×
27.02.2014
216.012.a743

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ГЕОМЕТРИЧЕСКОГО РАЗМЕРА ДИЭЛЕКТРИЧЕСКОЙ ЧАСТИЦЫ

Вид РИД

Изобретение

№ охранного документа
0002508534
Дата охранного документа
27.02.2014
Аннотация: Предлагаемое техническое решение относится к измерительной технике. Техническим результатом является повышение точности измерения. Технический результат достигается тем, что в устройство для измерения геометрического размера диэлектрической частицы, содержащее источник излучения, детектор и усилитель, введены циркулятор, приемо-рупорная антенна, фильтр нижних частот и микроконтроллер, причем выход источника излучения соединен с первым плечом циркулятора, второе плечо которого подключено к приемо-передающей рупорной антенне, третье плечо циркулятора соединено с входом детектора, выход детектора через фильтр нижних частот соединен с входом усилителя, выход которого соединен с входом микроконтроллера. 1 ил.
Основные результаты: Устройство для измерения геометрического размера диэлектрической частицы, содержащее источник излучения, детектор и усилитель, отличающееся тем, что в него введены циркулятор, приемо-передающая рупорная антенна, фильтр нижних частот и микроконтроллер, причем выход источника излучения соединен с первым плечом циркулятора, второе плечо которого подключено к приемо-передающей рупорной антенне, третье плечо циркулятора соединено с входом детектора, выход детектора через фильтр нижних частот соединен со входом усилителя, выход которого подключен к входу микроконтроллера.

Изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами.

Известно фотоэлектрическое устройство для измерения размеров частиц (см. Н.В.Красногорская, Ю.Я.Кириленко, М.М.Рыбин. Исследование параметров частиц осадков в свободной атмосфере. Физика атмосферы и океана, том 111, №12, стр.1292-1304), содержащее источник света, зеркальные линзы, шторки для формирования светового пучка и фотоумножитель. В этом устройстве по амплитуде импульса, возникающего на аноде фотоумножителя при пересечении светового пучка с частицей, определяют размер частицы.

Недостатком этого известного устройства является нестабильность результатов измерения из-за изменения светового потока источника света.

Наиболее близким техническим решением к предлагаемому является принятое автором за прототип устройство для измерения размеров капли воды (см. Патент РФ №2393462). Данное устройство содержит импульсный модулятор, источник излучения, соединенный выходом с передающей рупорной антенной, приемную рупорную антенну, детектор, подключенный выходом к входу усилителя, и индикатор. В этом устройстве величина выходного тока детектора является функцией размера капли воды.

Недостатком этого устройства следует считать погрешность, связанную с несогласованностью площади зондирующего каплю воды импульса с площадью самой капли воды.

Техническим результатом заявляемого решения является повышение точности измерения.

Технический результат достигается тем, что в устройство для измерения геометрического размера диэлектрической частицы введены приемо-передающая рупорная антенна, циркулятор, фильтр нижних частот и микроконтроллер, причем выход источника излучения 1 соединен с первым плечом циркулятора, второе плечо которого подключено к приемо-передающей рупорной антенне, третье плечо циркулятора соединено с входом детектора, выход детектора через фильтр нижних частот соединен с входом усилителя, выход которого подключен к входу микроконтроллера.

Сущность заявляемого изобретения, характеризуемого совокупностью указанных выше признаков, состоит в том, что при зондировании диэлектрической частицы электромагнитным сигналом фиксированной частоты, отображенным на дисплее микроконтроллера сигналом, измеряют размер контролируемой частицы.

Наличие в заявляемом устройстве совокупности перечисленных существующих признаков позволяет решить поставленную задачу измерения геометрического размера частицы на основе микроконтроллера, осуществляющего преобразование аналогового информационного сигнала в цифровую с желаемым техническим решением, т.е. повышением точности измерения.

На чертеже приведена структурная схема устройства.

Устройство содержит источник излучения 1, соединенный выходом с первым плечом циркулятора 2, приемо-передающую рупорную антенну 3, детектор 4, фильтр нижних частот 5, усилитель 6, соединенный выходом с микроконтроллером 7. Цифрой 8 обозначена диэлектрическая частица.

