×
20.02.2014
216.012.a341

Результат интеллектуальной деятельности: ПОДСЧЕТ ВКЛЮЧЕНИЙ В СПЛАВАХ ПУТЕМ АНАЛИЗА ИЗОБРАЖЕНИЙ

Вид РИД

Изобретение

№ охранного документа
0002507508
Дата охранного документа
20.02.2014
Аннотация: Использование: для подсчета включений в сплавах путем анализа изображений. Сущность заключается в том, что (а) готовят образец сплава, (b) определяют пороги обнаружения включений при помощи наблюдения с увеличением, по меньшей мере, одной зоны этого образца, (с) производят обнаружение включений этого образца в зависимости от порогов, определенных на этапе (b), и подсчет этих включений, (d) получают изображения каждого из упомянутых включений, обнаруженных на этапе (с), и определяют размер каждого из этих включений, (е) определяют химический состав каждого из обнаруженных включений путем химического анализа каждого из этих включений, (f) осуществляют схематизацию этого образца на основании изображений, полученных на этапе (d), причем эта схема показывает пространственное распределение включений, где каждое из обнаруженных включений представлено графическим элементом, при этом размер этого графического элемента пропорционален размеру этого включения, и цвет этого графического элемента соотносят с химическим составом этого включения. Технический результат: обеспечение возможности с высокой степенью точности характеризовать совокупность включений в любом сплаве. 2 н. и 6 з.п. ф-лы, 3 ил., 1 табл.

Настоящее изобретение касается способа подсчета и анализа включений в сплаве путем анализа изображений.

Некоторые сплавы могут содержать включения, при этом включение определяют как микроскопическую частицу, химический состав которой отличается от состава сплава. Эти нежелательные включения находятся в массе сплава. Они появляются в результате процесса плавки, применяемого при получении материала. Эти включения действуют как центры концентрации напряжений. Они могут быть местом начала микротрещин, распространяющихся при усталостном износе. Химический состав, количество, размер и пространственное распределение включений являются параметрами, которые влияют на сопротивление усталости. Следовательно, очень важно иметь возможность подсчитать и классифицировать включения, присутствующие в данном сплаве. Кроме того, этот металлургический анализ следует производить на образцах, характеризующих деталь (достаточно большие размеры и одинаковое состояние трансформации).

Современные методы подсчета включений в сплавах, таких как стали, состоят в наблюдении через оптический микроскоп микрографического среза и в сравнении наблюдаемых включений с контрольными шаблонами, иллюстрирующими различные случаи присутствия включений. Этот метод имеет несколько недостатков: сравнение с шаблонами не отличается точностью (всегда существует вероятность ошибки в зависимости от наблюдателя), при этом невозможно получить какую-либо информацию о химическом составе включений. Поэтому необходимо производить наблюдение на множестве образцов, чтобы иметь возможность качественно определить степень чистоты сплава по включениям. Сам метод является трудоемким и утомительным (ручная операция) и к тому же неполным.

Изобретение призвано предложить способ металлургического анализа, который позволяет в достаточной степени характеризовать совокупность включений в любом сплаве. Таким образом, речь идет об определении количества, размера, пространственного распределения, химического состава включений, присутствующих в этом сплаве, чтобы затем максимально легко и точно комбинировать эти измерения и получить повышение производительности во время анализа чистоты этого сплава по включениям.

Эта задача решается за счет того, что способ содержит следующие этапы:

(а) готовят образец сплава,

(b) определяют пороги обнаружения включений при помощи наблюдения с увеличением, по меньшей мере, одной зоны этого образца,

(c) производят обнаружение включений этого образца в зависимости от порогов, определенных на этапе (b), и подсчет этих включений,

(d) получают изображения каждого из упомянутых включений, обнаруженных на этапе (с), и определяют размер каждого из этих включений,

(e) определяют химический состав каждого из обнаруженных включений путем химического анализа каждого из этих включений,

(f) осуществляют схематизацию (картографию) этого образца на основании изображений, полученных на этапе (d), в схеме каждое из обнаруженных включений представлено графическим элементом, при этом размер этого графического элемента пропорционален размеру этого включения, и цвет этого графического элемента сопоставляют с химическим составом этого включения.

