×
10.03.2014
216.012.aa42

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ КРИСТАЛЛИЧЕСКОЙ ФАЗЫ В АМОРФНЫХ ПЛЕНКАХ НАНОРАЗМЕРНОЙ ТОЛЩИНЫ

Вид РИД

Изобретение

Аннотация: Использование: для определения кристаллической фазы в аморфных пленках наноразмерной толщины. Сущность заключается в том, что выполняют бомбардировку поверхности пучком ионов и регистрацию интенсивности отраженных ионов, при этом анализируемую поверхность бомбардируют ионами инертного газа с энергией менее 100 эВ и регистрируют энергетический спектр отраженных ионов в диапазоне энергий, больше энергии первичных ионов, затем по энергиям пиков парного соударения в полученном спектре определяют типы атомов в одном верхнем монослое атомов, по наличию пика с энергией, равной энергии бомбардирующих ионов, судят о наличии кристаллической фазы на аморфной или аморфизованной поверхности, в том числе в пленке наноразмерной толщины, а по отношению величин указанного пика без потерь энергии к пику или пикам парного соударения определяют поверхностную концентрацию кристаллической фазы на аморфной или аморфизованной поверхности. Технический результат: уменьшение глубины анализируемого слоя до субнаноразмерных величин, повышение достоверности результатов анализа и повышение совместимости аппаратуры для реализации способа с другими методами анализа и технологическим оборудованием. 2 ил.
Основные результаты: Способ определения кристаллической фазы в аморфных пленках наноразмерной толщины, заключающийся в бомбардировке поверхности пучком ионов и регистрации интенсивности отраженных ионов, отличающийся тем, что анализируемую поверхность бомбардируют ионами инертного газа с энергией менее 100 эВ и регистрируют энергетический спектр отраженных ионов в диапазоне энергий, больше энергии первичных ионов, затем по энергиям пиков парного соударения в полученном спектре определяют типы атомов в одном верхнем монослое атомов, по наличию пика с энергией, равной энергии бомбардирующих ионов, судят о наличии кристаллической фазы на аморфной или аморфизованной поверхности, в том числе в пленке наноразмерной толщины, а по отношению величин указанного пика без потерь энергии к пику или пикам парного соударения определяют поверхностную концентрацию кристаллической фазы на аморфной или аморфизованной поверхности.

Предлагаемое изобретение относится к области нано- и микроэлектроники и аналитического приборостроения и может быть использовано при разработке и исследований свойств пленочных структур на аморфных и кристаллических материалах.

Известен способ определения кристаллического состояния поверхности, заключающийся в облучении поверхности электронным пучком и регистрации отраженных электронов (дифракция медленных электронов). Недостатком известного метода является малая совместимость аналитических устройств для его реализации с устройствами для других методов анализа или с технологическим оборудованием при вакуумных методах обработки. Анализатор аппаратуры метода дифракции медленных электронов занимает около исследуемого объекта телесный угол более 120 градусов, что затрудняет встраивание других аналитических устройств. Результаты измерений содержат информацию о трансляционной симметрии и не содержат сведений о типах атомов поверхности [Черепин В.Т., Васильев М.А. Методы и приборы для анализа поверхности материалов. Справочник. - Киев: Наукова думка, 1982. - 600 с.].

Наиболее близким к предлагаемому изобретению является способ определения кристаллической фазы в аморфных пленках, заключающийся в бомбардировке поверхности пучком ионов и регистрации интенсивности отраженных ионов. Этот способ, называемый также методом протонографии, реализуется с использованием протонов высоких (более 100 кэВ) на основе резерфордовского рассеяния и имеет большую глубину анализируемого слоя, а именно доли микрометра, что выходит за пределы нанотехнологических размерностей и аналитических требований микроэлектроники [2. Лейман К. Взаимодействие излучения с твердым телом и образование элементарных дефектов. / Пер. с англ. Г.И.Бабкина. - М.: Атомиздат, 1979. - 296 с.; 3. Петров Н.Н., Аброян И.А. Диагностика поверхности с помощью ионных пучков. Изд. ЛГУ, 1977. 160 с.].

