×
20.03.2014
216.012.ab68

Результат интеллектуальной деятельности: СПОСОБ МЕМБРАННО-АДСОРБЦИОННОГО КОНЦЕНТРИРОВАНИЯ ВОДОРОДА ИЗ ОБЕДНЕННЫХ ГАЗОВЫХ СМЕСЕЙ (ВАРИАНТЫ)

Вид РИД

Изобретение

Аннотация: Изобретение относится к области химии и биотехнологии. Способ непрерывного выделения и концентрирования водорода из биосингаза, состоящего из пяти и более компонентов, включающий подачу биосингаза из реактора (пиролизного реактора или биореактора) с помощью компрессора в мембранный модуль для предконцентрирования водорода в пермеате или ретентате и последующую подачу пермеата (после дополнительного компремирования) или ретентата (без дополнительного компремирования) в блок короткоцикловой адсорбции с получением на выходе концентрата водорода. При этом мембраны с селективностью H/CO>1 используют для предконцентрирования водорода в виде пермеата; мембраны с селективностью H/CO<1 используют для предконцентрирования водорода в виде ретентата. Технический результат заключается в обеспечении возможности выделения водорода из биогаза и возможности длительного применения мембраны. 2 н.п. ф-лы, 5 ил., 1 табл.

Изобретение относится к области химии и биотехнологии, а именно разделению газовых смесей, и может применяться в различных отраслях промышленности, энергетики и сельского хозяйства. Особое применение способа предназначено для концентрирования водорода из биосингаза, состав которого варьируется в зависимости от условий пиролиза и сырья: Н2 (25-45%), СН4 (~1%), CO (25-42%), CO2 (10-35%), N2 (2-5%) H2S(~1). Одним из процессов разделения газовых смесей, еще ограниченно применяемым в промышленных масштабах, являются мембранное разделение и короткоцикловая адсорбция (КЦА). Мембранный процесс газоразделения достаточно эффективно применяется для получения азота из воздуха; обогащения воздуха кислородом, концентрирования водорода из смесей с содержание Н2>50%, удаления CO2 из биогаза и природного газа [Richard W. Baker. Membrane technology and application. - 2nd ed. - California, USA: John Wiley &Sons, Ltd, 2004. - 538 p.]. Процессы короткоцикловой адсорбции известны достаточно давно [Skarstrom С.W. Method and apparatus for fractionating gaseous mixtures by adsorption. US Pat. 2,944,627 (1960)] и позволяют разделять смеси газов с различной адсорбционной способностью, включая водород-содержащие газовые смеси, причем эффективность разделения экономически оправдана только при исходном содержании водорода >60% [Ritter J.A., A.D.Ebner. State-of-the-Art Adsorption and Membrane Separation Processes for Hydrogen Production in the Chemical and Petrochemical Industries // Separation Science and Technology. - 2007. - №42 (6). - С.1123-1193]. Перспективность применения описанных выше процессов принципиально оправдана тем, что в обоих случаях нет затрат на фазовые переходы (как, например, в криогенных технологиях), способы характеризуются малой энергоемкостью, безреагентностью, достаточной компактностью оборудования, достаточной простотой управления и масштабирования.

Мембранное разделение газовых смесей по принципу «диффузионной растворимости» заключается в том, что разделяемая смесь (сырье - питающий поток) приводится в контакт с одной стороной селективно проницаемой непористой мембраны, при этом проникшая через мембрану смесь (пермеат) обогащена легко-проницаемым компонентом, а непроникшая через мембрану смесь (ретентат) - обогащена труднопроницаемым компонентом.

На практике движущей силой процесса является градиент концентрации (градиент парциального давления), который достигается одним из методов по тангенциальной схеме (фиг.1):

- либо подачей питающей смеси в мембранный модуль (до мембраны) при повышенных давлениях и отвода пермеата при атмосферном давлении;

- либо подачей питающей смеси в мембранный модуль (до мембраны) при повышенных давлениях и отвода пермеата вакуумированием;

- либо подачей питающей смеси в мембранный модуль (до мембраны) при атмосферном давлении и отвода пермеата вакуумированием;

Последний из указанных методов обычно применяют в лабораторных исследованиях. Отметим, что выбор полимерной мембраны происходит чисто эмпирически - по известным газоразделительным свойствам полимера селективного слоя. Как правило, эти данные очень ограничены и не охватывают все многообразие пенетрантов (компонентов смеси), например, биосингаза; если водород-содержащие смеси содержат CO2, то и водород и CO2 (их проницаемости близки) накапливаются в пермеате и концентрирования водорода в чистом виде не происходит.

