×
10.03.2014
216.012.aa3f

Результат интеллектуальной деятельности: СПОСОБ РЕНТГЕНОМЕТРИЧЕСКОЙ ОЦЕНКИ ТЕМПЕРАТУРНЫХ УСЛОВИЙ ЭКСПЛУАТАЦИИ ТРУБНЫХ ЭЛЕМЕНТОВ КОТЛОВ

Вид РИД

Изобретение

Аннотация: Использование: для неразрушающего исследуемую поверхность контроля температурных условий эксплуатации и разрушения трубных элементов паровых и водогрейных котлов. Сущность заключается в том, что подготавливают образец трубного элемента и эталон из не работавшего в котле участка трубы, имеющей аналогичный состав и способ изготовления, осуществляют рентгеносъемку эталона в режиме термоциклирования в цикле «нагрев - охлаждение до комнатной температуры», строят на ее основе зависимость отношений интегральных интенсивностей, полученных при комнатной температуре для двух наиболее сильных дифракционных линий, не имеющих наложений с дифракционными линиями других фаз, от температуры термоцикла, производят рентгеносъемку образца трубного элемента при комнатной температуре, для которого определяют отношение интегральных интенсивностей тех же двух дифракционных линий, сравнивают отношения интегральных интенсивностей дифракционных линий образца и эталона и определяют температуру эксплуатации участка трубного элемента, принимая ее равной температуре эталона при данной величине отношения интегральных интенсивностей. Технический результат: обеспечение возможности реализации способа определения температурных условий эксплуатации трубных элементов котлов, распространяющегося на все виды стали, независимо от водного режима работы котла, без разрушения поверхности образца. 1 ил., 4 табл.
Основные результаты: Способ рентгенометрической оценки температурных условий эксплуатации трубных элементов котлов, в котором подготавливают образец трубного элемента и эталон из не работавшего в котле участка трубы, имеющей аналогичный состав и способ изготовления, осуществляют рентгеносъемку эталона в режиме термоциклирования в цикле «нагрев - охлаждение до комнатной температуры», строят на ее основе зависимость отношений интегральных интенсивностей, полученных при комнатной температуре для двух наиболее сильных дифракционных линий, не имеющих наложений с дифракционными линиями других фаз, от температуры термоцикла, производят рентгеносъемку образца трубного элемента при комнатной температуре, для которого определяют отношение интегральных интенсивностей тех же двух дифракционных линий, сравнивают отношения интегральных интенсивностей дифракционных линий образца и эталона и определяют температуру эксплуатации участка трубного элемента, принимая ее равной температуре эталона при данной величине отношения интегральных интенсивностей.

Изобретение относится к способу неразрушающего исследуемую поверхность контроля температурных условий эксплуатации и разрушения трубных элементов паровых и водогрейных котлов и может найти применение на предприятиях энергетической отрасли для диагностирования причин аварий, в проектных и научно-исследовательских организациях, разрабатывающих и использующих оборудование для предприятий энергетических и химических отраслей, при исследованиях новых марок сталей на жаростойкость и жаропрочность.

Известен способ определения эквивалентной температуры эксплуатации пароперегревателя по зависимости между толщиной оксидной пленки и временем эксплуатации (РД 34.17.452-98, п.5.6), в котором от обоих концов каждого патрубка холодным способом отрезают по одному шлифу высотой 20-25 мм, на внутренней поверхности шлифы изнутри заливают сплавом Вуда и затем на токарном станке снимают с одной стороны рабочей поверхности слой толщиной 1-2 мм, при этом избегая разогрева шлифа. После шлифовки и полировки шлифы травят в 3-4%-ном спиртовом растворе азотной кислоты, на оптическом микроскопе замеряют толщину окалины на внутренней поверхности трубы с учетом толщины подокисного слоя в зоне, где она максимальна. Делают 8-10 замеров и вычисляют среднее значение толщины оксидной пленки (hок, мм).