Технический результат направлен на уменьшение глубины анализируемого слоя до субнаноразмерных величин, повышение достоверности результатов анализа и повышение совместимости аппаратуры для его реализации с другими методами анализа и технологическим оборудованием.

Технический результат достигается тем, что в способе определения кристаллической фазы в аморфных пленках, заключающемся в бомбардировке поверхности пучком ионов и регистрации интенсивности потока отраженных ионов, при этом анализируемую поверхность бомбардируют ионами инертного газа с энергией в гипертермальном диапазоне (менее 100 эВ) и регистрируют энергетический спектр отраженных ионов в диапазоне энергий, больше энергии первичных ионов, затем по энергиям пиков парного соударения в полученном спектре определяют типы атомов в одном верхнем монослое атомов, по наличию пика с энергией, равной энергии бомбардирующих ионов, судят о наличии кристаллической фазы на аморфной или аморфизованной поверхности кристаллического материала, в том числе в пленке субнаноразмерной толщины, а по отношению величин указанного пика без потерь энергии к пику или пикам парного соударения определяют поверхностную концентрацию кристаллической фазы на аморфной или аморфизованной поверхности.

На Фиг.1 представлена схема устройства для осуществления предлагаемого способа.

На Фиг.2 изображены энергетические спектры ионов Ne+0=28.8 эВ), рассеянных поверхностью InAs(l00): а) кристаллическая поверхность; б) поверхность после аморфизации ионным пучком Ne, при дозе ионов D=1017 ион·см-2, Е0=2 кэВ.

Анализируемый объект (далее - объект) представляет собой материал, на поверхности которого содержатся области с кристаллической и аморфной структурами субнаноразмерной толщины, определяемой единицами моноатомных слоев.

Устройство для реализации способа определения структурно- фазовых состояний и превращений поверхности содержит вакуумную измерительную камеру 1 с аналитическими устройствами и измерительную систему 7. В вакуумной камере расположены вакуумный манипулятор с держателем 2 для анализируемого объекта 3, ионная пушка 4 гипертермальных энергий ионов пучка (Е0=2-100 эВ), энергетический анализатор 5 на указанный диапазон энергий, ионная пушка 6 низких энергий E=0.1-10 кэВ для модификации структурного состояния поверхности. Измерительная система 7 содержит импульсный усилитель 8 и регистрирующее устройство 9 и позволяет измерять токи на выходе коллектора в пределах 10-12-10-19 A (1-107 имп/с).

Ионная пушка 4 предназначена для облучения анализируемой поверхности пучком ионов гипертермальных энергий с заданной массой и энергией. Энергетический анализатор 5 с коллектором в виде вторичного электронного умножителя предназначен для выделения энергетического спектра из потока ионов гипертермальных энергий, рассеянных от поверхности с разными энергиями и под разными углами. Ионная пушка низких энергий 6 предназначена для аморфизации поверхности (при больших плотностях тока пучка) и для совершенствования кристаллической структуры (при малых плотностях тока пучка). Измерительная система 7 имеет широкополосный импульсный усилитель 8, соединенный с коллектором анализатора, и регистрирующее устройство 9 для усиления и счета импульсов.

Измерительная система 7 имеет широкополосный импульсный усилитель 8, соединенный с коллектором анализатора, и регистрирующее устройство 9 для усиления и счета импульсов.

Принцип действия устройства для анализа структурного состояния наноразмерных слоев. С помощью ионной пушки 5 анализируемая поверхность объекта 4 облучается зондирующим ионным пучком гипертермальных энергий E<100 эВ. Часть падающих на поверхность ионов рассеиваются (отражаются) от атомов поверхности под разными углами с разными энергиями в результате однократного парного упругого соударения с атомами поверхности без изменения внутреннего состояния иона и атома поверхности. При таком соударении иона с атомом из-за сравнимости их масс происходит изменение их кинетических энергий. При рассеянии на определенный угол налетающий ион в результате соударения передает часть энергии атому. Величина передаваемой энергии тем больше, чем легче атом поверхности. Измерив энергию рассеянных под определенным углом ионов и зная массу и начальную энергию иона и угол рассеяния от первоначального направления, можно по формулам парного соударения шаров определить массу атомов поверхности, от которых рассеиваются ионы.

