт, осаждение из полученного раствора продукта-прекурсора, отделение его от раствора, промывку водой, сушку и обжиг, отличающийся тем, что реагент-осадитель, в качестве которого используют сильноосновный гелевый анионит АВ-17-8 в гидроксидной форме, предварительно приводят в контакт с раствором солей иттрия (III) при комнатной температуре в течение 60 мин, а затем в систему добавляют раствор солей железа (III), при этом обжиг проводят при температуре не менее 700°C.

Изобретение относится к способу получения наноразмерного порошка железо-иттриевого граната и может быть использовано в различных областях микроволновой техники и магнитооптики.

Известен способ получения нанодисперсных ферритов редкоземельных металлов [патент RU №2400427, МПК C01F 17/00, B82B 3/00, опубл. 27.09.2010] из растворов соли железа и соли редкоземельного металла с использованием органических растворителей и выделением целевого продукта. Для этого сначала приготавливают водные растворы солей железа и редкоземельного металла, из которых затем железо экстрагируют бензольным раствором, содержащим хлорид триалкилбензиламмония, а редкоземельный металл экстрагируют бензольным раствором, содержащим хлорид триалкилбензиламмония и ацетилацетон, далее для получения ферритов типа граната Ln3Fe5O12 смешивают полученные после отделения от водных фаз экстракты железа и редкоземельного металла в молярном соотношении 5:3, а выделение целевого продукта осуществляют, отгоняя органический растворитель при температуре 60-100°C, после чего продукт подвергают пиролизу при температуре 600-700°C.

К недостаткам данного способа можно отнести использование дорогостоящих и вредных органических экстрагентов и растворителей, сложность аппаратурного оформления, а также необходимость осуществления стадии отгонки растворителя.

Известен способ получения железо-иттриевого граната твердофазным методом [Булатова А.Н. Механизмы зарядовой компенсации и свойства субмикрокристаллических феррит-гранатов при отклонениях от стехиометрии по катионному составу и кислороду. Физика и химия обработки материалов. - 2008. - №5. - С.61-64], где в качестве исходных веществ используют оксиды иттрия Y2O3 и железа Fe2O3, смешанные в молярном отношении (3:5). Навески оксидов перемешивают в среде этилового спирта в планетарной мельнице в течение 60 минут. Затем производят сушку смеси в печи и прессование под давлением в виде таблеток. После предварительного обжига при 1150°C в течение 4 часов проводят второй помол и смешивание в среде этилового спирта в планетарной мельнице в течение 60 минут с последующей сушкой и формировкой из пресспорошка с добавлением связки (водного раствора поливинилового спирта), под давлением образцов в виде таблеток. Заключительный этап - высокотемпературный обжиг образцов в воздушной атмосфере при 1300°C в течение 8 часов.

К недостаткам данного способа можно отнести высокие температуры обжига и длительное измельчение порошков в планетарных мельницах.

Известен также способ получения железо-иттриевого граната золь-гель методом [Yahya, N., Masound, К. Koziol, R. Dunin Borkowski, N. Yahya. Morphology and magnenic characterization of aluminium substituted of yttrium iron garnet nanoparticles prepared using sol gel technique. Journal of nanoscience and nanotechnology. - 2011. - Vol.11. - №3. - P.2652-2656]. Смесь нитратов Y(NO3)3·6H2O и Fe(NO3)3·9H2O растворяют в 150 мл лимонной кислоты C6H8O7·H2O, интенсивно перемешивают до момента образования геля (в течение месяца, такая длительность процесса перемешивания, по мнению авторов, приводит к формированию хорошо кристаллизованной фазы Y3Fe5O12). Гель высушивают при 110°C. Затем сухой порошок прокаливают при 600°C 3 часа и измельчают в планетарной мельнице 6 часов для получения тонкодисперсного порошка. Полученный порошок спекают при температурах 900°C на протяжении 3 часов.

Недостатком данного способа является длительность проведения синтеза, так как в основе происходящих процессов лежит переход от коллоидного раствора (золя) к коллоидному осадку (гелю). Данный переход осуществляется в большом интервале времени.

