×
10.03.2014
216.012.aa42

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ КРИСТАЛЛИЧЕСКОЙ ФАЗЫ В АМОРФНЫХ ПЛЕНКАХ НАНОРАЗМЕРНОЙ ТОЛЩИНЫ

Вид РИД

Изобретение

Аннотация: Использование: для определения кристаллической фазы в аморфных пленках наноразмерной толщины. Сущность заключается в том, что выполняют бомбардировку поверхности пучком ионов и регистрацию интенсивности отраженных ионов, при этом анализируемую поверхность бомбардируют ионами инертного газа с энергией менее 100 эВ и регистрируют энергетический спектр отраженных ионов в диапазоне энергий, больше энергии первичных ионов, затем по энергиям пиков парного соударения в полученном спектре определяют типы атомов в одном верхнем монослое атомов, по наличию пика с энергией, равной энергии бомбардирующих ионов, судят о наличии кристаллической фазы на аморфной или аморфизованной поверхности, в том числе в пленке наноразмерной толщины, а по отношению величин указанного пика без потерь энергии к пику или пикам парного соударения определяют поверхностную концентрацию кристаллической фазы на аморфной или аморфизованной поверхности. Технический результат: уменьшение глубины анализируемого слоя до субнаноразмерных величин, повышение достоверности результатов анализа и повышение совместимости аппаратуры для реализации способа с другими методами анализа и технологическим оборудованием. 2 ил.
Основные результаты: Способ определения кристаллической фазы в аморфных пленках наноразмерной толщины, заключающийся в бомбардировке поверхности пучком ионов и регистрации интенсивности отраженных ионов, отличающийся тем, что анализируемую поверхность бомбардируют ионами инертного газа с энергией менее 100 эВ и регистрируют энергетический спектр отраженных ионов в диапазоне энергий, больше энергии первичных ионов, затем по энергиям пиков парного соударения в полученном спектре определяют типы атомов в одном верхнем монослое атомов, по наличию пика с энергией, равной энергии бомбардирующих ионов, судят о наличии кристаллической фазы на аморфной или аморфизованной поверхности, в том числе в пленке наноразмерной толщины, а по отношению величин указанного пика без потерь энергии к пику или пикам парного соударения определяют поверхностную концентрацию кристаллической фазы на аморфной или аморфизованной поверхности.

Предлагаемое изобретение относится к области нано- и микроэлектроники и аналитического приборостроения и может быть использовано при разработке и исследований свойств пленочных структур на аморфных и кристаллических материалах.

Известен способ определения кристаллического состояния поверхности, заключающийся в облучении поверхности электронным пучком и регистрации отраженных электронов (дифракция медленных электронов). Недостатком известного метода является малая совместимость аналитических устройств для его реализации с устройствами для других методов анализа или с технологическим оборудованием при вакуумных методах обработки. Анализатор аппаратуры метода дифракции медленных электронов занимает около исследуемого объекта телесный угол более 120 градусов, что затрудняет встраивание других аналитических устройств. Результаты измерений содержат информацию о трансляционной симметрии и не содержат сведений о типах атомов поверхности [Черепин В.Т., Васильев М.А. Методы и приборы для анализа поверхности материалов. Справочник. - Киев: Наукова думка, 1982. - 600 с.].

Наиболее близким к предлагаемому изобретению является способ определения кристаллической фазы в аморфных пленках, заключающийся в бомбардировке поверхности пучком ионов и регистрации интенсивности отраженных ионов. Этот способ, называемый также методом протонографии, реализуется с использованием протонов высоких (более 100 кэВ) на основе резерфордовского рассеяния и имеет большую глубину анализируемого слоя, а именно доли микрометра, что выходит за пределы нанотехнологических размерностей и аналитических требований микроэлектроники [2. Лейман К. Взаимодействие излучения с твердым телом и образование элементарных дефектов. / Пер. с англ. Г.И.Бабкина. - М.: Атомиздат, 1979. - 296 с.; 3. Петров Н.Н., Аброян И.А. Диагностика поверхности с помощью ионных пучков. Изд. ЛГУ, 1977. 160 с.].