Благодаря этим положениям, все параметры, необходимые для подсчета и анализа включений, измеряют на образце, который выбирают достаточно большим, чтобы он мог статистически характеризовать сплав, и собранные данные оптимально комбинируют для получения схемы включений, которая должна быть максимально полной и максимально простой и практичной в применении, чтобы получить выигрыш в производительности. В частности, эта схема позволяет определить, образуют ли включения скопления, общая форма которых может стать местом концентрации напряжений, что отрицательно скажется на усталостном сопротивлении сплава.

Предпочтительно способ подсчета и анализа включений после этапа (f) содержит следующий этап, на котором:

(g) производят анализ образца на основании полученной на этапе (f) схемы обнаруженных включений в зависимости, по меньшей мере, от одного заранее определенного критерия.

Этот анализ образца при помощи схемы позволяет проверить соответствие или несоответствие сплава, на котором был отобран образец.

Объектом изобретения является также система подсчета и анализа включений в сплаве.

Согласно изобретению, эта система содержит микроскоп, первое средство, выполненное с возможностью управления этим микроскопом и, в зависимости от порогов обнаружения, с возможностью обнаружения включений, присутствующих в образце сплава, и подсчета этих включений, прибор химического анализа, выполненный с возможностью сбора химических данных по каждому из этих включений, второе средство, выполненное с возможностью получения изображения каждого из этих включений и управления прибором химического анализа для определения его химического состава на основании этих химических данных, третье средство, выполненное с возможностью осуществления схематизации образца, в схеме каждое из обнаруженных включений представлено в виде графического элемента, при этом размер графического элемента пропорционален размеру этого включения, а цвет этого графического элемента сопоставляют с химическим составом этого включения, и устройство визуального отображения этой картографии.

Настоящее изобретение и его преимущества будут более очевидны из нижеследующего подробного описания варианта выполнения, представленного в качестве не ограничительного примера, со ссылками на прилагаемые чертежи, на которых:

Фиг.1 - этапы способа в соответствии с настоящим изобретением.

Фиг.2 - изображение включения в сплаве и результат его химического анализа, полученные при помощи способа в соответствии с настоящим изобретением.

Фиг.3 - схема включений в стали Maraging 250, полученная при помощи способа в соответствии с настоящим изобретением.

Далее следует описание способа в соответствии с настоящим изобретением со ссылкой на фиг.1, на которой показана последовательность этапов этого способа.

Анализ осуществляют при помощи электронного микроскопа, системы микроанализа с энергетической дисперсией и нескольких компьютерных программ.

На этапе (а) отбирают образец предназначенный для исследования сплава и этот образец готовят при помощи известных технологий. Эта подготовка включает шлифование поверхности образца для ее наблюдения в микроскоп. Используемым микроскопом является электронный сканирующий микроскоп (ЭСМ). Действительно, ЭСМ позволяет получить более значительное увеличение, чем оптический микроскоп. Кроме того, наблюдение в ЭСМ обратнорассеянных электронов позволяет получить лучший контраст на уровне серого между включениями и матрицей сплава.

В случае применения ЭСМ осуществляют шлифование образца включающее в себя отделочное полирование на полотне, содержащем алмазы размером в 1 микрон, затем этот образец покрывают проводящей пленкой золото/палладий, наносимой, например, при помощи устройства металлизации, после пропускания через бак ультразвуковой очистки. Подготовленный таким образом образец помещают в камеру ЭСМ.

Образец разбивают на зоны и производят анализ каждой зоны.

Перед началом анализа необходимо определить некоторое число входных параметров для микроскопа. В частности, речь идет о следующих параметрах:

- увеличение,

- размер получаемого изображения (в пикселях),

- число анализируемых зон,

- распределение зон.

Увеличение микроскопа определяет размер зоны, то есть размеры исследуемой поверхности. Это увеличение составляет от 100 до 500, в противном случае анализ каждой зоны займет слишком много времени.

