×
20.02.2014
216.012.a3db

Результат интеллектуальной деятельности: РАЗДЕЛЕННАЯ ВДОЛЬ ОСИ КОНСТРУКЦИЯ СТАТОРА ДЛЯ ЭЛЕКТРОДВИГАТЕЛЕЙ

Вид РИД

Изобретение

№ охранного документа
0002507662
Дата охранного документа
20.02.2014
Аннотация: Настоящее изобретение относится к конструкции статоров для использования в электродвигателях. Технический результат изобретения заключается в обеспечении упрощения обмотки (намотки статора), что ведет к повышению надежности статора и электродвигателя в целом, а также к снижению затрат. Статор для электродвигателя содержит удлиненное трубчатое тело, определяющее центральную полость, в которой может быть установлен ротор. Тело ротора определяет последовательность осевых пазов, проходящих параллельно оси тела, и последовательность электрических проводников, проходящих вдоль каналов для формирования электрических обмоток. Тело ротора сформировано, по меньшей мере, из двух частично округлых сегментов, по существу, одной длины. При этом сегменты вместе определяют центральную полость. 3 н. и 32 з.п. ф-лы, 9 ил.

Область техники

Настоящее изобретение относится к конструкции статоров, предназначенной для использования в электродвигателях. В частности, оно относится к конструкции статора, к двигателю, включающему в себя статор, и к способу изготовления статора.

Предшествующий уровень техники

В электродвигателях часто используются статоры с обмоткой что, в частности, справедливо для двигателей переменного тока (как для асинхронных, так и для синхронных), а также к бесщеточным двигателям постоянного тока. Обмотка этих статоров может быть весьма трудоемкой (и дорогостоящей), когда диаметр двигателя мал по сравнению с его длиной. Такие длинные, тонкие двигатели обычно используются в электрических погружных насосах (ESP, ЭПН) такого типа, которые используются в нефтедобывающей промышленности для обеспечения искусственного подъема в скважинах, которые не имеют достаточного давления, для подачи нефти на поверхность.

Статоры обычно изготавливают из многослойного пакета из тонких металлических пластин для ограничения напряженности (и соответствующих потерь) от вихревых токов. Толщина этих пластин обычно находится в диапазоне от 1 миллиметра (или меньше). Поэтому, может потребоваться 10000 пластин для построения длинных двигателей ESP, и эти пластины должны быть соответствующим образом выровнены так, чтобы каналы для проводников были правильно определены. На фиг. 1 показана конструкция двигателя, содержащая статор 10, сформированный из многослойного пакета таких пластин с отверстиями, определяющими каналы для проводников, в которых предусмотрены обмотки 12. Ротор 14 расположен в центральной полости.

Намотка статоров таких длинных двигателей является трудоемкой, и провода прокладывают в длинных узких пазах, сформированных в многослойном пакете из металлических пластин многослойного статора. Провод обычно пропускают через пазы путем протягивания его с помощью длинной иглы; этот процесс выполняется медленно и утомительно. Заполнение пазов проводами также часто ограничено, что снижает оптимальное использование блока двигателя для высокого магнитного потока и при оптимальной передаче тепла.

При использовании таких длинных статоров крутящий момент реакции от статора часто передается на тело двигателя посредством трения. Составляющие слои пластины предварительно прессуют вдоль оси с высокой нагрузкой. Такая нагрузка поддерживается большими стопорными кольцами, которые вставляют в продолжающуюся вдоль окружности канавку в корпусе.

Эту технологию конструкции таких статоров можно найти в самых разных двигателях, таких как трехфазные двигатели переменного тока, или в определенных (бесщеточных) двигателях постоянного тока.

Краткое изложение существа изобретения

В данном изобретении предусмотрена конструкция статора, которая позволяет выполнить укладку провода в паз статора вместо протягивания его от конца к концу, как при обычном подходе. Для этого статор "разделен" на 2 или больше сегментов. Обмотку каждого сегмента статора выполняют путем укладки проводов в канавку статора между полюсами. В конечном итоге выполняют сборку статора из сегментов и затем устанавливают в корпус двигателя. Крутящий момент реакции может быть передан от статора на корпус двигателя, благодаря специфичным конструкциям, относящимся к такой конструкции статора. Основное преимущество настоящего изобретения состоит в упрощении обмотки статора, что приводит к улучшенной надежности и снижению затрат при обеспечении более высокой надежности намотки.

Согласно первому аспекту данного изобретения предложен статор для электродвигателя, содержащий:

удлиненное трубчатое тело, определяющее центральную полость, в которой может быть расположен ротор, причем тело, определяет последовательность осевых пазов, проходящих параллельно оси тела; и

последовательность электрических проводников, проходящих вдоль каналов для формирования электрических обмоток;

при этом тело сформировано, по меньшей мере, из двух частично округлых сегментов, по существу, одинаковой длины, причем сегменты совместно определяют центральную полость.