В данной работе впервые установлено, что при бомбардировке поверхности ионами гипертермальных энергий часть ионов отражается от поверхности без потерь энергии и без потери заряда. Эта группа ионов создает в спектре пик при энергии, равной энергии первичных ионов. Впервые установлено, что этот пик в спектре присутствует для кристаллических материалов и не наблюдается как на аморфных материалах, так и на кристаллических материалах с аморфизованной поверхностью. Величина пика без потерь энергии, указывающая на кристаллическое состояние поверхности, относительно пика парного рассеяния увеличивается с уменьшением энергии первичных ионов. Отношение пика без потерь энергии к величине пика парного рассеяния при постоянной энергии первичных ионов увеличивается с увеличением кристаллической фазы.

На Фиг.2 приведены спектры рассеянных ионов гипертермальных ионов поверхности кристаллического арсенида индия InAs(l00) (а) и поверхности кристаллического InAs, аморфизованной ионным пучком (b) с энергией 2 кэВ. Известно, что толщина аморфизованного слоя при таких энергиях аморфизации составляет не более 100 Å. Отсутствие пика без потерь энергии в спектре (b) гипетермальных энергий указывает на то, что поверхность аморфизована, и кристаллическая фаза отсутствует. Аморфизация поверхности ионным пучком с энергией 2 кэВ указывает на то, что толщина аморфизованного слоя не превышает десятков ангстрем. Наличие пика без потерь энергии в спектре рассеянных ионов и его обусловленность решеточной структурой впервые установлено авторами.

Сопоставительный анализ с прототипом показал, что глубина анализируемого слоя предлагаемого метода ограничивается пределом наноразмерных толщин (100 Å). Анализ состава, проводимый с помощью парных соударений ионов с атомами поверхности, по толщине составляет 1 атомный слой. В сравнении с прототипом толщина анализируемого слоя меньше не менее чем в 10 раз, если принять нижний предел толщины анализ 0.1 мкм.

Способ определения кристаллической фазы в аморфных пленках наноразмерной толщины, заключающийся в бомбардировке поверхности пучком ионов и регистрации интенсивности отраженных ионов, отличающийся тем, что анализируемую поверхность бомбардируют ионами инертного газа с энергией менее 100 эВ и регистрируют энергетический спектр отраженных ионов в диапазоне энергий, больше энергии первичных ионов, затем по энергиям пиков парного соударения в полученном спектре определяют типы атомов в одном верхнем монослое атомов, по наличию пика с энергией, равной энергии бомбардирующих ионов, судят о наличии кристаллической фазы на аморфной или аморфизованной поверхности, в том числе в пленке наноразмерной толщины, а по отношению величин указанного пика без потерь энергии к пику или пикам парного соударения определяют поверхностную концентрацию кристаллической фазы на аморфной или аморфизованной поверхности.
СПОСОБ ОПРЕДЕЛЕНИЯ КРИСТАЛЛИЧЕСКОЙ ФАЗЫ В АМОРФНЫХ ПЛЕНКАХ НАНОРАЗМЕРНОЙ ТОЛЩИНЫ
СПОСОБ ОПРЕДЕЛЕНИЯ КРИСТАЛЛИЧЕСКОЙ ФАЗЫ В АМОРФНЫХ ПЛЕНКАХ НАНОРАЗМЕРНОЙ ТОЛЩИНЫ
Источник поступления информации: Роспатент

Показаны записи 81-90 из 101.
12.01.2017
№217.015.61d2

Способ рафинирования металлургического кремния

Изобретение относится к области очистки кремния, пригодного для изготовления солнечных элементов, полупроводниковых приборов, МЭМС устройств, а также использования в химической и фармацевтической промышленности. Способ рафинировании кремния, находящегося в твердой фазе, производят в графитовом...
Тип: Изобретение
Номер охранного документа: 0002588627
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.778a