Наиболее близким техническим решением, выбранным в качестве прототипа, является способ получения железо-иттриевого граната методом соосаждения [Ristic, I. Nowic, S. Popovic, I. Felner. Influence of synthesis procedure on YIG formation. // Materials letters. - 2003. - №57. - P.2584-2590]. Смесь гидроксидов состава 3Y(OH)3+5Fe(OH)3 осаждают из водных растворов соответствующих солей нитратов раствором аммиака при pH 10,4, затем их промывают бидистиллированной водой и высушивают. Сухую смесь гидроксидов нагревают до 600°C, после нагрева продукт прессуют в таблетки и проводят его прокаливание при температуре 900°C в течение 2-8 часов и затем при 1200°C - 2 часа.

К недостаткам данного способа можно отнести загрязнение полученного осадка анионами и катионами осадителя, большой расход электроэнергии, а также длительность процесса.

Техническим результатом заявляемого изобретения является разработка ионообменного способа получения железо-иттриевого граната, являющегося достаточно простым, не предполагающего применения агрессивных сред и давлений.

Технический результат достигается тем, что в способе получения наноразмерного порошка железо-иттриевого граната, включающем приготовление исходных реакционных водных растворов, содержащих соли иттрия (III) и железа (III) в молярном отношении (3:5), осаждение из раствора продукта-прекурсора, отделение от раствора, промывку водой, сушку и обжиг, новым является то, что реагент-осадитель, в качестве которого используют сильноосновный гелевый анионит АВ-17-8 в гидроксидной форме, приводят сначала в контакт с раствором иттрия (III) при комнатной температуре в течение 60 мин, затем в систему добавляют раствор железа (III), обжиг проводят при температуре не менее 700°C.

Эти отличия позволяют сделать вывод о соответствии заявляемого технического решения критерию «новизна». Признаки, отличающие заявляемый способ от прототипа, не выявлены в других технических решениях при изучении данной и смежных областей химии и, следовательно, обеспечивают заявляемому решению соответствие критерию «изобретательный уровень».

Изобретение поясняется чертежами. На фиг.1 представлен ИК-спектр железо-иттриевого граната: а - полученного из хлоридного раствора; б - полученного из нитратного раствора. На фиг.2 показаны рентгеновские спектры железо-иттриевого граната: а - полученного из хлоридного раствора; б - полученного из нитратного раствора. На фиг.3 представлена микрофотография железо-иттриевого граната, полученного из хлоридного раствора и обожженного при 700°C. На фиг.4 приведены спектры МКД при температуре 22°C и -180°C для образцов ЖИГ, полученных из хлоридных растворов и обожженных при 700°C.

Необходимость создания настоящего изобретения обусловлена тем, что образование железо-иттриевого граната из гидроксидов иттрия и железа (совместное их осаждение) протекает гораздо легче и при более низкой температуре, чем при использовании в качестве прекурсоров оксидных систем. Это объясняется более значительной степенью смешения исходных фаз при совместном осаждение катионов, чем при механическом перемешивании исходных веществ. Полученные таким способом железо-иттриевые гранаты обладают высокой воспроизводимостью магнитных свойств. Важной задачей является также обеспечение нужной чистоты прекурсоров.

При создании заявленного изобретения были использованы гелевые и пористые, сильноосновные аниониты в OH-форме. Полученные данные свидетельствуют, что использование пористых анионитов нецелесообразно, так как значительная доля осадка (более 50%) удерживается анионитом. Поэтому выбор сильноосновного анионита AB-17-8, содержащего в качестве функциональных групп остатки четвертичных аммониевых оснований, является предпочтительным.

Заявляемый способ осуществляется следующим образом.

Переводят анионит АВ-17-8 (сильноосновной анионит с полистирольной матрицей, содержащий четвертичные аммониевые основания - N+(CH3)3 (ГОСТ 20301-74)) в OH-форму, осуществляют контакт анионита с раствором солей иттрия (III) и железа (III), отделение и промывку осадка, прокаливание, регенерацию анионита.

Перевод анионита в OH-форму проводят, заливая исходный АВ-17-8 в хлоридной форме 1М раствором NaOH (т:ж=1:3), затем 2 М раствором NaOH 5-6 раз, выдерживая каждую порцию в течение часа (последнюю порцию в течение суток). После чего анионит промывают дистиллированной водой до отрицательной реакции на хлорид-ион. Полученный анионит высушивают при температуре около 60°C.

Массу анионита, необходимую для синтеза, рассчитывают по формуле:

,

где CY, CFe - концентрация исходных растворов иттрия (III) и железа (III), М; VY, VFe - объем исходных растворов, мл; COE - статическая обменная емкость анионита в OH-форме, ммоль-экв·г-1.