Сегменты, предпочтительно, соединяют для формирования тела таким образом, чтобы свести к минимуму магнитные потери в местах контакта между сегментами. Поверхности контакта сегментов могут быть геометрически скорректированы перед сборкой для сведения к минимуму магнитных потерь.

Тело, предпочтительно, формируют из многослойного пакета пластин. По меньшей мере, один канал может быть определен на внешней поверхности каждого сегмента для приема стягивающего стержня, который может удерживать многослойный пакет в сжатом состоянии. На стягивающем стержне может быть предусмотрена гайка, для сжатия многослойного пакета, когда стержень находится в канале. В качестве альтернативы, один или больше клиньев предусмотрены для сжатия многослойного пакета, когда стержень находится в канале.

Стягивающие стержни обычно выполнены с возможностью поддерживать осевое совмещение пластин в каждом многослойном пакете.

По меньшей мере, одна прокладка, предпочтительно, предусмотрена в многослойном пакете каждого сегмента, причем осевое положение прокладки является одинаковым в каждом сегменте. Тангенциальный установочный штифт может быть предусмотрен для размещения прокладки на месте.

Стягивающий стержень обычно действует для передачи крутящего момента от пластин на прокладку. Это может быть достигнуто, благодаря трению между пластинами и/или деформацией стержней.

В прокладках предпочтительно предусмотрены формирования в виде взаимно соединяющегося штифта и канавки осевого паза на поверхностях контакта.

Система соединения, обеспечивающая соединение соседних прокладок, может быть предусмотрена, как продолжающаяся вдоль окружности лента.

Прокладки, предпочтительно, изготовлены из материала, который ограничивает вихревые токи. Такие материалы обычно представляют собой электроизолирующие материалы, например, пластик или керамика. В одном варианте осуществления прокладки изготовлены в виде слоев из материала с низкой магнитной проницаемостью, которые могут быть склеены вместе.

В одной удобной компоновке прокладки выполнены с возможностью удержания радиального подшипника ротора.

Пластины многослойного пакета могут быть склеены вместе для формирования многослойного пакета. Они также могут быть неплоскими, определяя взаимно соединяющие образования, которые действуют для передачи крутящего момента между пластинами.

В другом варианте осуществления каждый сегмент содержит, по меньшей мере, одно U-образное образование, определяющее один паз. Образование может быть сформировано из многослойного пакета из U-образных пластин. В одном предпочтительном варианте осуществления каждый сегмент содержит множество образований, соединенных вместе.

Согласно второму аспекту изобретения предложен электродвигатель, содержащий статор в соответствии с первым аспектом изобретения, корпус двигателя, в котором расположен статор, и ротор, установленный внутри центральной полости статора.

Радиальные штифты, заклепки или ключи могут быть установлены между корпусом и ротором для передачи крутящего момента реакции во время работы. Штифты, заклепки или ключи могут соединяться с прокладками, формирующими часть конструкции статора.

В одном предпочтительном варианте осуществления статор содержит один или больше осевых ключей, которые зацепляются в соответствующих канавках с внутренним диаметром корпуса для передачи крутящего момента реакции. Ключи могут быть предусмотрены в местах пересечения между сегментами статора.

Стопорные кольца могут быть установлены в конце статора, для сжатия сегментов вместе.

Согласно третьему аспекту изобретения предложен способ изготовления статора в соответствии с первым аспектом изобретения, содержащий этап, на котором: устанавливают проводники, формирующие обмотки в каждом сегменте статора, перед соединением сегментов вместе для формирования тела.

Пазы обычно открываются в направлении полости, обмотку выполняют путем проталкивания проводов в пазы.

В одном варианте осуществления, по существу, полную обмотку в одном из пазов предварительно формуют перед установкой в паз.

Сегменты статора, предпочтительно, соединяют вместе с помощью проходящей вдоль окружности ленты, намотку которой выполняют через заданное осевое расстояние.

Один предпочтительный вариант осуществления содержит этапы, на которых формируют каждый сегмент из многослойного пакета пластин на оправке, устанавливают обмотки в пазы этого сегмента, обеспечивая опорную структуру для многослойной структуры, извлекают ее из оправки и соединяют сегменты вместе для формирования статора.

Другие аспекты изобретения будут понятны из следующего описания.

Краткое описание чертежей

В дальнейшем изобретение поясняется описанием предпочтительных вариантов воплощения со ссылками на сопроводительные чертежи, на которых:

фиг. 1 изображает конструкцию двигателя известного уровня техники;

фиг. 2 изображает статор из трех сегментов в соответствии с вариантом осуществления изобретения;

фиг. 3 изображает один из сегментов с фиг. 2;

фиг. 4, 5 и 6 изображают вид с торца, общий вид и вид сбоку при разделении на 180° сегментов статора в соответствии с другим вариантом осуществления изобретения; и

фиг. 7-9 подробно изображают другие варианты осуществления изобретения.