Адаптивный режектор пассивных помех

Изобретение относится к радиотехнике и может быть использовано в радиоприемных устройствах когерентно-импульсных радиолокационных систем для выделения сигналов движущихся целей на фоне пассивных помех при вобуляции периода повторения зондирующих импульсов. Достигаемый технический результат -...
Тип: Изобретение
Номер охранного документа: 0002599621
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7901

Способ изготовления электродов электронных приборов

Изобретение относится к технологии получения материалов, поверхность которых обладает стабильными электрофизическими свойствами, в частности электродов газоразрядных и электровакуумных приборов (холодных катодов газоразрядных лазеров, контакт-деталей герконов, электродов масс-спектрометров и...
Тип: Изобретение
Номер охранного документа: 0002599389
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7c6b

Обнаружитель-измеритель когерентно-импульсных радиосигналов

Изобретение относится к радиолокации и предназначено для обнаружения когерентно-импульсных неэквидистантных радиосигналов и измерения радиальной скорости движущегося объекта; может быть использовано в радиолокационных системах управления воздушным движением для обнаружения и измерения скорости...
Тип: Изобретение
Номер охранного документа: 0002600111
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.7e97

Устройство измерения потенциала поверхности диэлектрических покрытий

Изобретение относится к методам исследования электрофизических свойств диэлектрических покрытий и может быть использовано, в частности, для изучения электронно-индуцированных процессов зарядки, накопления и кинетики зарядов в диэлектриках. Устройство содержит неподвижный измерительный электрод...
Тип: Изобретение
Номер охранного документа: 0002601248
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.8c66

Способ и устройство определения температурных характеристик антиэмиссионных материалов

Изобретение относится к электронной промышленности, области тонкопленочных технологий, нанесения и контроля пленочных покрытий с заданными характеристиками для эмиссионной электроники. Технический результат - повышение достоверности и информативности измерений. Определяется содержание атомов...
Тип: Изобретение
Номер охранного документа: 0002604836
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8d73

Способ восстановления изображений при неизвестной аппаратной функции

Изобретение относится к радиотеплолокации, а именно к радиотеплолокационным системам наблюдения за объектами с помощью сканирующего радиометра, а также может быть использовано в радиолокации, радиоастрономии и в оптико-электронных системах. Достигаемый технический результат - нахождение...
Тип: Изобретение
Номер охранного документа: 0002604720
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.97f8

Фазометр когерентно-импульсных радиосигналов

Изобретение относится к измерительной технике и предназначено для измерения доплеровских сдвигов фаз (радиальной скорости объекта) неэквидистантных когерентно-импульсных радиосигналов на фоне шума; может быть использовано в радиолокационных и навигационных системах для однозначного измерения...
Тип: Изобретение
Номер охранного документа: 0002609438
Дата охранного документа: 01.02.2017
25.08.2017
№217.015.9f10

Способ исследования информационной емкости поверхности наноструктурированных материалов

Изобретение относится к областям микро- и наноэлектроники, физики поверхности и может быть использовано для исследования информационных характеристик поверхности наноструктурированных и самоорганизующихся твердотельных материалов. Сущность способа заключается в том, что получают изображения...
Тип: Изобретение
Номер охранного документа: 0002606089
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.abf1

Электровакуумный прибор свч

Изобретение относится к электронной технике, а именно к электровакуумным двухрезонаторным генераторам СВЧ клистронного типа с двухзазорным первым резонатором. Первый резонатор обеспечивает самовозбуждение генератора в режиме автогенерации на противофазном виде колебаний и достаточно эффективное...
Тип: Изобретение
Номер охранного документа: 0002612028
Дата охранного документа: 02.03.2017
Показаны записи 81-90 из 128.
10.05.2016
№216.015.3db4

Автокомпенсатор доплеровской фазы пассивных помех

Изобретение относится к радиолокационной технике и предназначено для автокомпенсации доплеровских сдвигов фазы пассивных помех. Достигаемый технический результат - повышение точности автокомпенсации. Указанный результат достигается тем, что автокомпенсатор доплеровской фазы пассивных помех...
Тип: Изобретение
Номер охранного документа: 0002583537
Дата охранного документа: 10.05.2016
20.05.2016
№216.015.41a9