Глубину коррозии (ΔS, мм) на внутренней поверхности трубы подсчитывают по формуле ΔS=0,48·hок (РТМ 108.030.116-78). По найденному значению ΔS и фактической наработке трубы (τэ, ч) с помощью графиков, приведенных в РД 34.17.452-98, определяют эквивалентную температуру внутренней поверхности трубы.

Недостатком способа является то, что он применяется только для труб из перлитных сталей и справедлив только для пароперегревателей котлов, работающих в гидразинно-аммиачном водном режиме.

Известен способ определения эквивалентной температуры эксплуатации пароперегревателя по зависимости степени структурных превращений от времени эксплуатации для труб пароперегревателей из стали 12Х1МФ (РД 34.17.452-98, п.5.7), в котором от обоих концов каждого патрубка холодным способом отрезают по одному шлифу высотой 20-25 мм, шлифуют, после чего травят в 3-4%-ном спиртовом растворе азотной кислоты, балл микроструктуры протравленного шлифа оценивают по шестибальной шкале, приведенной в приложении Б документа РД 34.17.452-98. Затем по графикам, приведенным в РД 34.17.452-98, по баллу микроструктуры и фактической наработке определяют эквивалентную температуру эксплуатации в центральной зоне стенки трубы.

Недостатки способа - он применяется только для стали 12Х1МФ и субъективная оценка балла микроструктуры вносит значительную дополнительную погрешность в результат определения температуры.

Известен способ определения эквивалентной температуры эксплуатации пароперегревателя по зависимости содержания молибдена в карбидном осадке от времени эксплуатации (РД 34.17.452-98, п.5.7), включающий подготовку патрубков длиной 40 мм, на торце которых ставится керн в месте, где толщина стенки минимальна. Затем на токарном станке с наружной и внутренней сторон патрубок обтачивают до полного снятия продуктов коррозии. В месте, отмеченном керном, вырезают два продольных образца в виде полос шириной 10 мм на всю длину патрубка. На вырезанных образцах закругляют все углы. С одного конца на расстоянии не более 5 мм от торцевой стороны сверлят отверстие диаметром 3 мм. Из оставшейся части патрубка набирают стружку для химического анализа (не менее 2 г).

Химический и фазовый анализы стали с определением содержания молибдена в карбидном осадке проводятся в соответствии с приложением В документа РД 34.17.452-98, после чего по доле молибдена, перешедшего в карбиды, и фактической наработке трубы по графикам, приведенным в РД 34.17.452-98, определяется эквивалентная температура эксплуатации.

Недостатком способа является то, что он применяется только для труб из перлитных сталей (содержащих молибден). В способе не учтено влияние характеристик нагрузки (уровня внешних и внутренних деформаций, знакопеременности приложенных нагрузок и т.п.) на перераспределение легирующих элементов и на результат определения температуры эксплуатации пароперегревателя, что существенно снижает точность ее определения.

Задача заявляемого изобретения - разработка универсального способа неразрушающего поверхность образца определения температурных условий эксплуатации трубных элементов котлов, распространяющегося на все виды стали, независимо от водного режима работы котла.

Поставленная задача достигается тем, что в заявляемом способе рентгенометрической оценки температурных условий эксплуатации котлов подготавливают образец трубного элемента и эталон из не работавшего в котле участка трубы, имеющей аналогичный состав и способ изготовления. Осуществляют рентгеносъемку эталона в режиме термоциклирования в цикле «нагрев - охлаждение до комнатной температуры» (нагрев до определенной температуры - выдержка в стационарном тепловом режиме - охлаждение до комнатной температуры - рентгеносъемка в стационарном тепловом режиме - нагрев до более высокой температуры - выдержка в стационарном тепловом режиме - охлаждение до комнатной температуры - рентгеносъемка в стационарном тепловом режиме и т.д.), строят на ее основе зависимость отношений интегральных интенсивностей, полученных при комнатной температуре для двух наиболее сильных дифракционных линий, не имеющих наложений с дифракционными линиями других фаз, от температуры термоцикла. Производят рентгеносъемку образца трубного элемента при комнатной температуре, для которого определяют отношение интегральных интенсивностей тех же двух дифракционных линий. Сравнивают отношения интегральных интенсивностей дифракционных линий образца и эталона и определяют температуру эксплуатации участка трубного элемента, принимая ее равной температуре эталона при данной величине отношения интегральных интенсивностей.