Описание предпочтительных вариантов воплощения изобретения

В соответствии с настоящим изобретением, статор электродвигателя "разделен" вдоль оси на несколько сегментов (обычно на два, хотя возможно и большее их количество). Каждый сегмент намотан индивидуально путем пропускания провода между полюсами статора. После намотки каждого сегмента статора сегменты затем группируют для формирования нормального цилиндрического статора, и сгруппированный статор может затем быть установлен в корпус двигателя для правильной поддержки и передачи крутящего момента реакции.

Данное изобретение, в основном, относится к конструкции статоров для бесщеточных двигателей постоянного тока с одной обмоткой на зубец. Однако, его можно использовать в любом двигателе с внешним статором с обмоткой. Изобретение упрощает конструкцию статора, а также повышает надежность. Оно также позволяет использовать более тонкие корпуса двигателя.

На фиг. 2 показан статор из трех сегментов и на фиг. 3 показан один из сегментов в соответствии с изобретением. Статор 20 содержит три, по существу, идентичных сегмента 22a, 22b, 22c, сформированных из многослойных пакетов пластин 24. Пластины определяют пазы 26 между полюсами 28. Провода 30 обмотки располагают в пазах 26. Каналы 32 предусмотрены на внешней поверхности сегментов, в которых расположены закрепляющие или стягивающие стержни 34.

После того, как пластины 24 будут сформированы как сегмент, новые провода 30a могут быть размещены в пазах со стороны полости статора, например, путем намотки вокруг концов 36 статора между разными пазами 26a, 26c.

В одном варианте осуществления данного изобретения разделенный статор выполняют, начиная с обычного многослойного статора, который затем разделяют на два или три сегмента. Пластины сегментов пакетируют для составления сегмента разделенного статора. Затем провода укладывают в канавки/пазы между полюсами и получают соответствующую обмотку статора, как описано выше.

Укладка провода в пазы разделенного статора осуществляется относительно просто; провод может быть уложен (вдавлен) в канавку между полюсами 28 двигателя, что, очевидно, намного проще, чем протягивание проводов через всю длину канала от одного конца к другому, как в предшествующем уровне техники. Это, в свою очередь, обеспечивает более быструю и в большей степени воспроизводимую процедуру обмотки. С разделенным статором установка проводов также может быть автоматизирована.

Следующая часть описания фокусируется на разделенном статоре из двух частей, как показано на фиг. 4, 5 и 6, на которых показаны вид с торца, общий вид и вид сбоку при разделении на 180° со стороны сегментов статора.

В разделенном статоре закрепляющие (стягивающие) стержни 134 установлены в пазы 132 на периферии пластины 124. Такие закрепляющие стержни 134 позволяют сжать вместе пластины 124 для обеспечения механической целостности сегмента 120 разделенного статора. При разделении на 180 градусов получаемая в результате сила, производимая набором закрепляющих стержней направлена внутрь структуры разделенного сегмента. Это обеспечивает то, что пластины остаются плоскими после сжатия. Пластины обычно не полностью плоские после подготовки, поэтому без определенной обработки существует риск того, что сегмент разделенного статора может изогнуться в плоскости его основной оси.

В предложенной конструкции (получаемая в результате сила направлена внутрь поверхности разделенных пластин) становится возможным удерживать разделенный статор в прямом состоянии. Кроме того, силу, действующую на стягивающий стержень, можно регулировать так, что получаемая в результате сила прикладывается точно в центре инерции поверхности разделенной пластины.

Если стягивающие стержни не установлены на внешней оконечности разделенного сегмента, возникает риск того, что углы разделенных сегментов статора не будут точно находиться в соответствующей плоскости с остальной разделенной пластиной. Такая потенциальная проблема может быть исключена благодаря использованию жестких прокладок 140 и блоков 142 распределения напряжения.

В разделенном статоре прокладки также могут быть установлены через фиксированные, заданные расстояния. Такие прокладки выполняют несколько ролей:

поддержку для подшипников ротора двигателя (не показан);

предоставляют плоскую опорную поверхность, для обеспечения того, что пакетированные разделенные пластины будут оставаться плоскими (в частности, то, что касается пластин, составляющих многослойную конструкцию);

правильное азимутальное расположение натяжных стержней;

использование штифтов и ключей, для обеспечения правильного выравнивания разделенных сегментов статора для формирования полного статора;

поддержка проходящей вдоль окружности ленты для удержания сегментов статора вместе для одного статора; и

механизм передачи для крутящего момента реакции статора на корпус двигателя.

Эти прокладки 140 и 142 должны быть изготовлены из материала, который ограничивает появление вихревых токов. Такие токи генерируются в результате изменения тока в обмотке статора. Они также могут генерироваться и в результате вращения магнита ротора (если ротор намагничен в его осевом положении). Один подход состоит в формировании прокладок из неэлектропроводных материалов, таких как пластик или керамика. Другой подход состоит в формировании прокладок из ламинированных стальных пластин, которые склеены вместе для формирования блока прокладки. Если ротор не намагничен в этих осевых положениях, ламинирование прокладки должно быть немагнитным для дополнительного ограничения возникновения вихревых токов.