Известен способ, включающий стадию КЦА и последующее мембранное разделения для разделения смесей водорода и углеводородов (см. патент США 6,183,628, от 6 февраля 2001 года). Здесь КЦА отводится роль предконцентратора для водорода, так как водород относится к несорбируемым газам, а углеводороды - к сильносорбируемым газам. Мембраны усиливают концентрирование водорода за счет того, что мембраны являются углеводород-селективными. Отделить водород от CO2 по такой схеме не представляется возможным, поскольку при наличии в смеси CO2 этот компонент должен скапливаться в углеводородной фракции, а CO2 и H2 мембранами не разделяются и тем более такой метод не подходит к выделению водорода из биосингаза, где углеводороды не представлены.

Наиболее близким к заявленному является способ очистки газообразного водорода из газовой смеси, содержащей незначительное количество водорода, с помощью системы, включающей этап мембранного разделения и этап короткоцикловой адсорбции (КЦА). В соответствии с изобретением данная система очистки работает на одном компрессоре, который обеспечивает одновременно сжатие пермеата, обогащенного водородом, между этапом мембранного разделения и этапом КЦА (PSA) и сжатие газа регенерации, выходящего из устройства КЦА (PSA) до его рециклинга (Патент №2904821, Франция, МПК C01B 3/56, опубл. 15.02.2008).

Однако данное техническое решение не предназначено к выделению и концентрированию водорода из биосингаза (биосингаз получают при небольших давлениях), так как не оговариваются разделительные свойства мембраны: водород может концентрироваться как пермеате, так и в ретентате и, кроме того, не ясно, где будет концентрироваться CO2 как балластный компонент. Более того, не ясно, где будут концентрироваться другие компоненты биосингаза.

Задача изобретения состоит в том, чтобы обеспечить выделение водорода из биосингаза для дальнейшего использования в качестве энергоносителя, получаемого из трудно-перерабатываемой биомассы. Предлагаемый способ предполагает длительное рабочее применение, так как и мембрана и КЦА известны тем, что срок их действия без замены мембраны и/или адсорбента составляет не менее 10 лет.

Для решения указанной задачи предложены два варианта способа непрерывного выделения и концентрирования водорода из биосингаза общего состава Н2 (25-45%), СН4 (-1%), CO (25-42%), CO2 (10-35%), N2 (2-5%) H2S (~1) мембранно-сорбционным методом, включающим мембранное предконцентрирование водорода и последующее выделение водорода с помощью коротко-цикловой адсорбции.

Предложен способ мембранно-адсорбционного концентрирования водорода из обедненных газовых смесей, включающий, стадии сжатия потока газовых смесей, мембранного предконцентрирования водорода, и концентрирования водорода в блоке короткоцикловой адсорбции КЦА с последующим отводом водорода потребителю, при этом, в качестве смеси газов используют биосингаз, осуществляют его сжатие до мембранного предконцентрирования с последующим сжатием пермеата перед блоком короткоцикловой адсорбции КЦА, при этом отводят ретентат после разделения газовой смеси на мембране с селективностью H2/CO2>1.

Также предложен способ мембранно-адсорбционного концентрирования водорода из обедненных газовых смесей, включающий, стадии сжатия потока газовых смесей, мембранного предконцентрирования водорода, и концентрирования водорода в блоке короткоцикловой адсорбции КЦА с последующим отводом водорода потребителю, при этом в качестве смеси газов используют биосингаз, осуществляют его сжатие до мембранного предконцентрирования с последующим отводом пермеата, и подачей ретентата в блок короткоцикловой адсорбции КЦА, при этом селективность мембраны должна быть H2/CO2<1.

На фигуре 1 показана тангенциальная схема работы мембранного модуля.

На Фигуре 2 дана зависимость концентрации H2 в пермеате от степени тбора (θ) при разделении биосингаза различными мембранами.