Рассчитанное количество анионита, выступающего в качестве реагента-осадителя, приводят в контакт с 19 мл 0,24 М раствора иттрия (III). Систему перемешивают на шейкере со скоростью 120 мин-1 при комнатной температуре в течение 60 мин, затем в систему добавляют 31 мл 0,24 М раствора железа (III) и перемешивают еще 10 мин. После чего анионит отделяют, пропуская смесь через сито с диаметром отверстий 0,25 мм. Для отделения осадка проводят фильтрование на воронке Бюхнера под вакуумом. Осадок (прекурсор) после промывания водой сушат при температуре 100°C. Далее прекурсор обжигают при температуре 700°C в течение 240 мин для получения чистой фазы железо-иттриевого граната.

На фиг.1 представлен ИК-спектр полученного железо-иттриевого граната. Наблюдаемые полосы поглощения (п.п.) характерны для структуры граната: п.п. 564 см-1 соответствует колебаниям υ3(Fe-O) тетраэдрически координированного железа; п.п.597 см-1 - колебаниям υ2(Fe-O) октаэдрически координированного железа; п.п. 657 см-1 - колебаниям υ1(Y-O) додекаэдрически координированного иттрия.

На фиг.2 представлен рентгеновский спектр продуктов, обожженных при 700°C. Пики на рентгенограмме <2,77>, <2,53>, <1,71>, <3,09>, <1,65>, <1,35> характерны для кубической структуры граната.

Согласно данным ИК-спектроскопии и РФА, в продуктах, полученных с использованием анионита в качестве реагента-осадителя, образование железо-иттриевого граната происходит при более низких температурах, чем описано в прототипе (1200°C).

Исследования магнитных свойств образцов проводят методом магнитного кругового дихроизма (МКД) на оригинальной установке. МКД измеряют как разность сигналов при двух противоположных направлениях внешнего магнитного поля. Измерения МКД проведены в спектральном интервале от 350 до 600 нм в магнитном поле 3,5 кЭ при температурах 22°C и -180°C.

Пример 1. Получение наноразмерного порошка железо-иттриевого граната из хлоридных растворов иттрия (III) и железа (III) при температуре обжига 700°C.

Навеску анионита массой 34 г приводят в контакт с 19 мл 0,24 М раствора YCl3. Систему перемешивают на шейкере со скоростью 120 мин-1 при комнатной температуре в течение 60 мин, затем в систему добавляют 31 мл 0,24 М раствора FeCl3 и оставляют контактировать еще 10 мин при перемешивание на шейкере. После чего анионит отделяют, пропуская смесь через сито с диаметром отверстий 0,25 мм. Для отделения осадка проводят фильтрование на воронке Бюхнера под вакуумом. Полученный осадок (прекурсор) промывают водой, высушивают при 100°C в сушильном шкафу. Далее прекурсор обжигают при температуре 700°C в течение 240 мин для получения чистой фазы железо-иттриевого граната.

На фиг.1а представлен типичный ИК-спектр железо-иттриевого граната. На фиг.2а представлен типичный рентгеновский спектр железо-иттриевого граната.

На фиг.3 представлена электронная микрофотография железо-иттриевого граната, полученного при 700°C, из которой следует, что мелкие сферические частицы (размер, которых составляет 50 нм) агломерированы в крупные порядка 200 нм.

На фиг.4 представлены спектры магнитного кругового дихроизма (МКД) наночастиц железо-иттриевого граната, из которых следует, что данные частицы демонстрируют ферромагнитное поведение: максимум при 440 нм обусловлен электронным переходом в ионе Fe3+ октаэдрической координации, а максимум 480 нм связан с электронным переходом в этом же ионе в тетраэдрической координации. Данный вывод подтверждается результатами ИК-спектроскопии.

Пример 2. Получение железо-иттриевого граната из нитратных растворов иттрия (III) и железа (III) при температуре обжига 700°C.