Разделенные пластины обычно пакетируют длиной один метр. Прокладки затем могут быть введены между последовательными пакетами пластин для получения конечной длины статора. Такая конструкция позволяет получать длинные секции статора (до 10 метров или больше). Натяжные стержни устанавливают в канавки/каналы, продолжающиеся вдоль периферии пакетов (пластины и прокладки), установленных с натяжением, для обеспечения сжатия пластин.

Стягивающие стержни 134 могут быть установлены с натяжением, с использованием различных механизмов. На них могут быть предусмотрены резьбовые участки на их концах, на которых могут быть навинчены гайки для обеспечения натяжения. Однако, в случае, когда стягивающие стержни находятся на периферии сегмента статора, установке гаек обычно мешает корпус. Поэтому, стягивающие стержни могут быть немного изогнуты (или сформированы кривыми) на конечных участках 146, с использованием блока 142 распределения напряжений, который обеспечивает правильную установку гаек на достаточном расстоянии от периферии.

Другой способ создания напряжения в стягивающих стержнях состоит в оборудовании стягивающих стержней крюком на одном конце и гайкой на другом конце. С использованием такого способа соседние натяжные стержни могут быть установлены в пазы с гайкой, и при этом крюки обращены к противоположным концам. Это ограничивает паразитный эффект изогнутой оконечности.

В другом варианте осуществления натяжные стержни оборудованы крюком на обоих концах и установлены с натяжением, благодаря принудительной вставке клина 148 между блоком распределения напряжений и первой прокладкой. Благодаря проталкиванию клина 148 радиально глубже к центру, стягивающие стержни могут быть затем установлены с требуемым натяжением. Когда требуемое натяжение будет достигнуто, часть клина, расположенная снаружи общей поверхности статора, может быть удалена (например, путем шлифования).

Для типичного статора ESP стягивающие стержни могут создавать усилие в несколько тонн, прикладываемое к пластинам. Это обеспечивает то, что большая сила трения может быть приложена между пластинами многослойной структуры. Крутящий момент реакции, создаваемый во время работы двигателя, может быть передан от ламинированной пластины к соседним пластинам, благодаря такому трению. На границе перехода между ламинированной пластиной и прокладкой, крутящий момент, создаваемый в многослойном пакете между прокладками, должен быть передан на прокладку. Этот процесс требует соответствующей величины осевой силы стягивания для создания достаточной величины трения. Стягивающие стержни устанавливаются с изгибом в тангенциальном направлении под действием крутящего момента реакции пластины. Эта деформация должна быть ограничена для исключения деформации осевой структуры канавки для проводов. В месте пересечения между стягивающими стержнями и прокладкой стягивающие стержни устанавливают со сдвигом (как реакция на изгиб). Используя соответствующие поперечные сечения стягивающего стержня, эти два механизма (трение между пластинами и сдвиг стягивающего стержня) обеспечивают соответствующую передачу крутящего момента на прокладки, во время работы двигателя.

Пластины многослойной структуры могут быть склеены вместе, для формирования жесткого многослойного пакета. Клей обеспечивает передачу крутящего момента от одного слоя к следующему. Это позволяет уменьшить использование стягивающих стержней.

Пластины могут быть не полностью плоскими, таким образом, что "зубцы" в виде геометрических элементов на одной пластине сцепляются с такими же элементами на следующей пластине, так, что пластины не могут поворачиваться относительно друг друга. Это также позволяет передавать крутящий момент реакции от одной пластины к следующей.

После того, как сегмент статора будет построен по всей его длине, включая в себя прокладки, стягивающие стержни и прокладки распределения напряжения, при приложении силы к стягивающим стержням, обмотка может быть затем легко сформирована путем укладки проводов в пазы статора. После окончания намотки паз с проводами может быть заполнен соответствующим материалом для оптимальной передачи тепла и передачи силы на статор, а также для ограничений вибрации провода во время работы двигателя (что может повысить срок службы статора).

В обмотках некоторых типов (таких как одна обмотка на зубец) провод может быть вначале предварительно сформован в виде прямоугольной обмотки, которая может быть установлена на статор вокруг одного полюса статора. Такие заранее сформированные обмотки могут быть покрыты соответствующим составом, для поддержания свойств провода на месте в пазах.

Сегменты могут быть установлены на оправку для намотки. Для съема сегментов с оправки, при конечной сборке, где их объединяют для формирования статора, может быть полезным обеспечить временную поддержку в дополнение ко всем стягивающим стержням. В качестве альтернативы, стягивающие стержни сами по себе могут быть достаточными для поддержания структуры сегмента.