Технический результат направлен на уменьшение глубины анализируемого слоя до субнаноразмерных величин, повышение достоверности результатов анализа и повышение совместимости аппаратуры для его реализации с другими методами анализа и технологическим оборудованием.

Технический результат достигается тем, что в способе определения кристаллической фазы в аморфных пленках, заключающемся в бомбардировке поверхности пучком ионов и регистрации интенсивности потока отраженных ионов, при этом анализируемую поверхность бомбардируют ионами инертного газа с энергией в гипертермальном диапазоне (менее 100 эВ) и регистрируют энергетический спектр отраженных ионов в диапазоне энергий, больше энергии первичных ионов, затем по энергиям пиков парного соударения в полученном спектре определяют типы атомов в одном верхнем монослое атомов, по наличию пика с энергией, равной энергии бомбардирующих ионов, судят о наличии кристаллической фазы на аморфной или аморфизованной поверхности кристаллического материала, в том числе в пленке субнаноразмерной толщины, а по отношению величин указанного пика без потерь энергии к пику или пикам парного соударения определяют поверхностную концентрацию кристаллической фазы на аморфной или аморфизованной поверхности.

На Фиг.1 представлена схема устройства для осуществления предлагаемого способа.

На Фиг.2 изображены энергетические спектры ионов Ne+0=28.8 эВ), рассеянных поверхностью InAs(l00): а) кристаллическая поверхность; б) поверхность после аморфизации ионным пучком Ne, при дозе ионов D=1017 ион·см-2, Е0=2 кэВ.

Анализируемый объект (далее - объект) представляет собой материал, на поверхности которого содержатся области с кристаллической и аморфной структурами субнаноразмерной толщины, определяемой единицами моноатомных слоев.

Устройство для реализации способа определения структурно- фазовых состояний и превращений поверхности содержит вакуумную измерительную камеру 1 с аналитическими устройствами и измерительную систему 7. В вакуумной камере расположены вакуумный манипулятор с держателем 2 для анализируемого объекта 3, ионная пушка 4 гипертермальных энергий ионов пучка (Е0=2-100 эВ), энергетический анализатор 5 на указанный диапазон энергий, ионная пушка 6 низких энергий E=0.1-10 кэВ для модификации структурного состояния поверхности. Измерительная система 7 содержит импульсный усилитель 8 и регистрирующее устройство 9 и позволяет измерять токи на выходе коллектора в пределах 10-12-10-19 A (1-107 имп/с).

Ионная пушка 4 предназначена для облучения анализируемой поверхности пучком ионов гипертермальных энергий с заданной массой и энергией. Энергетический анализатор 5 с коллектором в виде вторичного электронного умножителя предназначен для выделения энергетического спектра из потока ионов гипертермальных энергий, рассеянных от поверхности с разными энергиями и под разными углами. Ионная пушка низких энергий 6 предназначена для аморфизации поверхности (при больших плотностях тока пучка) и для совершенствования кристаллической структуры (при малых плотностях тока пучка). Измерительная система 7 имеет широкополосный импульсный усилитель 8, соединенный с коллектором анализатора, и регистрирующее устройство 9 для усиления и счета импульсов.

Измерительная система 7 имеет широкополосный импульсный усилитель 8, соединенный с коллектором анализатора, и регистрирующее устройство 9 для усиления и счета импульсов.

Принцип действия устройства для анализа структурного состояния наноразмерных слоев. С помощью ионной пушки 5 анализируемая поверхность объекта 4 облучается зондирующим ионным пучком гипертермальных энергий E<100 эВ. Часть падающих на поверхность ионов рассеиваются (отражаются) от атомов поверхности под разными углами с разными энергиями в результате однократного парного упругого соударения с атомами поверхности без изменения внутреннего состояния иона и атома поверхности. При таком соударении иона с атомом из-за сравнимости их масс происходит изменение их кинетических энергий. При рассеянии на определенный угол налетающий ион в результате соударения передает часть энергии атому. Величина передаваемой энергии тем больше, чем легче атом поверхности. Измерив энергию рассеянных под определенным углом ионов и зная массу и начальную энергию иона и угол рассеяния от первоначального направления, можно по формулам парного соударения шаров определить массу атомов поверхности, от которых рассеиваются ионы.