Размер каждого изображения, получаемого при помощи микроскопа, выражают в пикселях, при этом одно изображение соответствует одной зоне. Этот размер составляет, например, 512×512 пикселей. Реальный размер изображения зависит от увеличения. Статистически приемлемый минимальный размер образца примерно равен 160 мм2. Увеличение и размер выбирают таким образом, чтобы каждое включение имело размер не менее 10 пикселей.

Число анализируемых зон определяет общую площадь поверхности наблюдаемого образца.

Для упрощения эту поверхность сканируют таким образом, чтобы следующая анализируемая зона была смежной по отношению к анализируемой в данный момент зоне. Таким образом, распределение зон является непрерывным.

На этапе (b) фиксируют несколько порогов обнаружения включений.

Так, пороги размера включений и уровня серого выбирают таким образом, чтобы определять, соответствует ли зона некоторого размера, уровень серого которой отличается от фона, включению, которое необходимо анализировать.

Кроме того, в зависимости от природы исследуемого сплава выбирают пороги химического состава. Выбирают список элементов, которые могут присутствовать во включениях, и выбирают интервалы (пороги) концентрации по каждому из этих элементов. Поскольку стехиометрия включения заранее не известна и возможно химическое взаимодействие между матрицей и включением, необходимо использовать интервалы концентрации. Эти интервалы устанавливают путем усреднения полученных результатов химических анализов и размеров включений, которые наблюдались при предварительных анализе и наблюдении, осуществленных на 10-20 зонах этого сплава.

Как минимум, пороги обнаружения содержат минимальную концентрацию, по меньшей мере, одного химического элемента в одном включении.

Выбор вышеупомянутых параметров (порогов), как правило, сопровождается регулировкой микроскопа и вышеупомянутого прибора химического анализа.

На этапе (с) осуществляют обнаружение включений. Это обнаружение осуществляют при помощи первого программного средства L1 анализа изображений и подсчета частиц, например, программного обеспечения Aphelion® (компания ADCIS), содержащего прикладную программу, выполненную с возможностью подсчета частиц. Это первое программное средство L1 обнаруживает (через представление изображения в двоичной форме) включения, которые необходимо анализировать, используя пороги размера и уровня серого, определенные на этапе (b), и подсчитывает все включения.

Параллельно с этой операцией обнаружения первое программное средство L1 управляет микроскопом для сканирования каждой зоны.

На этапе (d) первое программное средство L1 управляет вторым программным средством L2 получения изображения и химического анализа. Это второе программное средство L2 получает изображение зоны, после чего это изображение передают в программное средство L1 для характеристики формы (контура), размера (габаритных размеров) и положения в зоне каждого из включений, обнаруженных на этапе (с) первым программным средством L1. Это второе программное средство L2 является, например, программным обеспечением Spirit® (компания SYNERGIE4/PGT).

В левой части фиг.2 показано изображение части зоны с включением (черный цвет на сером фоне).

На этапе (е) второе программное средство L2 управляет прибором химического анализа, используя данные, поступившие в L2 от L1 на этапе (d) и касающиеся положения включений. Эти данные позволяют программному средству L2 осуществить химический анализ каждого из обнаруженных включений и определить процентное содержание каждого элемента, идентифицированного в каждом включении. Результаты передают в программное средство L1, которое выдает химический состав каждого включения, используя пороги концентрации, выбранные на этапе (b), по каждому из заранее выбранных характеристических химических элементов. Например, прибор химического анализа является спектрометром. Предпочтительно этот спектрометр является системой микроанализа с энергетической дисперсией. Этот спектрометр соединен с микроскопом (ЭСМ).

В правой части фиг.2 показаны результаты химического анализа включения из изображения, показанного в левой части фиг.2. Здесь отчетливо виден пик концентрации, соответствующий элементу титан Ti, что позволяет идентифицировать это включение как нитрид титана.

Этапы (b)-(e) повторяют для каждой из зон, покрывающих часть поверхности образца, пока не будет проанализирована вся поверхность образца.

На этапе (f) третье программное средство L3 осуществляет схематизацию образца на основании изображений всех зон образца и данных, собранных первым программным средством L1 и вторым программным средством L2 и переданных в это третье программное средство L3.