Когда сегменты статора готовы, они могут быть соединены вместе для формирования цилиндрического статора. В случае статора, разделенного на две половины, правильное совмещение обеспечивается путем установки тангенциальных установочных штифтов, установленных в прокладки статора. Однако, осевое смещение отверстий для установочных штифтов может не быть эквидистантным для двух половин, поскольку сжатие пластин может не быть идеальным, и некоторые пластины могут иметь планарные дефекты. Для решения этой проблемы установочный штифт используют только в одном пакете прокладок, в одном осевом положении. Для других прокладок установочный штифт заменяют ключом, параллельным оси двигателя. Такие ключи устанавливают в соответствующие канавки для ключей в корпусе двигателя, которые также расположены параллельно оси двигателя и выполнены более длинными, чем ключи. При такой компоновке две половины статора выравнивают радиально с помощью двух ключей, допуская некоторое несоответствие по длине для разделенных сегментов статора.

Когда сегменты статора правильно выровнены и формируют статор, их соединяют друг с другом с помощью проходящих вдоль окружности лент. Такие продолжающиеся вдоль окружности ленты укладывают обычно в сформированные вдоль внешней окружности канавки прокладки статора.

В такой форме статор полностью собран с правильно расположенной обмоткой. Он формирует полную, жесткую структуру, которой можно манипулировать для последующих производственных операций.

Собранный статор затем может быть установлен в корпус. В соответствующем месте может быть установлен механизм для передачи крутящего момента реакции от статора на корпус. Возможны другие механизмы. Стопорные кольца могут быть установлены в продолжающуюся вдоль окружности канавку корпуса статора. В таком процессе требуется осевое сжатие между статором и стопорным кольцом для обеспечения достаточного осевого трения, что обеспечивает возможность передачи крутящего момента. В такой системе стягивающие стержни должны принимать основную нагрузку, для обеспечения достаточной осевой нагрузки на стопорные кольца. Кольцевые прокладки обычно необходимы между торцом статора и стопорными кольцами. Если стягивающие стержни первоначально не слишком сильно нагружены, в них остается достаточно резерва для упругой деформации, что обеспечивает возможность компенсации длины для согласования вариаций длины сегментов.

Другой подход состоит в фиксации прокладки, которая предотвращает ее вращение относительно корпуса, путем использования радиального элемента, пропущенного через корпус. Один из таких подходов состоит в радиальном высверливании через корпус и прокладку и установки фиксирующих штифтов. Такие штифты могут быть установлены с запрессовкой в корпус для обеспечения их удержания и герметизации на месте. Также может быть предпочтительным приваривать штифты к корпусу после установки. При правильном размере штифта требуется только несколько штифтов для каждой прокладки. Вместо штифтов можно использовать заклепки.

Использование штифтов или заклепок обеспечивает возможность исключения канавки для стопорного кольца, что в свою очередь обеспечивает возможность использования более тонкого корпуса.

Другое решение передачи крутящего момента реакции на корпус состоит в использовании ключа между статором и корпусом. Ключ может проходить по всей длине статора или только через прокладку. Для упрощения конструкции ключ может быть установлен на границе перехода между сегментами статора. Такой способ построения статора можно использовать для двигателя с исключительными рабочими характеристиками, если присутствует минимальный магнитный поток в зазоре, для соединения разделенных сегментов статора. То же хорошо применимо для двигателя постоянного тока с одной обмоткой на зубец. Для двигателей других типов происходит обмен магнитного потока на каждой радиальной поверхности границы раздела, и в этом случае жизненно необходимо обеспечить хорошее металлическое соединение одного сегмента статора с другим. В этом случае, радиальная контактная поверхность может быть геометрически скорректирована путем машинной обработки перед соединением сегментов.

Другой подход для минимизации эффекта радиального воздушного зазора между сегментами статора состоит в ступенчатом расположении пластин. На радиальной границе перехода пластины заканчиваются поочередно на двух разных азимутах. При пакетировании сегментов статора, пластины каждого сегмента статора должны быть взаимно соединены друг с другом. Это повышает площадь наложения, уменьшая напряженность магнитного потока в воздушном зазоре.

В альтернативном способе конструирования разделенного статора, пластины выполнены из N сегментов (в частности, 2-х полукругов) с фиксирующим элементом, который обеспечивает совпадение центральной оси после сборки, и пазы магнитной обмотки в пластинах открыты внутрь статора.

N сегментов пластин (в случае необходимости, полукруглых) загружают в сборочный фиксатор в виде пакетов равной длины и сжимают. Фиксатор предназначен для ограничения взаимодействия с внутренним диаметром пластины; в одной конструкции сборочный фиксатор имеет общую форму в виде желоба, который позволяет выполнять пакетирование пластин перпендикулярно основной оси желоба. На одном торце ступень с диаметром желоба обеспечивает принудительную фиксацию пакета в желобе; на другом конце сегмент поршня (соответствует внутреннему диаметру желоба) обеспечивает возможность сжатия пакета пластин. Сборочный фиксатор сконфигурирован таким образом, что когда он закрыт, N сегментов статора (опционально, 2 половины статора) сведены вместе для формирования полной сборки статора; также внутреннее отверстие статора оказывает минимальную помеху по объему для сборочного фиксатора. Обмотка статора устанавливается в разделенные сегменты многослойного статора (опционально, половины статора) через открытые пазы. Когда обмотки будут закончены для N сегментов статора, устанавливают круглую оправку в один из сегментов статора (опционально, половины статора). Оправка сконфигурирована с удерживающими кольцами, таким образом, что сжатие пакета пластин может поддерживаться, когда сборочные фиксаторы удаляют из статора. Сборочные фиксаторы закрывают, и усилие сжатия высвобождают таким образом, что собранные пластины удерживаются в сжатом состоянии между удерживающими кольцами на оправке.