В данной работе впервые установлено, что при бомбардировке поверхности ионами гипертермальных энергий часть ионов отражается от поверхности без потерь энергии и без потери заряда. Эта группа ионов создает в спектре пик при энергии, равной энергии первичных ионов. Впервые установлено, что этот пик в спектре присутствует для кристаллических материалов и не наблюдается как на аморфных материалах, так и на кристаллических материалах с аморфизованной поверхностью. Величина пика без потерь энергии, указывающая на кристаллическое состояние поверхности, относительно пика парного рассеяния увеличивается с уменьшением энергии первичных ионов. Отношение пика без потерь энергии к величине пика парного рассеяния при постоянной энергии первичных ионов увеличивается с увеличением кристаллической фазы.

На Фиг.2 приведены спектры рассеянных ионов гипертермальных ионов поверхности кристаллического арсенида индия InAs(l00) (а) и поверхности кристаллического InAs, аморфизованной ионным пучком (b) с энергией 2 кэВ. Известно, что толщина аморфизованного слоя при таких энергиях аморфизации составляет не более 100 Å. Отсутствие пика без потерь энергии в спектре (b) гипетермальных энергий указывает на то, что поверхность аморфизована, и кристаллическая фаза отсутствует. Аморфизация поверхности ионным пучком с энергией 2 кэВ указывает на то, что толщина аморфизованного слоя не превышает десятков ангстрем. Наличие пика без потерь энергии в спектре рассеянных ионов и его обусловленность решеточной структурой впервые установлено авторами.

Сопоставительный анализ с прототипом показал, что глубина анализируемого слоя предлагаемого метода ограничивается пределом наноразмерных толщин (100 Å). Анализ состава, проводимый с помощью парных соударений ионов с атомами поверхности, по толщине составляет 1 атомный слой. В сравнении с прототипом толщина анализируемого слоя меньше не менее чем в 10 раз, если принять нижний предел толщины анализ 0.1 мкм.

Способ определения кристаллической фазы в аморфных пленках наноразмерной толщины, заключающийся в бомбардировке поверхности пучком ионов и регистрации интенсивности отраженных ионов, отличающийся тем, что анализируемую поверхность бомбардируют ионами инертного газа с энергией менее 100 эВ и регистрируют энергетический спектр отраженных ионов в диапазоне энергий, больше энергии первичных ионов, затем по энергиям пиков парного соударения в полученном спектре определяют типы атомов в одном верхнем монослое атомов, по наличию пика с энергией, равной энергии бомбардирующих ионов, судят о наличии кристаллической фазы на аморфной или аморфизованной поверхности, в том числе в пленке наноразмерной толщины, а по отношению величин указанного пика без потерь энергии к пику или пикам парного соударения определяют поверхностную концентрацию кристаллической фазы на аморфной или аморфизованной поверхности.
СПОСОБ ОПРЕДЕЛЕНИЯ КРИСТАЛЛИЧЕСКОЙ ФАЗЫ В АМОРФНЫХ ПЛЕНКАХ НАНОРАЗМЕРНОЙ ТОЛЩИНЫ
СПОСОБ ОПРЕДЕЛЕНИЯ КРИСТАЛЛИЧЕСКОЙ ФАЗЫ В АМОРФНЫХ ПЛЕНКАХ НАНОРАЗМЕРНОЙ ТОЛЩИНЫ
Источник поступления информации: Роспатент

Показаны записи 21-30 из 101.
20.07.2014
№216.012.df32

Способ обработки сигналов для обнаружения прямолинейных границ объектов, наблюдаемых на изображении

Изобретение относится к средствам цифровой обработки изображений. Техническим результатом является повышение точности обнаружения прямолинейных границ объектов на изображении за счет получения локальных максимумов. В способе на основе градиентного поля проводится формирование трех изображений,...
Тип: Изобретение
Номер охранного документа: 0002522924
Дата охранного документа: 20.07.2014
20.08.2014
№216.012.ebef

Аппаратура подводной оптической связи

Изобретение относится к технике электрической связи и может использоваться в системах двусторонней оптической связи. Технический результат заключается в расширении функциональных возможностей устройства двусторонней оптической связи в подводных условиях. Для этого в аппаратуру оптической...
Тип: Изобретение
Номер охранного документа: 0002526207
Дата охранного документа: 20.08.2014
10.11.2014
№216.013.0383