Заявляемое изобретение поясняется примерами.

Подготавливают эталон размером 12×20 мм из не работавшего в котле прямого участка трубы, изготовленной из стали 12Х1МФ. Осуществляют рентгеносъемку эталона в режиме термоциклирования (нагрев до 225°С - выдержка в стационарном тепловом режиме - охлаждение до 12°С - рентгеносъемка в стационарном тепловом режиме - нагрев до 323°С - выдержка в стационарном тепловом режиме - охлаждение до 12°С - рентгеносъемка в стационарном тепловом режиме - нагрев до 420°С - выдержка в стационарном тепловом режиме - охлаждение до 12°С - рентгеносъемка в стационарном тепловом режиме - нагрев до 517°С - выдержка в стационарном тепловом режиме - охлаждение до 12°С - рентгеносъемка в стационарном тепловом режиме - нагрев до 590°С - выдержка в стационарном тепловом режиме - охлаждение до 12°С - рентгеносъемка в стационарном тепловом режиме - нагрев до 635°С - выдержка в стационарном тепловом режиме - охлаждение до 12°С - рентгеносъемка в стационарном тепловом режиме - нагрев до 679°С - выдержка в стационарном тепловом режиме - охлаждение до 12°С - рентгеносъемка в стационарном тепловом режиме (таблица 1)).

Таблица 1
Значения отношений интегральных интенсивностей двух наиболее сильных дифракционных линий эталона при термоциклировании
Температура термоцикла, °С 225 323 420 517 590 635 679
I200/I100 - отношение интегральных интенсивностей дифракционных линий (200) и (110) эталона при 12°С после нагрева до соответствующих температур, % 19,8 19,2 20,4 21,1 25,6 30,1 34,2

Строят на ее основе зависимость отношений интегральных интенсивностей, полученных при 12°С для двух наиболее сильных дифракционных линий, не имеющих наложений с дифракционными линиями других фаз, от температуры термоцикла (фиг.1).

В качестве образцов трубного элемента использованы участки труб пароперегревателя, описанные в таблице 2.

Таблица 2
Исследуемые образцы трубного элемента
№ образца Время эксплуатации, тыс.ч Температура эксплуатации (из журнала учета параметров), °С Описание
1 ~150 530-560 Конвективный пароперегреватель энергетического котла (⌀32 мм), изготовленный из стали 12Х1МФ. Вид повреждения - трещина в сварном шве. Образец - участок, расположенный рядом со сварным швом.

Продолжение таблицы 2 - Исследуемые образцы трубного элемента
2 ~150 470-500 Ширмовый пароперегреватель из стали 12Х1МФ энергетического котла (⌀32 мм). Вид повреждения - отдулина, имеющая в вершине трещину. Наблюдается ярко выраженное отслоение металла на внутренней поверхности трубы. Образец - участок, расположенный рядом с отдулиной.
3 ~16,5 576-582 Конвективный пароперегреватель технологического котла (⌀38 мм, сталь 12Х1МФ). Вид повреждения - отдулина, имеющая в вершине трещину. Образец - участок, расположенный рядом с отдулиной.

Производят рентгеносъемку образца трубного элемента при температуре 12, для которого определяют отношение интегральных интенсивностей тех же двух дифракционных линий (таблица 3).

Таблица 3
Значения отношений интегральных интенсивностей образцов трубного элемента
Рентгенометрическая характеристика Номер образца
1 2 3
I200/I110 - отношение интегральных интенсивностей дифракционных линий (200) и (110) при 12°С, % 25,7 20,6 23,4

Сравнивают отношения интегральных интенсивностей дифракционных линий образца и эталона и определяют температуру эксплуатации участка трубного элемента, принимая ее равной температуре эталона при данной величине отношения интегральных интенсивностей (фиг.1). Результаты определения температуры и подсчитанная погрешность представлены в таблице 4.