Сборка пластин статора на оправке затем может быть вытолкнута сборочным фиксатором в корпус двигателя. Сборка пластин может удерживаться внутри корпуса двигателя между стопорными кольцами, установленными в канавки внутри отверстия корпуса статора, как описано выше. Пластины дополнительно сжимаются между стопорными кольцами таким образом, что удерживающие кольца на оправке могут быть удалены, и оправку выталкивают из отверстия статора, оставляя собранный статор внутри корпуса двигателя, удерживаемым в сжатом состоянии между стопорными кольцами.

Концепция разделения статора также работает с модифицированным типом магнитного ламинирования, как показано на фиг. 7-9. В этом случае выполняют осевое ламинирование. В такой конструкции пластина 200 имеет, в общем U-образную форму. Множество листов металла пакетируют (фиг. 9A) для получения достаточного магнитного сечения, для обеспечения распределения магнитного потока двигателя в блоке двигателя. Пакет затем сгибают, придавая основную U-образную форму (фиг. 9B), и ненужные части срезают (фиг. 9C) для получения основной ячейки. Две такие ячейки 202 объединяют для определения одного полюса 204 статора (фиг. 9D). Предварительно намотанную катушку 206 помещают в ячейки 202 так, что она охватывает полюс 204. Два таких модуля затем комбинируют (фиг. 9F) для формирования сегмента 208 статора (фиг. 9G).

Затем, после установки обмотки в разделенный сегмент статора, сегменты соединяют вместе для формирования статора, показанного на фиг. 7 и 8. В такой конструкции использование прокладок через заданные осевые расстояния является более трудоемким, поскольку U-образные элементы могут проходить вдоль всей длины двигателя. Однако, U-образные элементы могут быть ограничены по длине для использования прокладок, которые могут обеспечить аналогичное преимущество, как и в предыдущей конструкции.

В случае U-образного элемента, продолжающегося по всей длине двигателя, соединение U-образных элементов может быть достигнуто с помощью клея на плоской поверхности U-образного элемента. Способ склеивания можно использовать для построения каждого сегмента статора. Его также можно использовать для соединения сегментов статора для формирования всего статора. Сегмент статора также может быть соединен путем намотки лентой, как в предыдущих вариантах осуществления. Для более точного соответствия общей трубчатой форме, внешний слой U-образного металлического элемента каждого тонкого U-образного элемента может иметь срез металла на периферии U-образного элемента на заданной длине для формирования проходящей вдоль внешней окружности канавки, для установки наматываемой ленты.

Для удержания радиального подшипника ротора двигателя U-образный металлический элемент может иметь вырезы через фиксированное расстояние для формирования канавки в конечном статоре на его внутреннем диаметре. Эта канавка обеспечивает правильное расположение фиксированных муфт радиальных подшипников.

Для передачи крутящего момента можно использовать штифты или заклепки в корпусе двигателя, как и в предыдущем варианте осуществления.

U-образная ферромагнитная система приемлема с целью поддержания ферромагнитного поля в двигателе, поскольку линии поля почти параллельны кромке стальных U-образных пластин.

Хотя определенное количество вариантов осуществления изобретения было описано выше, очевидно, что другие изменения могут быть выполнены в пределах объема изобретения.


РАЗДЕЛЕННАЯ ВДОЛЬ ОСИ КОНСТРУКЦИЯ СТАТОРА ДЛЯ ЭЛЕКТРОДВИГАТЕЛЕЙ
РАЗДЕЛЕННАЯ ВДОЛЬ ОСИ КОНСТРУКЦИЯ СТАТОРА ДЛЯ ЭЛЕКТРОДВИГАТЕЛЕЙ
РАЗДЕЛЕННАЯ ВДОЛЬ ОСИ КОНСТРУКЦИЯ СТАТОРА ДЛЯ ЭЛЕКТРОДВИГАТЕЛЕЙ
РАЗДЕЛЕННАЯ ВДОЛЬ ОСИ КОНСТРУКЦИЯ СТАТОРА ДЛЯ ЭЛЕКТРОДВИГАТЕЛЕЙ
РАЗДЕЛЕННАЯ ВДОЛЬ ОСИ КОНСТРУКЦИЯ СТАТОРА ДЛЯ ЭЛЕКТРОДВИГАТЕЛЕЙ
РАЗДЕЛЕННАЯ ВДОЛЬ ОСИ КОНСТРУКЦИЯ СТАТОРА ДЛЯ ЭЛЕКТРОДВИГАТЕЛЕЙ
РАЗДЕЛЕННАЯ ВДОЛЬ ОСИ КОНСТРУКЦИЯ СТАТОРА ДЛЯ ЭЛЕКТРОДВИГАТЕЛЕЙ
РАЗДЕЛЕННАЯ ВДОЛЬ ОСИ КОНСТРУКЦИЯ СТАТОРА ДЛЯ ЭЛЕКТРОДВИГАТЕЛЕЙ
РАЗДЕЛЕННАЯ ВДОЛЬ ОСИ КОНСТРУКЦИЯ СТАТОРА ДЛЯ ЭЛЕКТРОДВИГАТЕЛЕЙ
Источник поступления информации: Роспатент