В этой схеме каждое из обнаруженных включений представлено графическим элементом, при этом размер этого графического элемента пропорционален размеру этого включения. Цвет произвольно ассоциируют с каждым типом включения в зависимости от его химического состава, который был определен на этапе (е).

После этого устройство визуального отображения, например, экран, позволяет визуализировать полученную схему.

После получения схемы способ может содержать дополнительный этап оценки достоверности анализа образца на основе некоторых критериев.

Этот дополнительный этап (g) (см. фиг.1) оператор осуществляет вручную. Этот этап соответствует тесту на достоверность: если тест оказался положительным, анализ считают достоверным, а его результаты пригодными к использованию. В противном случае анализ считают не достоверным; его результаты не сохраняют, и необходимо произвести другие анализы, изменив некоторые входные параметры.

Например, из схемы извлекают следующие данные: число обнаруженных включений, пространственное распределение включений, размер включений.

Ниже приведен пример стали Maraging 250, содержащей включения нитридов и другие включения.

Что касается включений нитридов, то, если их распределение является равномерным, максимальный размер включений должен быть меньше 20 мкм (микрон), и число включений на зону 0,5 мм2 должно быть меньше или равно 4 и, возможно, составлять от 4 до 16 только в одной из зон. Если включения выстроены в линии или сгруппированы в скопления, максимальный размер этих скоплений/линий должен быть меньше 75 мкм, число этих скоплений/линий не должно превышать 1 на зону 0,5 мм2, а их толщина должна быть меньше 9 мкм.

Что касается других включений, то, если их распределение является равномерным, максимальный размер включений должен быть меньше 20 мкм, и число включений на зону 0,5 мм2 должно быть меньше или равно 4. Если включения выстроены в линии или сгруппированы в скопления, максимальный размер этих скоплений/линий должен быть меньше 75 мкм, число этих скоплений/линий не должно превышать 1 на зону 0,5 мм2, а их толщина должна быть меньше 9 мкм.

Объектом изобретения является также система подсчета и анализа включений в сплаве, в которой применяют описанный выше способ, то есть система, содержащая микроскоп, первое программное средство L1, выполненное с возможностью управления этим микроскопом и, в зависимости от порогов обнаружения, с возможностью обнаружения включений, присутствующих на образце сплава, и подсчета этих включений, прибор химического анализа, выполненный с возможностью сбора химических данных по каждому из этих включений, второе программное средство L2, выполненное с возможностью получения изображения каждого из этих включений и управления прибором химического анализа для определения его химического состава на основании этих химических данных, третье программное средство L3, выполненное с возможностью осуществления схемы образца, где каждое из обнаруженных включений представлено в виде графического элемента, размер которого пропорционален размеру этого включения и цвет которого сопоставляют с химическим составом этого включения. Система содержит также устройство визуального отображения этой схемы.

При помощи описанной выше системы подсчета и анализа включений можно исследовать все металлические сплавы. Эти сплавы могут представлять собой легированную или не легированную сталь, сплав на основе никеля, сплав на основе кобальта, сплав, полученный при помощи порошковой металлургии.

Ниже приведены примеры, в которых способ в соответствии с настоящим изобретением применили для случая сталей Maraging 250.

Пример: Сталь Maraging 250 X2NiCoMo18-8-5

В качестве входных данных использовали следующие параметры:

- увеличение: 200

- размер получаемого изображения (в пикселях): 512*512

- число анализируемых зон: 600

- распределение зон: непрерывное.

В качестве порогов обнаружения включений выбрали следующие:

- пороги размера включений: 5 мкм

- пороги уровня серого: от 190 до 250

- пороги химического состава: см. таблицу I ниже.