Таблица 4
Результаты определения температуры участков пароперегревателей
Номер образца Фактическая температура эксплуатации, °С Погрешность, %
По описанию образцов Данные рентгенометрии (фиг.1)
1 530-560 592 5,7-11,7
2 470-500 491 1,8-4,5
3 576-582 563 2,3-3,3

Способ рентгенометрической оценки температурных условий эксплуатации трубных элементов котлов, в котором подготавливают образец трубного элемента и эталон из не работавшего в котле участка трубы, имеющей аналогичный состав и способ изготовления, осуществляют рентгеносъемку эталона в режиме термоциклирования в цикле «нагрев - охлаждение до комнатной температуры», строят на ее основе зависимость отношений интегральных интенсивностей, полученных при комнатной температуре для двух наиболее сильных дифракционных линий, не имеющих наложений с дифракционными линиями других фаз, от температуры термоцикла, производят рентгеносъемку образца трубного элемента при комнатной температуре, для которого определяют отношение интегральных интенсивностей тех же двух дифракционных линий, сравнивают отношения интегральных интенсивностей дифракционных линий образца и эталона и определяют температуру эксплуатации участка трубного элемента, принимая ее равной температуре эталона при данной величине отношения интегральных интенсивностей.
СПОСОБ РЕНТГЕНОМЕТРИЧЕСКОЙ ОЦЕНКИ ТЕМПЕРАТУРНЫХ УСЛОВИЙ ЭКСПЛУАТАЦИИ ТРУБНЫХ ЭЛЕМЕНТОВ КОТЛОВ
Источник поступления информации: Роспатент

Показаны записи 11-14 из 14.
25.08.2017
№217.015.af1d

Водогрейный жаротрубный котёл с турбулизаторами улиточного типа

Изобретение относится к теплоэнергетике и может быть использовано для нагрева теплоносителя в системах отопления и горячего водоснабжения для жилищно-коммунального хозяйства, бытовых и производственных нужд. Водогрейный жаротрубный котел с турбулизаторами улиточного типа содержит корпус,...
Тип: Изобретение
Номер охранного документа: 0002610985
Дата охранного документа: 17.02.2017
25.08.2017
№217.015.b0de

Способ установления состояния предразрушения конструкционного изделия

Изобретение относится к контрольно-измерительной технике и может быть использовано лабораториями неразрушающего контроля, проектными и научно-исследовательскими организациями для диагностики трещинообразования в конструкционных материалах и прогнозирования состояния предразрушения конструкции....
Тип: Изобретение
Номер охранного документа: 0002613486
Дата охранного документа: 16.03.2017
25.08.2017
№217.015.be1a

Камера сгорания теплогенератора

Изобретение относится к устройствам получения тепла за счет сжигания жидких отходов углеводородного состава. Технический результат - повышение эффективности горения. Камера сгорания теплогенератора содержит корпус в виде стального цилиндра, верх которого накрыт металлической сеткой и сопряжен...
Тип: Изобретение
Номер охранного документа: 0002616962
Дата охранного документа: 18.04.2017
17.02.2018
№218.016.2de7

Способ испытания элементов котельного оборудования и трубопроводов на прочность и герметичность

Изобретение относится к способам испытания на прочность и герметичность элементов котельного оборудования и трубопроводов. Сущность: котельное оборудование и трубопроводы наполняют жидкостью, нагнетая давление до величины пробного давления. После достижения величины пробного давления...
Тип: Изобретение
Номер охранного документа: 0002643681
Дата охранного документа: 05.02.2018
Показаны записи 211-220 из 234.
10.08.2015
№216.013.6d30