Устройство подавления влияния помехи промышленной частоты на электрокардиосигнал

Изобретение относится к медицинской технике. Устройство подавления влияния помехи промышленной частоты на электрокардиосигнал содержит блок выделения интервала времени (2), соответствующего ТР-сегменту электрокардиосигнала, ключевой элемент (8), фильтр (14), усилитель (15), блок задержки (16) и...
Тип: Изобретение
Номер охранного документа: 0002532297
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.0402

Способ измерения влажности вискозного волокна

Изобретение относится к измерительной технике, в частности к измерению влажности волокнистых материалов, и может быть использовано в текстильной и хлопчатобумажной промышленности. Предлагаемый способ включает в себя размещение между двумя электродами пробы волокна, приложение к ним переменного...
Тип: Изобретение
Номер охранного документа: 0002532424
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.04a8

Способ измерения контактной разности потенциалов

Изобретение относится измерительной технике и представляет собой способ измерения контактной разности потенциалов между проводящими материалами (металлами, полупроводниками, электролитами) и может быть использовано для измерения электродных потенциалов, работы выхода поверхности, для контроля...
Тип: Изобретение
Номер охранного документа: 0002532590
Дата охранного документа: 10.11.2014
27.11.2014
№216.013.0b00

Способ измерения координат элементов земной поверхности в бортовой четырехканальной доплеровской рлс

Изобретение относится к радиолокации, а именно к бортовым радиолокационным системам наблюдения за земной поверхностью (радиовидению) на базе четырехканальной доплеровской радиолокационной станции с четырехэлементной антенной решеткой. Достигаемый технический результат - измерение координат...
Тип: Изобретение
Номер охранного документа: 0002534224
Дата охранного документа: 27.11.2014
27.11.2014
№216.013.0b16

Способ определения атомного состава активных нанопримесей в жидкостях

Изобретение относится к области нано-, микроэлектроники и аналитического приборостроения и может быть использовано в разработке технологии и в производстве изделий микро- и наноэлектроники, а также в производстве чистых материалов и для диагностики и контроля жидких технологических сред. Способ...
Тип: Изобретение
Номер охранного документа: 0002534246
Дата охранного документа: 27.11.2014
27.11.2014
№216.013.0b9e

Способ определения концентрации носителей заряда в полупроводниках и устройство для его осуществления

Группа изобретений относится к области электронной техники, микро- и наноэлектроники и может быть использована для локального определения концентрации свободных носителей заряда в отдельно взятых полупроводниковых нанообъектах и наноструктурах, а также для контроля качества материалов,...
Тип: Изобретение
Номер охранного документа: 0002534382
Дата охранного документа: 27.11.2014
10.12.2014
№216.013.0ee3

Способ определения длительности времени плазмохимического травления поверхности полупроводниковых пластин для субмикронных технологий

Изобретение относится к области микроэлектроники. Технический результат направлен на повышение достоверности определения типа и количества загрязняющих примесей на поверхности полупроводниковых пластин после плазмохимического травления и определения оптимального значения длительности времени...
Тип: Изобретение
Номер охранного документа: 0002535228
Дата охранного документа: 10.12.2014
10.01.2015
№216.013.19f5

Способ исследования нелинейного спинового резонанса в полупроводниках и устройство для его осуществления

Использование: для исследования нелинейного спинового резонанса в объемных, тонкопленочных и двумерных полупроводниковых наноструктурах. Сущность изобретения заключается в том, что для исследования нелинейного спинового резонанса образец охлаждают, воздействуют на него изменяющимся постоянным и...
Тип: Изобретение
Номер охранного документа: 0002538073
Дата охранного документа: 10.01.2015
Показаны записи 21-30 из 128.
20.04.2014
№216.012.bb3e

Способ изготовления фотоэмиттера с отрицательным электронным сродством для инфракрасного диапазона

Изобретение относится к области эмиссионной и наноэлектроники и может быть использовано в разработке и в технологии производства фотоэлектронных преобразователей второго поколения, эмиттеров с отрицательным электронным сродством для приборов ИК-диапазона. Способ изготовления фотоэмиттера с...
Тип: Изобретение
Номер охранного документа: 0002513662
Дата охранного документа: 20.04.2014
27.06.2014
№216.012.d634