Зонд атомно-силового микроскопа с нанокомпозитным излучающим элементом, легированным квантовыми точками и магнитными наночастицами структуры ядро-оболочка

Изобретение относится к измерительной технике и может быть использовано в зондовой сканирующей микроскопии и атомно-силовой микроскопии для диагностирования и исследования наноразмерных структур. Сущность изобретения заключается в том, что магнитопрозрачный кантилевер соединен с...
Тип: Изобретение
Номер охранного документа: 0002584179
Дата охранного документа: 20.05.2016
27.05.2016
№216.015.42ed

Газоразрядный узел высокочастотного ионного двигателя

Изобретение относится к высокочастотным ионным двигателям (ВЧИД) с индукционным возбуждением разряда в газоразрядной камере. Газоразрядный узел ВЧИД включает в свой состав газоразрядную камеру (1), выполненную из электротехнического корунда. Камера (1) содержит участок в форме сегмента сферы,...
Тип: Изобретение
Номер охранного документа: 0002585340
Дата охранного документа: 27.05.2016
12.01.2017
№217.015.5b95

Способ изготовления холодного катода гелий-неонового лазера

Изобретение относится к технологии изготовления холодных катодов гелий-неоновых лазеров и может быть использовано в газоразрядной технике и микроэлектронике. Способ включает в себя нагрев заготовок катода из алюминия в вакууме не ниже 10 мм рт.ст. и последующее термическое окисление ее...
Тип: Изобретение
Номер охранного документа: 0002589731
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.61d2

Способ рафинирования металлургического кремния

Изобретение относится к области очистки кремния, пригодного для изготовления солнечных элементов, полупроводниковых приборов, МЭМС устройств, а также использования в химической и фармацевтической промышленности. Способ рафинировании кремния, находящегося в твердой фазе, производят в графитовом...
Тип: Изобретение
Номер охранного документа: 0002588627
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.778a

Адаптивный режектор пассивных помех

Изобретение относится к радиотехнике и может быть использовано в радиоприемных устройствах когерентно-импульсных радиолокационных систем для выделения сигналов движущихся целей на фоне пассивных помех при вобуляции периода повторения зондирующих импульсов. Достигаемый технический результат -...
Тип: Изобретение
Номер охранного документа: 0002599621
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7901

Способ изготовления электродов электронных приборов

Изобретение относится к технологии получения материалов, поверхность которых обладает стабильными электрофизическими свойствами, в частности электродов газоразрядных и электровакуумных приборов (холодных катодов газоразрядных лазеров, контакт-деталей герконов, электродов масс-спектрометров и...
Тип: Изобретение
Номер охранного документа: 0002599389
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7c6b

Обнаружитель-измеритель когерентно-импульсных радиосигналов

Изобретение относится к радиолокации и предназначено для обнаружения когерентно-импульсных неэквидистантных радиосигналов и измерения радиальной скорости движущегося объекта; может быть использовано в радиолокационных системах управления воздушным движением для обнаружения и измерения скорости...
Тип: Изобретение
Номер охранного документа: 0002600111
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.7e97

Устройство измерения потенциала поверхности диэлектрических покрытий

Изобретение относится к методам исследования электрофизических свойств диэлектрических покрытий и может быть использовано, в частности, для изучения электронно-индуцированных процессов зарядки, накопления и кинетики зарядов в диэлектриках. Устройство содержит неподвижный измерительный электрод...
Тип: Изобретение
Номер охранного документа: 0002601248
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.8c66

Способ и устройство определения температурных характеристик антиэмиссионных материалов

Изобретение относится к электронной промышленности, области тонкопленочных технологий, нанесения и контроля пленочных покрытий с заданными характеристиками для эмиссионной электроники. Технический результат - повышение достоверности и информативности измерений. Определяется содержание атомов...
Тип: Изобретение
Номер охранного документа: 0002604836
Дата охранного документа: 10.12.2016
+ добавить свой РИД