×
10.03.2014
216.012.a9c3

Результат интеллектуальной деятельности: СПОСОБ ИМПЛАНТАЦИИ ИОНАМИ ГАЗОВ МЕТАЛЛОВ И СПЛАВОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области модификации поверхности металлов и сплавов и может быть использовано в машиностроении при производстве деталей, работающих в условиях трения скольжения. В обрабатываемую поверхность поочередно имплантируют ионы азота и ионы инертного газа. Дозу имплантации ионов инертного газа устанавливают в интервале (0,1…0,25)·D, где D - доза имплантации ионами азота, которую выбирают в интервале (1…5)·10 ион/см. Изобретение позволяет повысить износостойкость обработанной поверхности за счет увеличения глубины приповерхностного слоя. 4 ил., 1 табл., 1 пр.
Основные результаты: Способ имплантации ионами газов поверхности металлов и сплавов, при котором в обрабатываемую поверхность имплантируют ионы азота, отличающийся тем, что поочередно с азотом проводят имплантацию ионами инертного газа, дозу имплантации которых выбирают в интервале (0,1…0,25)·D, где D - доза имплантирования ионами азота, которую выбирают в интервале (1…5)·10 ион/см.

Изобретение относится к области модификации поверхности металлов и сплавов и может быть использовано в машиностроении в производстве деталей, работающих в условиях трения скольжения.

Известен способ повышения износостойкости поверхности изделий из металлов и сплавов (см. Гусева М.И. Ионная имплантация в металлах. - Поверхность. Физика, химия, механика. 1982. - №4. - С.27-50), который заключается в облучении поверхности материала ионами азота с энергией 10…15 кэВ и дозой облучения 1019 см-2. Ионы азота образуются при ионизации напускаемого в источник ионов газа. Недостатком такого способа является невозможность строго контроля за внедрением ионов азота в поверхность обрабатываемого металла и сплава. Это приводит к снижению воспроизводимости результатов.

Известен способ повышения износостойкости и усталости изделий из стали 30ХГСНА путем имплантации ионов нейтрального газа гелия с энергией 40 кэВ и дозой имплантации 1017 см-2 (см. Васильева Е.В. и др. Влияние ионной имплантации на свойства изделий из стали 30ХГСНА. - Вестник машиностроения. 1986. - №1. - С.13-15). Данный способ позволяет повысить усталость обработанной поверхности изделий. Однако, это увеличение не достигает значении, свойственных для имплантации азотом, а износостойкость обработанных изделий практически не повышается по сравнению с изделиями, не подвергавшимися обработке.

Наиболее близким к предполагаемому изобретению по техническому решению и достигаемому результату является способ ионно-лучевой обработки конструкционной стали, заключающийся в осуществлении последовательной многоэлементной ионной имплантации (Белый А.В., Кукареко В.А., Лободаееа О.В., Таран И.И., Ших С.К. Ионно - лучевая обработка металлов, сплавов и керамических материалов. - Минск: Изд-во ФТИ НАИБ, 1998. - 220 с.). Последовательная ионная имплантация заключается в том, что обрабатываемая поверхность вначале подвергается бомбардировке ионами инертного газа (аргон, гелий, неон), а затем имплантации ионов азота. Применение последовательной имплантации позволяет повысить износостойкость поверхности имплантированных материалов.

Существенные недостатки прототипа заключаются в следующем: невозможность получения одновременно многоэлементного пучка, содержащего ионы инертных газов и азота; сложность в управлении при переключении подачи с одного имплантируемого газа на другой; ограниченное увеличение износостойкости обработанной поверхности деталей. Увеличение дозы имплантации ионов азота приводит к росту длительности цикла обработки и появлению задиров на имплантированной поверхности деталей при испытаниях на износ.

Предлагаемый способ ионной имплантации конструкционной стали и титановых сплавов обеспечивает снижение износа имплантированных деталей при эксплуатации в условиях сухого трения при комнатной температуре.

Технический результат, на достижение которого направлен заявляемый способ, обеспечивается тем, что имплантирование проводят с поочередной подачей инертного газа (например, аргона) и азота, суммарную дозу имплантации азота выбирают в интервале (1…5)1017 ион/см2, а суммарную дозу имплантации инертного газа выбирают в интервале (0,1…0,25)·D, где D - доза имплантирования ионами азота.