Навеску анионита массой 39 г приводят в контакт с 19 мл 0,24 М раствора Y(NO3)3. Систему перемешивают на шейкере со скоростью 120 мин-1 при комнатной температуре в течение 60 мин, затем добавляют 31 мл 0,24 М раствора Fe(NO3)3 и оставляют контактировать еще 10 мин при перемешивании на шейкере. После чего анионит отделяют, пропуская смесь через сито с диаметром отверстий 0,25 мм. Для отделения осадка проводят фильтрование на воронке Бюхнера под вакуумом. Полученный осадок (прекурсор) промывают водой, высушивают при 100°C в сушильном шкафу. Далее прекурсор обжигают при температуре 700°C в течение 240 мин для получения чистой фазы железо-иттриевого граната.

На фиг.1б представлен типичный ИК-спектр железо-иттриевого граната. На фиг.2б представлен типичный рентгеновский спектр железо-иттриевого граната.

По рентгенографическим данным (дифракционный максимум 2,7) с использованием формулы Шеррера рассчитали размер полученных частиц - 18 нм, которые, вероятно, агломерированы в крупные порядка 200 нм.

Спектры магнитного кругового дихроизма (МКД) железо-иттриевого граната, полученного из нитратных растворов, аналогичны представленным на фиг.4.

Пример 3. Получение железо-иттриевого граната из хлоридных растворов иттрия (III) и железа (III) при температуре обжига 900°C.

Навеску анионита массой 34 г приводят в контакт с 19 мл 0,24 М раствора YCl3. Систему перемешивают на шейкере со скоростью 120 мин-1 при комнатной температуре в течение 60 мин, затем в систему добавляют 31 мл 0,24 М раствора FeCl3 и оставляют контактировать еще 10 мин при перемешивание на шейкере. После чего анионит отделяют, пропуская смесь через сито с диаметром отверстий 0,25 мм. Для отделения осадка проводят фильтрование на воронке Бюхнера под вакуумом. Полученный осадок (прекурсор) промывают водой, высушивают при 100°C в сушильном шкафу. Далее прекурсор обжигают при температуре 900°C в течение 240 мин для получения чистой фазы железо-иттриевого граната.

ИК-спектр железо-иттриевого граната, обожженного при температуре 900°C, аналогичен представленному на фиг.1a. Типичный рентгеновский спектр железо-иттриевого граната аналогичен представленному на фиг.2a.

По рентгенографическим данным (дифракционный максимум 2,7) с использованием формулы Шеррера рассчитали размер полученных частиц - 18 нм, которые, вероятно, агломерированы в крупные порядка 200 нм.

Спектры магнитного кругового дихроизма (МКД) железо-иттриевого граната, полученного из хлоридных растворов, аналогичны представленным на фиг.4.

Преимущества предлагаемого способа заключаются в том, что он достаточно прост, не предполагает применения агрессивных сред, высоких температур и давлений. Используя данное техническое решение, можно добиться получения продукта, не содержащего катионов осадителя, что освобождает в дальнейшем от необходимости длительной промывки полученного осадка, а также снижение температуры при его обжиге. Кроме того, предложенный анионообменный метод синтеза железо-иттриевого граната приводит к образованию высокодисперсного продукта, обладающего ферромагнитными свойствами.

Способ получения наноразмерного порошка железоиттриевого граната, включающий приготовление исходных реакционных водных растворов, содержащих соли иттрия (III) и железа (III) в молярном отношении (3:5), приведение растворов в контакт, осаждение из полученного раствора продукта-прекурсора, отделение его от раствора, промывку водой, сушку и обжиг, отличающийся тем, что реагент-осадитель, в качестве которого используют сильноосновный гелевый анионит АВ-17-8 в гидроксидной форме, предварительно приводят в контакт с раствором солей иттрия (III) при комнатной температуре в течение 60 мин, а затем в систему добавляют раствор солей железа (III), при этом обжиг проводят при температуре не менее 700°C.
СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНОГО ПОРОШКА ЖЕЛЕЗОИТТРИЕВОГО ГРАНАТА
СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНОГО ПОРОШКА ЖЕЛЕЗОИТТРИЕВОГО ГРАНАТА
СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНОГО ПОРОШКА ЖЕЛЕЗОИТТРИЕВОГО ГРАНАТА
СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНОГО ПОРОШКА ЖЕЛЕЗОИТТРИЕВОГО ГРАНАТА
Источник поступления информации: Роспатент

Показаны записи 201-210 из 237.
20.11.2015
№216.013.9294

Способ управления процессом эксплуатации шарошечного долота

Изобретение относится к горной промышленности и может быть использовано при шарошечном бурении взрывных и разведочных буровых скважин на горных предприятиях. Технический результат заключается в обеспечении эффективности использования долота. Способ управления процессом эксплуатации шарошечного...
Тип: Изобретение
Номер охранного документа: 0002569141
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.92b3