На Фигуре 3 дана зависимость степени извлечения (б) от степени отбора (θ) при разделении биосингаза различными мембранами.

На Фигуре 4 показана схема мембранного предконцентрирования водорода в пермеате после реактора по переработке вторичных отходов с последующей подачей на блок КЦА для получения концентрата водорода.

На Фигуре 5 показана схема мембранного предконцентрирования водорода в ретентате после реактора по переработке вторичных отходов с последующей подачей на блок КЦА для получения концентрата водорода.

На фигурах позициями обозначены:

1 - биореактор для переработки биомассы,

2, 6 - компрессор,

3 - мембранный модуль,

4 - ретентат

5 - пермеат

7 - блок КЦА,

8 - водород.

Способ осуществляется следующим образом.

В первом варианте биосингаз из реактора по переработке вторичных отходов 1 направляют в компрессор 2, осуществляя сжатие биосингаза, далее в мембранном блоке 3 происходит разделение смеси на мембране с селективностью H2/CO2>1, после чего ретентат 4 отводят из мембранного блока 3, а перметат сжимают в компрессоре 6 и направляют в блок КЦА 7, где происходит концентрирование водорода с последующим отводом его потребителю 8.

Во втором варианте биосингаз из реактора по переработке вторичных отходов 1 направляют в компрессор 2, осуществляя сжатие биосингаза, далее в мембранном блоке 3 происходит разделение смеси на мембране с селективностью H2/CO2<1, после чего пермеат 5 отводят из мембранного блока 3, а ретентат 4 направляют в блок КЦА 7 для дальнейшего концентрирования водорода и отвода его потребителю 8.

При реализации способа были исследованы газоразделительные свойства мембран, данные сведены в таблицу.

Таблица
Вид мембраны Газ, Q, л/(м2·час·атм)
GENERON® H2 He CO2 O2 SO2 H2S N2 CO CH4 C3H8
160 180 45 13,6 10,31 41 1,8 1,61 1,3 0,11
ПВТМС 2000 1800 1600 450 10001 3501 120 1501 220 40
AIR PRODUCTS® 151 151 104 22,7 47,51 14,281 3,8 6,6 6,3 7,251
СИЛАР® 440 250 2000 400 2570 1195 190 270 545 28181

Из таблицы видно, что, например, мембраны GENERON® обладают небольшой положительной селективностью Н2/CO2>1; мембраны СИЛАР - небольшой отрицательной селективностью Н2/CO2<1. В первом случае мембранный блок лучше использовать для предконцентрирования водорода в виде пермеата, а во-втором случае - в виде ретентата.

На Фиг.2 и 3 приведены примеры использования мембранного блока для предконцентрирования водорода в виде пермеата (мембраны GENERON®, ПВТМС, AIR PRODUCTS®) и виде ретентата (мембраны СИЛАР®). Видно, что в ретентате концентрация водорода может достигать минимально необходимые 50% при степенях отбора ~0.7. В других вариантах во всех случаях концентрация водорода >50%. Сравнительные зависимости построены по методике Тепляков В.В., Малых О.В., Амосова О.Л., Ястребов Р.А. Программа для ЭВМ «Расчет мембранного разделения многокомпонентных газовых смесей с использованием базы данных по мембранам с функцией расчетной оценки недостающих экспериментальных величин. Свидетельство №2011615930 от 28 июля 2011 с использованием доступных экспериментальных данных по газопроницаемости коммерческих полимерных мембран.

Таким образом, предложение позволит достичь концентрирования водорода из биосингаза с технической чистотой (до 98%) независимо от его содержания в исходном сырье в пределах 10-40% с возможностью реализации промышленного применения способа.