Заявляемый способ включает в себя следующую последовательность операций:

- облучение обрабатываемой поверхности стали ионами инертного газа (аргона) в течение 30…45 минут с энергией 10…15 кэВ;

- облучение обрабатываемой поверхности стали ионами азота с энергией 10…15 кэВ;

- повторное облучение обрабатываемой поверхности стали ионами инертного газа (аргона) в течение 30…45 минут с энергией 10…15 кэВ;

- облучение обрабатываемой поверхности стали ионами азота с энергией 10…15 кэВ;

- осуществление приведенных выше операций с получением суммарной дозы имплантации азота в интервале (1…5)·1017 ион/см2, а суммарной дозы имплантации аргона до (0,1…0,25)·D, где D - доза имплантирования ионами азота.

Подробнее сущность заявляемого способа поясняется графиками:

- на фиг.1 - приведена схема строения поверхностного слоя металлического материала при ионной имплантации;

- на фиг.2 - показан график изменения глубины приповерхностного слоя с дислокационной структурой, наведенной ионной имплантацией, в зависимости от дозы имплантирования азота;

- на фиг.3 - представлен график интенсивности износа имплантированной стали 30ХГСН2А при обработке ионами азота (1) и по заявляемому способу (2);

- на фиг 4 - показана топология поверхности стали 30ХГСН2А, имплантированной ионами азота с дозой 3·1017 ион/см2 и ионами аргона с дозой 4,5·1016 ион/см2 после испытаний на износ.

Осуществление программируемого периодического изменения состава имплантируемых ионов с азота на аргон позволяет создавать большое число радиационных дефектов в поверхностном слое обрабатываемой детали. Бомбардировка ионами аргона обеспечивает распыление с поверхности оксидов и повышения ее активности. Переход с имплантации ионов аргона и имплантацию ионов азота обеспечивает более глубокое их проникновение в обрабатываемую поверхность и увеличение глубины приповерхностного слоя с измененной дислокационной структурой. На фиг.1 представлено схематически строение обрабатываемой поверхности металлического материала при ионной имплантации.

Металлографические исследования с применением просвечивающего электронного микроскопа показали, что глубина приповерхностного слоя Н изменяется с увеличением дозы имплантации ионов азота (фиг.2). Максимальная величина Н указанного слоя при имплантации только ионами азота достигается при дозе 1019 ион/см2. Применение заявляемого способа имплантирования, основанного на программируемом изменении сорта ионов газов, позволяет достичь такой же глубины приповерхностного слоя, но при значительно меньшей величине дозы имплантации азота - (1…5)·1017 ион/см2 (фиг.2).

При дозе имплантации ионов азота менее 1017 ион/см2 глубина приповерхностного слоя Н не достигает свой максимальной величины, что сказывается на воспроизводимости результатов испытаний на износ. Увеличение дозы имплантации ионов азота свыше 5·1017 ион/см2 не целесообразно так как при этом существенно возрастает время осуществления процесса, а изменений в глубине приповерхностного слоя практически не наблюдается.

Поэтому при использовании заявляемого способа имплантации целесообразно ограничивать дозу имплантации азота пределами (1…5)·1017 ион/см2.

Помимо дозы имплантации ионов азота глубина приповерхностного слоя определяется еще и дозой имплантации ионов инертного газа (аргона).

При дозе имплантации аргона менее 0,1D, где D - доза имплантирования ионами азота, не происходит образования достаточного количества радиационных дефектов в поверхностном слое обрабатываемого материала. Поэтому при указанной дозе имплантации аргона в сочетании с дозой имплантации азота в пределах (1…5)·1017 ион/см2 не происходит существенного возрастания глубины Н приповерхностного слоя и износостойкости облученных материалов по сравнению с имплантацией ионами азота.

При дозе имплантации аргона более 0,25D, где D - доза имплантирования ионами азота, глубина Н приповерхностного слоя достигла своей максимальной величины и ее увеличения не происходит. В то же время при таких дозах наблюдается явление «распухания» и охрупчивания металла, которые усиливаются при увеличении дозы, что проявляется в снижении износостойкости.

Наряду с увеличением износа повышение дозы имплантации аргона более 0,25D сопровождается увеличением длительности обработки. Поэтому целесообразно ограничить дозу имплантации аргона интервалом (0,1…0,25)·D (фиг.3).