Вискозиметр

Изобретение относится к области измерительных средств, в частности для измерения вязкости жидких сред при различных температурах и прозрачности. Для достижения технического результата в корпусе (1) вискозиметра установлен теплоизолированный снаружи нагреватель (2) с цилиндрической полостью (5),...
Тип: Изобретение
Номер охранного документа: 0002569173
Дата охранного документа: 20.11.2015
27.11.2015
№216.013.949c

Способ определения величины подработки твердеющей закладки при механическом разрушении рудного массива

Изобретение относится к горной промышленности, а именно к подземной разработке месторождений полезных ископаемых, с заполнением выработанного пространства твердеющей закладкой. Техническим результатом является определение длины полости, оставшейся в закладочном массиве после отработки рудного...
Тип: Изобретение
Номер охранного документа: 0002569663
Дата охранного документа: 27.11.2015
27.11.2015
№216.013.9567

Газосборное устройство алюминиевого электролизера

Изобретение относится к газосборному устройству алюминиевого электролизера. Газосборное устройство алюминиевого электролизера содержит прямые и угловые секции, подвешенные с помощью зацепов по периметру анодного кожуха. Секции выполнены пустотелыми и между их внутренней и наружной стенками...
Тип: Изобретение
Номер охранного документа: 0002569866
Дата охранного документа: 27.11.2015
10.12.2015
№216.013.9898

Алюминиевый сплав

Изобретение относится к алюминиевым сплавам, предназначенным для производства электропроводников, работающих при высоких температурах. Алюминиевый сплав содержит, мас.%: лантан и церий в сумме до 9, никель до 0,7, стронций до 0,001, алюминий - остальное, при соотношении церия к лантану...
Тип: Изобретение
Номер охранного документа: 0002570684
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.98c0

Буровое шарошечное долото

Изобретение относится к буровой технике, а именно к конструкциям шарошечных долот, предназначенных для бурения скважин в горнорудной, нефтяной и газовой промышленности и в строительстве дорог, каналов, трубопроводов и др. Технический результат заключается в повышении эффективности работы и...
Тип: Изобретение
Номер охранного документа: 0002570724
Дата охранного документа: 10.12.2015
27.12.2015
№216.013.9e16

Способ предупреждения и подавления пылегазовых выбросов в карьере

Изобретение относится к горной промышленности и может быть использовано при борьбе с пылегазовыми выбросами на рудных, нерудных и угольных карьерах. Техническим результатом предлагаемого решения является повышение эффективности гидравлического подавления пылегазовых скоплений при нестационарном...
Тип: Изобретение
Номер охранного документа: 0002572100
Дата охранного документа: 27.12.2015
27.02.2016
№216.014.bfe7

Способ получения наноразмерного порошка алюмоиттриевого граната

Изобретение относится к технологии получения соединений сложных оксидов со структурой граната, которые могут быть использованы для изготовления активных элементов твердотельных лазеров ближнего и среднего ИК-диапазонов, для разработки сцинтилляторов и люминофоров, а также в производстве...
Тип: Изобретение
Номер охранного документа: 0002576271
Дата охранного документа: 27.02.2016
10.02.2016
№216.014.c3fe

Сплав на основе палладия 850 пробы

Изобретение относится к металлургии ювелирных сплавов на основе палладия 850 пробы, применяемых для изготовления ювелирных изделий. Сплав на основе палладия 850 пробы содержит, мас.%: палладий - 85,0-85,5, золото - 2,0-2,5, родий - 0,01-0,5, серебро - остальное. Сплав обладает более низкой по...
Тип: Изобретение
Номер охранного документа: 0002574936
Дата охранного документа: 10.02.2016
20.02.2016
№216.014.cde1

Устройство для определения параметров заложения нисходящих наклонных скважин и шпуров

Изобретение относится к горному делу и предназначено для определения пространственного положения нисходящих скважин и шпуров. Предложено устройство для определения параметров заложения нисходящих наклонных скважин и шпуров, содержащее основание с размещенными на нем круговым уровнем и...
Тип: Изобретение
Номер охранного документа: 0002575196
Дата охранного документа: 20.02.2016
Показаны записи 201-210 из 222.
20.11.2015
№216.013.8fb6