Устройство работает следующим образом. Выходной электромагнитный непрерывный сигнал фиксированной частоты источника излучения 1 поступает в первое плечо циркулятора 2. Этот сигнал далее с помощью второго плеча циркулятора сначала переносится в приемо-передающую рупорную антенну 3, а затем направляется в сторону контролируемой диэлектрической сферической по форме частицы 8.

В рассматриваемом случае при облучении данной частицы электромагнитным сигналом и при выполнении условия d<<λ где d - диаметр сферической частицы, λ - длина электромагнитной волны, для эффективной площади рассеяния (отражения) частицы можно записать (формула Ми)

где σ - эффективная площадь рассеяния частицы;

,

где m - показатель преломления электромагнитной волны.

Из представленной выше формулы видно, что путем оценки параметра σ можно определить диаметр (геометрический размер) облучаемой частицы.

Для этого рассеянный от контролируемой частицы сигнал улавливается приемо-передающей рупорной антенной и далее с помощью третьего плеча циркулятора поступает на вход детектора 4 (см. И.В.Лебедев. Техника и приборы СВЧ. М.: Высшая школа, 1970, стр.292-293).

Известно, что при приеме отраженного от объекта контроля сигнала эффективную площадь рассеяния объекта можно выразить как:

где r - расстояние от излучателя до объекта, Потр - плотность потока мощности отраженной от объекта волны, Ппад - плотность потока мощности падающей на объект волны. Принимая последнее выражение применительно к рассматриваемому случаю, можно констатировать, что совместное решение (1) и (2) уравнений даст возможность оценить эффективную площадь рассеяния частицы из следующей формулы:

.

Из последней формулы видно, что при известных значениях km, λ, Ппад и неизменном расстоянии между контролируемой частицей и приемо-передающей рупорной антенной (r) путем измерения плотности потока мощности отраженной от частицы волны (сигнала) можно судить о диаметре частицы. В силу этого входной сигнал детектора, соответствующий плотности потока мощности отраженной от частицы волны, сначала детектируется в детекторе и затем для подавления помех поступает на вход фильтра нижних частот 5. Продетектированный сигнал после прохождения фильтра нижних частот поступает на вход усилителя 6. Согласно предлагаемому устройству в качестве последнего здесь используется нормирующий усилитель, который может осуществить одновременно с усилением и масштабирование входного сигнала микроконтроллера 7. В микроконтроллере его входной аналоговый сигнал сначала преобразуется в цифровой, а затем цифровой код, соответствующий входному аналоговому сигналу микроконтроллера. Цифровой код далее с помощью регистра будет храниться до завершения следующего преобразования входного сигнала микроконтроллера. После этого хранимое число (код) передается в процессор микроконтроллера, где осуществляется обработка данных, соответствующих хранимому в регистре микроконтроллера цифровому коду. В результате обработки информации в микроконтроллере на его дисплее (индикаторе) отображается результат измерения геометрического размера (диаметра) контролируемой частицы.

Итак, согласно предлагаемому техническому решению путем микроконтроллерной обработки информационного сигнала о частице можно обеспечить повышение точности измерения размера диэлектрической частицы.

Устройство для измерения геометрического размера диэлектрической частицы, содержащее источник излучения, детектор и усилитель, отличающееся тем, что в него введены циркулятор, приемо-передающая рупорная антенна, фильтр нижних частот и микроконтроллер, причем выход источника излучения соединен с первым плечом циркулятора, второе плечо которого подключено к приемо-передающей рупорной антенне, третье плечо циркулятора соединено с входом детектора, выход детектора через фильтр нижних частот соединен со входом усилителя, выход которого подключен к входу микроконтроллера.
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ГЕОМЕТРИЧЕСКОГО РАЗМЕРА ДИЭЛЕКТРИЧЕСКОЙ ЧАСТИЦЫ
Источник поступления информации: Роспатент

Показаны записи 221-230 из 282.
27.10.2018
№218.016.973d

Способ измерения расхода текучей среды

Изобретение относится к измерительной технике и может быть использовано для контроля расхода различных газов и жидкостей. Способ измерения расхода заключается в том, что поток пропускают последовательно через вращающийся его напором привод с дроссельным регулированием в байпасе и через...
Тип: Изобретение
Номер охранного документа: 0002670705
Дата охранного документа: 24.10.2018
01.11.2018
№218.016.97b6