В отличие от прототипа, где имплантация осуществляется только ионами одного газа (азота), попеременная подача азота и инертного газа (аргон) позволяет оперировать большим числом переменных параметров. Кроме изменения энергии и дозы имплантации, возможны еще вариации по частоте следования и длительности периодов имплантирования каждым из газов.

Для осуществления предлагаемого способа в имплантере используется специальный блок, позволяющий задавать длительность подачи каждого из газов и программировать частоту их смены.

Пример конкретного выполнения. Для оценки влияния заявляемого способа ионной имплантации на износостойкость стали 30ХГСН2А была выполнена имплантация втулок диаметром 12 мм из указанной стали в состоянии после закалки и отпуска. Испытания проводились на специальном стенде, обеспечивающим заданное по величине усилие прижатия контртела к поверхности втулки и регистрацию момента страгивания болта при его вращении в контакте с контртелом.

Для имплантации втулки помещались в вакуумный объем, откачиваемый вакуумными насосами: форвакуумным и диффузионным паромасляным. Платформа, на которой крепятся втулки, вращается вокруг оси, смещенной относительно катодного узла таким образом, чтобы рабочая поверхность втулок попадала под поток ионов. Обработка длится в зависимости от выбранной дозы 15-30 минут. В конкретном примере выполнения падающая доза облучения 3·1017 ион/см2 набиралась за 18 минут. Длительность единичного периода подачи азота составляла 2-2,5 минуты, а длительность подачи аргона 45-60 с.

Исследование режимов имплантации и результаты испытаний обработанных втулок из стали 30ХГСН2А позволили выбрать оптимальные режимы облучения по дозе (табл.1).

Таблица 1
№ п/п Доза имплантации ионами азота D, ион/см2 Доза имплантации ионами аргона, ион/см2 Соотношение доз имплантации аргона и азота Интенсивность изнашивания Δm/l, мкг/м
1 1019 - - 4,2
2 0,9·1017 1,35·1016 0,15 2,8
3 1017 1,5·1016 0,15 2,5
4 3·1017 4,5·1016 0,15 2,3
5 5·1017 6,5·1016 0,15 2,6
6 6·1017 9·1016 0,15 3,4
7 3·1017 2,7·1016 0,09 2,3
8 3·1017 3·1016 0,1 1,3
9 3·1017 4,5·1016 0,15 1,4
10 3·1017 7,5·1016 0,25 1,7
11 3·1017 9·1016 0,30 2,4

Таким образом, интенсивность изнашивания поверхности имплантированной стали 30ХГСН2А существенно снижается при попеременной имплантации ионами азота с дозой (1…5)·1017 ион/см2 и ионами аргона с дозой (0,1…0,25)·D, где D - доза имплантирования ионами азота.

Анализ топологии поверхности втулок после испытаний на износостойкость показа, что при увеличении дозы имплантации аргона свыше 0,25D наблюдается выкрашивание поверхности на отдельных участках (фиг.4), приводящее к повышению интенсивности изнашивания.

Из представленных экспериментальных данных следует, что использование заявляемого способа ионной имплантации обеспечивает повышение износостойкости обработанных деталей из металлических материалов, в частности стали 30ХГСН2А, при их эксплуатации в условиях трения скольжения.

Способ имплантации ионами газов поверхности металлов и сплавов, при котором в обрабатываемую поверхность имплантируют ионы азота, отличающийся тем, что поочередно с азотом проводят имплантацию ионами инертного газа, дозу имплантации которых выбирают в интервале (0,1…0,25)·D, где D - доза имплантирования ионами азота, которую выбирают в интервале (1…5)·10 ион/см.
СПОСОБ ИМПЛАНТАЦИИ ИОНАМИ ГАЗОВ МЕТАЛЛОВ И СПЛАВОВ
СПОСОБ ИМПЛАНТАЦИИ ИОНАМИ ГАЗОВ МЕТАЛЛОВ И СПЛАВОВ
СПОСОБ ИМПЛАНТАЦИИ ИОНАМИ ГАЗОВ МЕТАЛЛОВ И СПЛАВОВ
СПОСОБ ИМПЛАНТАЦИИ ИОНАМИ ГАЗОВ МЕТАЛЛОВ И СПЛАВОВ
Источник поступления информации: Роспатент

Показаны записи 11-20 из 28.
27.12.2014
№216.013.1494

Способ получения конструкционной алюмооксидной керамики

Изобретение относится к технологии плотно спеченных керамических материалов конструкционного назначения и может быть использовано для изготовления изделий, сочетающих высокие показатели прочности с повышенными термомеханическими свойствами и элементы ударопрочной защиты. Для изготовления...
Тип: Изобретение
Номер охранного документа: 0002536692
Дата охранного документа: 27.12.2014
27.12.2014
№216.013.152b