СПОСОБ МЕМБРАННО-АДСОРБЦИОННОГО КОНЦЕНТРИРОВАНИЯ ВОДОРОДА ИЗ ОБЕДНЕННЫХ ГАЗОВЫХ СМЕСЕЙ (ВАРИАНТЫ)
СПОСОБ МЕМБРАННО-АДСОРБЦИОННОГО КОНЦЕНТРИРОВАНИЯ ВОДОРОДА ИЗ ОБЕДНЕННЫХ ГАЗОВЫХ СМЕСЕЙ (ВАРИАНТЫ)
СПОСОБ МЕМБРАННО-АДСОРБЦИОННОГО КОНЦЕНТРИРОВАНИЯ ВОДОРОДА ИЗ ОБЕДНЕННЫХ ГАЗОВЫХ СМЕСЕЙ (ВАРИАНТЫ)
СПОСОБ МЕМБРАННО-АДСОРБЦИОННОГО КОНЦЕНТРИРОВАНИЯ ВОДОРОДА ИЗ ОБЕДНЕННЫХ ГАЗОВЫХ СМЕСЕЙ (ВАРИАНТЫ)
СПОСОБ МЕМБРАННО-АДСОРБЦИОННОГО КОНЦЕНТРИРОВАНИЯ ВОДОРОДА ИЗ ОБЕДНЕННЫХ ГАЗОВЫХ СМЕСЕЙ (ВАРИАНТЫ)
Источник поступления информации: Роспатент

Показаны записи 251-260 из 262.
21.07.2020
№220.018.34e1

Вакуумная камера термоядерного реактора

Изобретение относится к термоядерной технике, а именно к конструкциям вакуумной камеры и бланкета, которые являются элементами термоядерного реактора или демонстрационного термоядерного источника нейтронов (ДЕМО-ТИН). Для достижения этого результата предложена вакуумная камера термоядерного...
Тип: Изобретение
Номер охранного документа: 0002726940
Дата охранного документа: 17.07.2020
12.04.2023
№223.018.493d

Способ точечной магнитно-импульсной сварки плоских листовых металлических материалов и устройство для его осуществления

Изобретение может быть использовано при точечной магнитно-импульсной сварке листовых металлических материалов. Верхнюю и нижнюю свариваемые детали размещают на упоре, который выполняют со сквозным отверстием. В нижней детали в каждой точке сварного соединения выполняют коническое отверстие,...
Тип: Изобретение
Номер охранного документа: 0002740937
Дата охранного документа: 21.01.2021
20.04.2023
№223.018.4d2f

Способ создания интерфейса для интеграции монокристаллического оксида европия с германием

Изобретение относится к технологии формирования эпитаксиальных гетероструктур, а именно тонких пленок оксида европия на германии, которые могут быть использованы при создании устройств германиевой наноэлектроники и спинтроники, в частности инжекторов спин-поляризационного тока, спиновых...
Тип: Изобретение
Номер охранного документа: 0002793379
Дата охранного документа: 31.03.2023
22.04.2023
№223.018.5157

Донная станция для долгосрочного многопараметрического мониторинга

Изобретение относится к области технологий морского мониторинга, в частности к глубоководной якорной системе и методам наблюдения за морским дном в режиме реального времени. Предложена Донная станция для долгосрочного многопараметрического мониторинга характеризующаяся тем, что содержит...
Тип: Изобретение
Номер охранного документа: 0002794239
Дата охранного документа: 13.04.2023
11.05.2023
№223.018.542a

Способ получения конъюгата boc-thz-phe-d-trp-lys(boc)-thr-nhchchnh-dota, являющегося прекурсором для противоопухолевых радиофармпрепаратов

Изобретение относится к области пептидной химии и касается получения конъюгата Boc-Thz-Phe-D-Trp-Lys(Boc)-Thr-NHCHCHNH-DOTA, имеющего в качестве вектора пентапептид, являющийся аналогом соматостатина. Данный конъюгат перспективен как адресный носитель медицинских радионуклидов для использования...
Тип: Изобретение
Номер охранного документа: 0002795447
Дата охранного документа: 03.05.2023
14.05.2023
№223.018.5573

Энергоустановка для работы в условиях отрицательных температур

Изобретение относится к области электротехники, а именно к энергоустановкам на топливных элементах с твердым полимерным электролитом, и может быть использовано в переносных/мобильных энергоустановках в условиях отрицательных температур окружающей среды. Техническим результатом заявленного...
Тип: Изобретение
Номер охранного документа: 0002736883
Дата охранного документа: 23.11.2020
15.05.2023
№223.018.5aa4