Управляемый разрядник

Изобретение относится к газоразрядной технике и может быть использовано при создании управляемых разрядников для коммутации сильноточных импульсов. Разрядник имеет тригатронную конструкцию и содержит анод (3) и катод (1), выполненный с осевым отверстием, в котором установлен управляющий...
Тип: Изобретение
Номер охранного документа: 0002520614
Дата охранного документа: 27.06.2014
20.07.2014
№216.012.df32

Способ обработки сигналов для обнаружения прямолинейных границ объектов, наблюдаемых на изображении

Изобретение относится к средствам цифровой обработки изображений. Техническим результатом является повышение точности обнаружения прямолинейных границ объектов на изображении за счет получения локальных максимумов. В способе на основе градиентного поля проводится формирование трех изображений,...
Тип: Изобретение
Номер охранного документа: 0002522924
Дата охранного документа: 20.07.2014
20.08.2014
№216.012.ebef

Аппаратура подводной оптической связи

Изобретение относится к технике электрической связи и может использоваться в системах двусторонней оптической связи. Технический результат заключается в расширении функциональных возможностей устройства двусторонней оптической связи в подводных условиях. Для этого в аппаратуру оптической...
Тип: Изобретение
Номер охранного документа: 0002526207
Дата охранного документа: 20.08.2014
10.11.2014
№216.013.0383

Устройство подавления влияния помехи промышленной частоты на электрокардиосигнал

Изобретение относится к медицинской технике. Устройство подавления влияния помехи промышленной частоты на электрокардиосигнал содержит блок выделения интервала времени (2), соответствующего ТР-сегменту электрокардиосигнала, ключевой элемент (8), фильтр (14), усилитель (15), блок задержки (16) и...
Тип: Изобретение
Номер охранного документа: 0002532297
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.0402

Способ измерения влажности вискозного волокна

Изобретение относится к измерительной технике, в частности к измерению влажности волокнистых материалов, и может быть использовано в текстильной и хлопчатобумажной промышленности. Предлагаемый способ включает в себя размещение между двумя электродами пробы волокна, приложение к ним переменного...
Тип: Изобретение
Номер охранного документа: 0002532424
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.04a8

Способ измерения контактной разности потенциалов

Изобретение относится измерительной технике и представляет собой способ измерения контактной разности потенциалов между проводящими материалами (металлами, полупроводниками, электролитами) и может быть использовано для измерения электродных потенциалов, работы выхода поверхности, для контроля...
Тип: Изобретение
Номер охранного документа: 0002532590
Дата охранного документа: 10.11.2014
27.11.2014
№216.013.0b00

Способ измерения координат элементов земной поверхности в бортовой четырехканальной доплеровской рлс

Изобретение относится к радиолокации, а именно к бортовым радиолокационным системам наблюдения за земной поверхностью (радиовидению) на базе четырехканальной доплеровской радиолокационной станции с четырехэлементной антенной решеткой. Достигаемый технический результат - измерение координат...
Тип: Изобретение
Номер охранного документа: 0002534224
Дата охранного документа: 27.11.2014
27.11.2014
№216.013.0b16

Способ определения атомного состава активных нанопримесей в жидкостях

Изобретение относится к области нано-, микроэлектроники и аналитического приборостроения и может быть использовано в разработке технологии и в производстве изделий микро- и наноэлектроники, а также в производстве чистых материалов и для диагностики и контроля жидких технологических сред. Способ...
Тип: Изобретение
Номер охранного документа: 0002534246
Дата охранного документа: 27.11.2014
27.11.2014
№216.013.0b9e

Способ определения концентрации носителей заряда в полупроводниках и устройство для его осуществления

Группа изобретений относится к области электронной техники, микро- и наноэлектроники и может быть использована для локального определения концентрации свободных носителей заряда в отдельно взятых полупроводниковых нанообъектах и наноструктурах, а также для контроля качества материалов,...
Тип: Изобретение
Номер охранного документа: 0002534382
Дата охранного документа: 27.11.2014
+ добавить свой РИД