Способ ионной имплантации поверхностей деталей из титанового сплава

Изобретение относится к области ионно-лучевой вакуумной обработки материалов и может быть использовано в машиностроении для повышения эксплуатационных свойств деталей машин и механизмов. Способ включает имплантацию ионов меди и кобальта в поверхность изделий из титановых сплавов, при этом...
Тип: Изобретение
Номер охранного документа: 0002536843
Дата охранного документа: 27.12.2014
20.02.2015
№216.013.29c9

Антифрикционный сплав на основе алюминия и способ его получения

Изобретение относится к антифрикционным сплавам на основе алюминия и способам их получения. Сплав содержит компоненты в следующем соотношении, мас.%: свинец 20-40, цинк 5-15, алюминий - остальное. Способ получения сплава включает приготовление гетерофазного сплава на основе алюминия с 20-50...
Тип: Изобретение
Номер охранного документа: 0002542154
Дата охранного документа: 20.02.2015
27.02.2015
№216.013.2c67

Способ контроля "слепой зоны" боковых зеркал движущегося впереди автомобиля и устройство для его осуществления

Группа изобретений относится к наблюдательным устройствам транспортных средств, а именно к способу контроля «слепой зоны» боковых зеркал движущегося впереди автомобиля. Согласно первому варианту способ включает определение наличия движущегося впереди по соседней полосе в попутном направлении...
Тип: Изобретение
Номер охранного документа: 0002542835
Дата охранного документа: 27.02.2015
20.03.2015
№216.013.328f

Двигатель внутреннего сгорания с искровым зажиганием и способ его работы

Изобретение относится к области машиностроения и может быть использовано в двигателях внутреннего сгорания, в частности при осуществлении рабочего процесса. Техническим результатом является повышение эффективности сгорания при снижении в продуктах сгорания вредных веществ. Сущность изобретения...
Тип: Изобретение
Номер охранного документа: 0002544418
Дата охранного документа: 20.03.2015
27.03.2015
№216.013.35da

Способ получения конструкционной алюмооксидной керамики

Изобретение относится к технологии керамических материалов конструкционного назначения и может быть использовано для изготовления пористых изделий для высокотемпературной теплоизоляции или теплозащиты, носителей катализаторов и фильтров очистки жидких и газовых сред. Для получения...
Тип: Изобретение
Номер охранного документа: 0002545270
Дата охранного документа: 27.03.2015
10.04.2015
№216.013.389e

Способ получения композиционного материала alo-al

Изобретение относится к керметам, а именно к получению композиционного материала AlO-Al. Сплав Al-Mg с содержанием магния 15-25 мас.% обрабатывают водным раствором едкого натра до образования в маточном растворе осадка в виде гранул. Осадок отделяют от маточного раствора и отмывают водой до...
Тип: Изобретение
Номер охранного документа: 0002545982
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3fec

Способ получения конструкционной алюмооксидной керамики

Изобретение относится к технологии конструкционной керамики и может быть использовано для изготовления износостойких изделий, используемых в качестве подшипников, нитеводителей, водителей для проволоки, шаровых клапанов в устройствах для перекачки суспензий, а также в качестве деталей...
Тип: Изобретение
Номер охранного документа: 0002547852
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.42a8

Устройство предохранения кривошипных прессов от перегрузок по силе на ползуне

Изобретение относится к машиностроению и может быть использовано в конструкциях кривошипных прессов и других кузнечно-прессовых машин с возвратно-поступательным движением рабочего звена, подвергающихся перегрузкам. В силовой контур, образованный станиной пресса, его исполнительным механизмом,...
Тип: Изобретение
Номер охранного документа: 0002548562
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.43c2

Способ штамповки поковок колес

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении крупногабаритных колес, в частности железнодорожных, крановых и шахтных колес. После осадки заготовки производят ее разгонку сферическим пуансоном. Затем осуществляют штамповку с кручением...
Тип: Изобретение
Номер охранного документа: 0002548844
Дата охранного документа: 20.04.2015
Показаны записи 11-20 из 38.
27.12.2014
№216.013.1494