Способ автоматического полива растительных плантаций

Изобретение относится к области полива растений в закрытом грунте и может быть использовано для полива комнатных растений. При осуществлении способа автоматического полива предварительно накапливают воду в емкости. Устанавливают горшок с растением на плечо рычага. На другом плече рычага...
Тип: Изобретение
Номер охранного документа: 0002671109
Дата охранного документа: 29.10.2018
04.11.2018
№218.016.9a49

Способ управления обновлениями программного обеспечения в системах с каскадной структурой

Изобретение относится к области вычислительной техники. Техническим результатом является возможность управления обновлениями программного обеспечения в системах с каскадной структурой. Раскрыт способ управления обновлениями программного обеспечения в системах с каскадной структурой, включающий...
Тип: Изобретение
Номер охранного документа: 0002671624
Дата охранного документа: 02.11.2018
09.11.2018
№218.016.9b55

Способ измерения количества каждой компоненты двухкомпонентной жидкости в металлической емкости

Изобретение относится к измерительной технике и может быть использовано для измерения количества (объема, массы) каждой компоненты двухкомпонентной диэлектрической жидкости в металлической емкости произвольной конфигурации. Технический результат: повышение точности измерения каждой компоненты....
Тип: Изобретение
Номер охранного документа: 0002672038
Дата охранного документа: 08.11.2018
09.11.2018
№218.016.9b62

Измеритель воздушной скорости

Изобретение относится к измерительной технике и может быть использовано в системах измерения расходов газообразных сред. Измеритель воздушной скорости содержит проточный корпус с расположенной, перпендикулярно потоку, внутри пластиной, на которой размещены по ее разные стороны в потоке струйные...
Тип: Изобретение
Номер охранного документа: 0002672037
Дата охранного документа: 08.11.2018
09.11.2018
№218.016.9bf5

Способ измерения уровня вещества в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения уровня вещества (жидкости, сыпучего вещества), находящегося в какой-либо емкости. В частности, оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов и др. Техническим...
Тип: Изобретение
Номер охранного документа: 0002671936
Дата охранного документа: 07.11.2018
03.03.2019
№219.016.d238

Способ определения расходной характеристики гидравлического тракта при турбулентном режиме истечения

Изобретение относится к способам и устройствам, используемым для расчета пропускной способности проектируемых гидравлических трактов транспортных и дозирующих систем в химической, нефтехимической, авиационной, текстильной, лакокрасочной и других отраслях промышленности, в частности узлов...
Тип: Изобретение
Номер охранного документа: 0002680987
Дата охранного документа: 01.03.2019
03.03.2019
№219.016.d248

Цифровой измеритель электрического тока

Предлагаемое изобретение относится к области информационно-измерительной техники. Сущность заявленного решения заключается в том, что в цифровой измеритель электрического тока, содержащий первичный преобразователь в виде неподвижной катушки и подвижной катушки, расположенной на оси, регистратор...
Тип: Изобретение
Номер охранного документа: 0002680988
Дата охранного документа: 01.03.2019
30.03.2019
№219.016.f979

Способ измерения путевой скорости

Изобретение относится к измерительной технике, в частности к радиоволновым способам измерения путевой скорости транспортных средств с использованием эффекта Доплера для электромагнитных волн. Технический результат - повышение точности измерения путевой скорости транспортного средства -...
Тип: Изобретение
Номер охранного документа: 0002683578
Дата охранного документа: 29.03.2019
11.04.2019
№219.017.0b37

Способ определения напряженности магнитного поля

Изобретение относится к области информационно-измерительной техники. Способ определения напряженности магнитного поля, при котором помещают в магнитное поле микроволновый резонатор и возбуждают в резонаторе электромагнитные колебания, резонатор выполняют из ферримагнитного материала, измеряют...
Тип: Изобретение
Номер охранного документа: 0002684446
Дата охранного документа: 09.04.2019
Показаны записи 191-191 из 191.
09.05.2019
№219.017.4faf

Устройство для измерения влажности почвы

Предлагаемое изобретение относится к измерительной технике. Устройство содержит генератор электромагнитных колебаний с перестраиваемой частотой 1, чувствительный элемент, выполненный в виде круглого волноводного резонатора 2, детектор 3, соединенный выходом со входом измерителя...
Тип: Изобретение
Номер охранного документа: 0002433393
Дата охранного документа: 10.11.2011
+ добавить свой РИД