Сплав припойный на основе палладия 850 пробы

Изобретение может быть использовано для изготовления ювелирных изделий из сплава палладия 850 пробы. Сплав припоя выполнен на основе палладия 850 пробы, содержит кремний и серебро при следующем соотношении компонентов, мас.%: палладий 85,0-85,5, кремний 2,5-4,1, серебро остальное. Сплав...
Тип: Изобретение
Номер охранного документа: 0002568406
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.8fd6

Способ получения циклогексан-транс-1,2-d,l-диаминотетрахлорида платины (iv)

Изобретение относится к области получения соединений платиновых металлов и фармацевтики, в частности к способу получения циклогексан-транс-1,2-d,l-диаминотетрахлорида платины(IV). Способ включает образование гексахлороплатината(IV) циклогексан-транс-1,2-d,l-диаммония из раствора...
Тип: Изобретение
Номер охранного документа: 0002568438
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.8fec

Струнный грохот

Изобретение относится к технике просеивания и разделения сыпучих материалов по крупности, преимущественно горной массы. Технический результат - повышение эффективности разделения горной массы на классы по крупности. Устройство содержит бункер-питатель и просевающие поверхности, установленные...
Тип: Изобретение
Номер охранного документа: 0002568460
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.907d

Штамм бактерии komagataeibacter xylinus - продуцент бактериальной целлюлозы

Изобретение относится к области биотехнологии. Штамм Komagataeibacter xylinus депонирован во Всероссийской коллекции промышленных микроорганизмов (ВКПМ) под регистрационным номером ВКПМ В-12068. Бактериальная целлюлоза может быть использована для восстановительной хирургии, тканевой...
Тип: Изобретение
Номер охранного документа: 0002568605
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.9294

Способ управления процессом эксплуатации шарошечного долота

Изобретение относится к горной промышленности и может быть использовано при шарошечном бурении взрывных и разведочных буровых скважин на горных предприятиях. Технический результат заключается в обеспечении эффективности использования долота. Способ управления процессом эксплуатации шарошечного...
Тип: Изобретение
Номер охранного документа: 0002569141
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.92b3

Вискозиметр

Изобретение относится к области измерительных средств, в частности для измерения вязкости жидких сред при различных температурах и прозрачности. Для достижения технического результата в корпусе (1) вискозиметра установлен теплоизолированный снаружи нагреватель (2) с цилиндрической полостью (5),...
Тип: Изобретение
Номер охранного документа: 0002569173
Дата охранного документа: 20.11.2015
27.11.2015
№216.013.949c

Способ определения величины подработки твердеющей закладки при механическом разрушении рудного массива

Изобретение относится к горной промышленности, а именно к подземной разработке месторождений полезных ископаемых, с заполнением выработанного пространства твердеющей закладкой. Техническим результатом является определение длины полости, оставшейся в закладочном массиве после отработки рудного...
Тип: Изобретение
Номер охранного документа: 0002569663
Дата охранного документа: 27.11.2015
27.11.2015
№216.013.9567

Газосборное устройство алюминиевого электролизера

Изобретение относится к газосборному устройству алюминиевого электролизера. Газосборное устройство алюминиевого электролизера содержит прямые и угловые секции, подвешенные с помощью зацепов по периметру анодного кожуха. Секции выполнены пустотелыми и между их внутренней и наружной стенками...
Тип: Изобретение
Номер охранного документа: 0002569866
Дата охранного документа: 27.11.2015
10.12.2015
№216.013.9898

Алюминиевый сплав

Изобретение относится к алюминиевым сплавам, предназначенным для производства электропроводников, работающих при высоких температурах. Алюминиевый сплав содержит, мас.%: лантан и церий в сумме до 9, никель до 0,7, стронций до 0,001, алюминий - остальное, при соотношении церия к лантану...
Тип: Изобретение
Номер охранного документа: 0002570684
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.98c0

Буровое шарошечное долото

Изобретение относится к буровой технике, а именно к конструкциям шарошечных долот, предназначенных для бурения скважин в горнорудной, нефтяной и газовой промышленности и в строительстве дорог, каналов, трубопроводов и др. Технический результат заключается в повышении эффективности работы и...
Тип: Изобретение
Номер охранного документа: 0002570724
Дата охранного документа: 10.12.2015
+ добавить свой РИД