Способ получения конструкционной алюмооксидной керамики

Изобретение относится к технологии плотно спеченных керамических материалов конструкционного назначения и может быть использовано для изготовления изделий, сочетающих высокие показатели прочности с повышенными термомеханическими свойствами и элементы ударопрочной защиты. Для изготовления...
Тип: Изобретение
Номер охранного документа: 0002536692
Дата охранного документа: 27.12.2014
27.12.2014
№216.013.152b

Способ ионной имплантации поверхностей деталей из титанового сплава

Изобретение относится к области ионно-лучевой вакуумной обработки материалов и может быть использовано в машиностроении для повышения эксплуатационных свойств деталей машин и механизмов. Способ включает имплантацию ионов меди и кобальта в поверхность изделий из титановых сплавов, при этом...
Тип: Изобретение
Номер охранного документа: 0002536843
Дата охранного документа: 27.12.2014
20.02.2015
№216.013.29c9

Антифрикционный сплав на основе алюминия и способ его получения

Изобретение относится к антифрикционным сплавам на основе алюминия и способам их получения. Сплав содержит компоненты в следующем соотношении, мас.%: свинец 20-40, цинк 5-15, алюминий - остальное. Способ получения сплава включает приготовление гетерофазного сплава на основе алюминия с 20-50...
Тип: Изобретение
Номер охранного документа: 0002542154
Дата охранного документа: 20.02.2015
27.02.2015
№216.013.2c67

Способ контроля "слепой зоны" боковых зеркал движущегося впереди автомобиля и устройство для его осуществления

Группа изобретений относится к наблюдательным устройствам транспортных средств, а именно к способу контроля «слепой зоны» боковых зеркал движущегося впереди автомобиля. Согласно первому варианту способ включает определение наличия движущегося впереди по соседней полосе в попутном направлении...
Тип: Изобретение
Номер охранного документа: 0002542835
Дата охранного документа: 27.02.2015
20.03.2015
№216.013.328f

Двигатель внутреннего сгорания с искровым зажиганием и способ его работы

Изобретение относится к области машиностроения и может быть использовано в двигателях внутреннего сгорания, в частности при осуществлении рабочего процесса. Техническим результатом является повышение эффективности сгорания при снижении в продуктах сгорания вредных веществ. Сущность изобретения...
Тип: Изобретение
Номер охранного документа: 0002544418
Дата охранного документа: 20.03.2015
27.03.2015
№216.013.35da

Способ получения конструкционной алюмооксидной керамики

Изобретение относится к технологии керамических материалов конструкционного назначения и может быть использовано для изготовления пористых изделий для высокотемпературной теплоизоляции или теплозащиты, носителей катализаторов и фильтров очистки жидких и газовых сред. Для получения...
Тип: Изобретение
Номер охранного документа: 0002545270
Дата охранного документа: 27.03.2015
10.04.2015
№216.013.389e

Способ получения композиционного материала alo-al

Изобретение относится к керметам, а именно к получению композиционного материала AlO-Al. Сплав Al-Mg с содержанием магния 15-25 мас.% обрабатывают водным раствором едкого натра до образования в маточном растворе осадка в виде гранул. Осадок отделяют от маточного раствора и отмывают водой до...
Тип: Изобретение
Номер охранного документа: 0002545982
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3fec

Способ получения конструкционной алюмооксидной керамики

Изобретение относится к технологии конструкционной керамики и может быть использовано для изготовления износостойких изделий, используемых в качестве подшипников, нитеводителей, водителей для проволоки, шаровых клапанов в устройствах для перекачки суспензий, а также в качестве деталей...
Тип: Изобретение
Номер охранного документа: 0002547852
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.42a8

Устройство предохранения кривошипных прессов от перегрузок по силе на ползуне

Изобретение относится к машиностроению и может быть использовано в конструкциях кривошипных прессов и других кузнечно-прессовых машин с возвратно-поступательным движением рабочего звена, подвергающихся перегрузкам. В силовой контур, образованный станиной пресса, его исполнительным механизмом,...
Тип: Изобретение
Номер охранного документа: 0002548562
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.43c2

Способ штамповки поковок колес

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении крупногабаритных колес, в частности железнодорожных, крановых и шахтных колес. После осадки заготовки производят ее разгонку сферическим пуансоном. Затем осуществляют штамповку с кручением...
Тип: Изобретение
Номер охранного документа: 0002548844
Дата охранного документа: 20.04.2015
+ добавить свой РИД