Показаны записи 141-150 из 324.
20.11.2015
№216.013.928d

Устройство и способ подачи нефтепромыслового материала

Группа изобретений относится к добыче нефти и газа из подземных пластов. Способ действия, по меньшей мере, одного сосуда высокого давления для закачки суспензии твердых частиц в линию высокого давления содержит первый рабочий цикл, содержащий изоляцию, по меньшей мере, одного сосуда высокого...
Тип: Изобретение
Номер охранного документа: 0002569134
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.9292

Электрическая насосная система и способ перекачки текучей среды из подземной скважины с использованием данной системы

Группа изобретений относится к электрическим насосным системам с погружными электрическими центробежными насосами для перекачивания сред из скважин. Система содержит центробежный насос (18), размещенный в скважине, емкость (6) моторного масла, размещенную на поверхности вне скважины, и...
Тип: Изобретение
Номер охранного документа: 0002569139
Дата охранного документа: 20.11.2015
27.11.2015
№216.013.9387

Способ улучшения волоконного тампонирования

Изобретение относится к способу улучшения волоконного тампонирования и таким образом управления поглощением бурового раствора во время бурения скважины. Способ тампонирования геологической формации включает введение в скважину состава, который содержит текучую среду, имеющую исходную вязкость...
Тип: Изобретение
Номер охранного документа: 0002569386
Дата охранного документа: 27.11.2015
10.12.2015
№216.013.96be

Способ формирования пазов в обсадной колонне ствола скважины

Способ формирования пазов в обсадной колонне ствола скважины осуществляется с помощью системы для формирования пазов и содержит обеспечение по меньшей мере одного режущего инструмента, содержащего по меньшей мере сборку кумулятивного перфорирования и сборку дискретного позиционирования,...
Тип: Изобретение
Номер охранного документа: 0002570210
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.96bf

Обнаружение притока газа в стволе скважины

Изобретение относится к средствам для обнаружения притока газа в скважину в процессе бурения. Техническим результатом является повышение точности определения расположения притока газа в скважине. Предложен способ обнаружения притока газа в буровую скважину, содержащий: развертывание буровой...
Тип: Изобретение
Номер охранного документа: 0002570211
Дата охранного документа: 10.12.2015
20.12.2015
№216.013.997a

Система зацепления с низким напряжением

Способ зацепления инструмента в скважине, обеспечивающий сцепление со скважинным компонентом без создания концентраций высокого напряжения, которые ослабляют скважинный компонент. Крепежное устройство содержит крепежные элементы, которые являются избирательно перемещаемыми в расширенную...
Тип: Изобретение
Номер охранного документа: 0002570915
Дата охранного документа: 20.12.2015
20.12.2015
№216.013.9a3b

Скважинный перфоратор и способ его взведения

Группа изобретений относится к области добычи жидких и газообразных текучих сред из буровых скважин. Скважинный перфоратор содержит загрузочную трубу, включающую заряд взрывчатого вещества, электрический проводник и детонационный шнур; взводящее устройство, включающее детонатор и электрический...
Тип: Изобретение
Номер охранного документа: 0002571108
Дата охранного документа: 20.12.2015
20.12.2015
№216.013.9a71

Система и способ измерения дебита отдельных нефтяных скважин, входящих в состав куста скважин

Предлагаются система и способ динамической калибровки, предназначенные для измерения дебита скважинного флюида отдельных нефтяных скважин, входящих в состав куста скважин. Отличительной особенностью системы и способа динамической калибровки является то, что они включают в себя средство,...
Тип: Изобретение
Номер охранного документа: 0002571162
Дата охранного документа: 20.12.2015
27.12.2015
№216.013.9e0f

Оптимизированное бурение

Изобретение относится к способу оптимизации скорости бура, приводимого в действие от ротора и статора гидравлически или пневматически, при бурении им ствола скважины в толще пород. Причем способ включает: (a) измерение первого набора эксплуатационных параметров ротора и статора, включая...
Тип: Изобретение
Номер охранного документа: 0002572093
Дата охранного документа: 27.12.2015
20.01.2016
№216.013.a01b