Способ синтеза нанокристаллического карбида кремния

Изобретение относится к технологии получения нанокристаллического карбида кремния. Способ включает плазмодинамический синтез карбида кремния в гиперскоростной струе электроразрядной плазмы, содержащей кремний и углерод в соотношении 3,0:1, которую генерируют коаксиальным магнитоплазменным...
Тип: Изобретение
Номер охранного документа: 0002559510
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6e63

Устройство для защиты от дуговых замыканий ячеек комплектных распределительных устройств

Использование: в области электроэнергетики. Технический результат: повышение быстродействия защиты при дуговых замыканиях в ячейках комплектных распределительных устройств. Устройство защиты содержит первое и второе реле тока, соответственно подключенные к вторичным обмоткам первого и второго...
Тип: Изобретение
Номер охранного документа: 0002559817
Дата охранного документа: 10.08.2015
10.09.2015
№216.013.75eb

Парогазовая установка

Изобретение относится к области теплоэнергетики и предназначено для использования на тепловых электростанциях. Парогазовая установка содержит газотурбинную установку, связанную газоходом с котлом-утилизатором, в который встроены связанные между собой поверхности нагрева первого экономайзера,...
Тип: Изобретение
Номер охранного документа: 0002561776
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.75ef

Парогазовая установка

Изобретение относится к области теплоэнергетики и предназначено для использования на тепловых электростанциях. Парогазовая установка содержит газотурбинную установку, связанную газоходом с котлом-утилизатором, который снабжен газоходом для отвода газов в дымовую трубу. В котел-утилизатор...
Тип: Изобретение
Номер охранного документа: 0002561780
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.777d

Устройство для измерения коэффициентов диффузии водорода в металлах и способ его применения

Изобретение относится к области измерительной техники и может быть использовано для определения коэффициентов диффузии водорода в различных конструкционных материалах, используемых в космической и атомной технике, в изделиях, подвергаемых наводороживанию и облучению в процессе эксплуатации. Для...
Тип: Изобретение
Номер охранного документа: 0002562178
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.777f

Способ переработки пиритного огарка

Изобретение относится к способу переработки пиритного огарка. Способ включает смешивание пиритного огарка с хлоридом аммония и хлорирование при нагреве. Перед смешиванием предварительно проводят окислительный обжиг пиритного огарка. Хлорид аммония берут в избытке до 30% от...
Тип: Изобретение
Номер охранного документа: 0002562180
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.77c1

Контактная система вакуумной дугогасительной камеры

Изобретение относится к вакуумным выключателям и может быть использовано в вакуумных дугогасительных камерах высокого напряжения. Контактная система вакуумной дугогасительной камеры содержит соосно расположенные подвижный и неподвижный контактные узлы, каждый из которых состоит из токоподвода в...
Тип: Изобретение
Номер охранного документа: 0002562246
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.77eb

Способ конверсии отвального гексафторида урана в металлический уран

Изобретение относится к области экологии и направлено на предупреждение возможности загрязнения окружающей среды и отравления населения радиоактивными веществами. Способ конверсии отвального гексафторида урана в металлический уран включает взаимодействие гексафторида урана с металлическим...
Тип: Изобретение
Номер охранного документа: 0002562288
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7943

Торфосодержащая магнезиальная композиция

Изобретение относится к области производства строительных материалов и может быть использовано при изготовлении изделий, применяемых для малоэтажного строительства, а также для тепло- и звукоизоляции жилых, административных и промышленных зданий. Технический результат заключается в повышении...
Тип: Изобретение
Номер охранного документа: 0002562632
Дата охранного документа: 10.09.2015
10.10.2015
№216.013.81f7

Способ разрушения горных пород

Способ предназначен для дробления и измельчения электрическими импульсными разрядами горных пород, в том числе содержащих ограночное сырье. Горную породу размещают в жидкости. Жидкость заполняет корпус (3) с электродами (4, 7). На высоковольтный электрод (4) подают импульс высокого напряжения....
Тип: Изобретение
Номер охранного документа: 0002564868
Дата охранного документа: 10.10.2015
+ добавить свой РИД