Устройство для электролиза воды в арктической зоне

Изобретение относится к устройству для электролиза воды в арктической зоне, содержащему твердополимерный электролизер с пневматически изолированными полостями для водорода и кислорода, подключенный к блоку питания и управления, а также к системе водоснабжения с запасом деионизированной воды,...
Тип: Изобретение
Номер охранного документа: 0002769324
Дата охранного документа: 30.03.2022
15.05.2023
№223.018.5aa5

Устройство для электролиза воды в арктической зоне

Изобретение относится к устройству для электролиза воды в арктической зоне, содержащему твердополимерный электролизер с пневматически изолированными полостями для водорода и кислорода, подключенный к блоку питания и управления, а также к системе водоснабжения с запасом деионизированной воды,...
Тип: Изобретение
Номер охранного документа: 0002769324
Дата охранного документа: 30.03.2022
15.05.2023
№223.018.5bf2

Способ идентификации пользователя компьютера "человек или интернет-робот"

Настоящее изобретение относится к безопасности компьютерных сетей, включая несанкционированный доступ к интернет-ресурсам, а именно к способам формирования изображений и видам заданий пользователю при прохождении пользователем полностью автоматизированного теста Тьюринга (САРТСНА). Технический...
Тип: Изобретение
Номер охранного документа: 0002752851
Дата охранного документа: 11.08.2021
20.05.2023
№223.018.6813

Ускоряющий модуль линейного резонансного ускорителя с опорами трубок дрейфа увеличенного диаметра

Изобретение относится к области создания линейных ускорителей заряженных частиц. Технический результат - упрощение настройки распределения ускоряющего поля модуля разработанной ускоряющей структуры без существенного снижения энергоэффективности. Конструкция модуля представляет собой корпус...
Тип: Изобретение
Номер охранного документа: 0002794513
Дата охранного документа: 19.04.2023
Показаны записи 151-155 из 155.
17.02.2018
№218.016.2aa3

Устройство для стационарной генерации ионного пучка

Изобретение относится к области создания ионных источников, предназначенных для работы инжекторов быстрых атомов водорода в стационарном режиме (атомные пучки большой мощности - до 2 мегаватт), которые могут использоваться для нагрева плазмы в магнитных ловушках. Технический результат -...
Тип: Изобретение
Номер охранного документа: 0002642852
Дата охранного документа: 29.01.2018
17.02.2018
№218.016.2e17

Способ выделения метанола из водно-метанольных технологических смесей для повторного использования и устройство для его осуществления

Изобретение относится к газодобывающей отрасли, а именно к выделению метанола из водно-метанольных технологических смесей (рефлюкса) для повторного использования, и может быть использовано в области добычи природного газа. Способ выделения метанола из водно-метанольных технологических смесей...
Тип: Изобретение
Номер охранного документа: 0002643540
Дата охранного документа: 02.02.2018
04.04.2018
№218.016.3482

Способ получения гранулированного биокатализатора на основе иммобилизованных клеток дрожжей для проведения реакции переэтерификации

Изобретение относится к области биохимии. Предложен способ получения гранулированного биокатализатора на основе иммобилизованных клеток дрожжей. Способ включает наращивание биомассы дрожжей Yarrowia lipolytica ВКПМ Y-3600, отделение биомассы, лиофильную сушку биомассы, приготовление суспензии...
Тип: Изобретение
Номер охранного документа: 0002646104
Дата охранного документа: 01.03.2018
29.05.2019
№219.017.6432

Способ дезактивации металлических поверхностей

Изобретение относится к ядерной технике и может быть использовано для дезактивации загрязненных радионуклидами металлических поверхностей атомных энергетических установок, технологического и другого оборудования, в том числе подлежащего утилизации и захоронению. Изобретение состоит в том, что в...
Тип: Изобретение
Номер охранного документа: 0002288515
Дата охранного документа: 27.11.2006
29.06.2019
№219.017.9c22

Композиционный материал для разделения газов, мембрана и мембранный модуль из этого материала

Изобретение относится к газоразделительным композиционным мембранам и мембранным модулям на их основе и может найти применение в процессах разделения газовых смесей, содержащих углекислый газ и некислородные системы, такие как водород, низшие углеводороды, азот, метан, этилен, ацетилен и др....
Тип: Изобретение
Номер охранного документа: 0002347604
Дата охранного документа: 27.02.2009
+ добавить свой РИД