Способ оптимизации бурения с забойным бескомпрессорным двигателем

Описывается оптимизация работы бура, приводимого в действие от ротора и статора гидравлически, при бурении им ствола скважины в земле. Оптимизация бурения предусматривает измерение первого набора эксплуатационных параметров ротора и статора, включая скорость вращения ротора и крутящий момент...
Тип: Изобретение
Номер охранного документа: 0002572629
Дата охранного документа: 20.01.2016
Показаны записи 141-150 из 238.
27.09.2015
№216.013.7fbd

Способ обработки подземных пластов

Группа изобретения относится к гидравлическому разрыву пласта. Технический результат - улучшение проводимости пачек из мелкодисперсного расклинивающего агента. Способ получения в подземном пласте полиэлектролита в составе для обработки включает этапы введения в подземный пласт состава для...
Тип: Изобретение
Номер охранного документа: 0002564298
Дата охранного документа: 27.09.2015
27.09.2015
№216.013.7fe2

Армированная волокнами полимерная нефтепромысловая труба и способ ее изготовления

Изобретение обеспечивает выполнение высокотемпературных армированных волокнами полимерных нефтепромысловых труб. Изобретение включает в себя способ совмещения волоконного материала и высокотемпературной термоотвреждаемой смолы для создания высокоэффективного композитного материала. Композитный...
Тип: Изобретение
Номер охранного документа: 0002564335
Дата охранного документа: 27.09.2015
27.09.2015
№216.013.803d

Способ (варианты) и система для заканчивания скважины с использованием плазменных зарядов

Группа изобретений относится к области перфорации скважин. Способ заканчивания скважины заключается в вводе плазменного заряда, содержащего усеченный конус, имеющий конец с юбкой, конец с вершиной и металл, проходящий от конца с юбкой к концу с вершиной, в скважину и в воздействии...
Тип: Изобретение
Номер охранного документа: 0002564426
Дата охранного документа: 27.09.2015
27.09.2015
№216.013.8042

Способы проведения измерений при предварительном исследовании скважин методом понижения уровня и устройство для этого

Изобретение относится к способу и устройству проведения измерений при предварительном исследовании скважин методом понижения уровня пластовой жидкости в забое скважины. Техническим результатом является понижение уровня пластовой жидкости в забое скважины и проведение измерений. Способ содержит...
Тип: Изобретение
Номер охранного документа: 0002564431
Дата охранного документа: 27.09.2015
27.10.2015
№216.013.87b9

Способ многопластового гидроразрыва в стволе скважины

Изобретение относится к горному делу и может быть применено для многопластового гидроразрыва в стволе скважины. Способ формирует в подземной структуре пропускные каналы в двух или более пластах вокруг ствола скважины. Такие каналы разделены друг от друга длиной определенного участка ствола...
Тип: Изобретение
Номер охранного документа: 0002566348
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.885d

Способ изготовления статора для забойного двигателя

Изобретение относится к области бурения скважин и, более конкретно, к способу изготовления статора забойного двигателя. Способ изготовления статора для забойного двигателя включает в себя создание шпинделя 506, имеющего наружную геометрию, комплементарную с необходимой внутренней геометрией...
Тип: Изобретение
Номер охранного документа: 0002566512
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.88b9

Экран направленной антенны удельного сопротивления

Изобретение относится к приборам для скважинных измерений, используемым для измерения электромагнитных свойств подземной скважины. Прибор (100) каротажа в процессе бурения включает в себя направленную антенну удельного сопротивления и экран (150, 250, 350, 450, 550) антенны. Экран (150, 250,...
Тип: Изобретение
Номер охранного документа: 0002566604
Дата охранного документа: 27.10.2015
20.11.2015
№216.013.91b9

Инверсия формы импульса и инверсия с выбеливанием данных сейсморазведки в частотной области

Изобретение относится к области сейсмической разведки. Техническим результатом является повышение точности определения акустического импеданса для данных сейсморазведки. Машиночитаемый носитель информации, содержащий инструкции, которые при выполнении компьютером осуществляют способ...
Тип: Изобретение
Номер охранного документа: 0002568921
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.927b

Система и способ для выполнения операций интенсификации добычи в скважине

Изобретение относится к разработке, осуществлению и использованию результатов операций интенсификации, выполняемых на буровой. Техническим результатом является получение более точных данных о параметрах интенсификации для буровой. Способ включает выполнение определения характеристик резервуара...
Тип: Изобретение
Номер охранного документа: 0002569116
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.928d

Устройство и способ подачи нефтепромыслового материала

Группа изобретений относится к добыче нефти и газа из подземных пластов. Способ действия, по меньшей мере, одного сосуда высокого давления для закачки суспензии твердых частиц в линию высокого давления содержит первый рабочий цикл, содержащий изоляцию, по меньшей мере, одного сосуда высокого...
Тип: Изобретение
Номер охранного документа: 0002569134
Дата охранного документа: 20.11.2015
+ добавить свой РИД