ТАБЛИЦА I
Оксиды Сульфиды Оксисульфиды Нитриды титана
Мин. Макс. Мин. Макс. Мин. Макс. Мин. Макс.
Fe 0,0 68,4 0,0 68,4 0,0 68,4 0,0 68,4
O 1,0 100,0 0,0 1,0 1,0 3,0 0,0 100,0
Mg 0,0 100,0 0,0 100,0 0,0 100,0 0,0 100,0
Al 0,0 100,0 0,0 100,0 0,0 100,0 0,0 100,0
Ca 0,0 100,0 0,0 100,0 0,0 100,0 0,0 100,0
Si 0,0 100,0 0,0 100,0 0,0 100,0 0,0 100,0
S 0,0 1,5 1,5 100,0 1,0 3,0 0,0 100,0
Ti 0,0 3,5 0,0 3,5 0,0 3,5 3,5 100,0
Ni 0,0 15,3 0,0 15,3 0,0 15,3 0,0 15,3
Co 0,0 6,3 0,0 6,3 0,0 6,3 0,0 6,3
Mn 0,0 100,0 0,0 100,0 0,0 100,0 0,0 100,0
Mo 0,0 100,0 0,0 100,0 0,0 100,0 0,0 100,0

Результаты химического анализа показывают, что в сплаве присутствуют следующие включения:

- Включение типа 1: Нитриды титана

- Включение типа 2: Оксиды

- Включение типа 3: Сульфиды

На фиг.3 показана схема включений, полученная для анализируемого образца.


ПОДСЧЕТ ВКЛЮЧЕНИЙ В СПЛАВАХ ПУТЕМ АНАЛИЗА ИЗОБРАЖЕНИЙ
ПОДСЧЕТ ВКЛЮЧЕНИЙ В СПЛАВАХ ПУТЕМ АНАЛИЗА ИЗОБРАЖЕНИЙ
ПОДСЧЕТ ВКЛЮЧЕНИЙ В СПЛАВАХ ПУТЕМ АНАЛИЗА ИЗОБРАЖЕНИЙ
Источник поступления информации: Роспатент

Показаны записи 611-620 из 928.
19.01.2018
№218.016.07e4

Направляющий аппарат компрессора для турбомашины

Разделенный на сектора направляющий аппарат компрессора турбомашины содержит скрепленные сектора, образующие внешнее и внутреннее концентрические кольца, между которыми размещены лопатки. Внешнее кольцо снаружи снабжено средством крепления с внешним корпусом и содержит боковую стенку,...
Тип: Изобретение
Номер охранного документа: 0002631585
Дата охранного документа: 25.09.2017
19.01.2018
№218.016.08e9

Турбореактивный двигатель, содержащий термоэлектрические генераторы

Турбореактивный двигатель с передним вентилятором содержит по меньшей мере один контур текучей среды и теплообменник воздух/текучая среда, посредством которого упомянутая текучая среда охлаждается воздухом, наружным относительно турбореактивного двигателя, и разделитель потока. Разделитель...
Тип: Изобретение
Номер охранного документа: 0002631847
Дата охранного документа: 26.09.2017
19.01.2018
№218.016.0a20

Устройство для обеспечения уплотнения между коаксиальными валами турбомашины

Настоящее изобретение относится к устройству (20) для обеспечения уплотнения коаксиальных валов турбомашины, содержащему кольцевое уплотнение (23), выполненное с возможностью выполнять уплотнение путем контакта с наружным валом (12), причем упомянутое устройство отличается тем, что оно содержит...
Тип: Изобретение
Номер охранного документа: 0002632066
Дата охранного документа: 02.10.2017
19.01.2018
№218.016.0a4c

Компонент газотурбинного двигателя и способ его изготовления

Компонент газотурбинного двигателя содержит внутренний бандаж, наружный бандаж и направляющие лопатки, выполненные из композиционного материала, имеющего переплетенное волоконное армирование, уплотненное матрицей. Волоконное армирование включает в себя комплект нитей, простирающихся непрерывно...
Тип: Изобретение
Номер охранного документа: 0002632065
Дата охранного документа: 02.10.2017
19.01.2018
№218.016.0b0c

Способ неразрушающего контроля заготовки лопатки

Изобретение относится к автоматизированному способу неразрушающего контроля тканой заготовки, предназначенной для производства части турбомашины и содержащей множество первых маркирующих нитей, пересекающихся со вторыми маркирующими нитями, первые и вторые нити имеют свойства отражения света,...
Тип: Изобретение
Номер охранного документа: 0002632352
Дата охранного документа: 04.10.2017
19.01.2018
№218.016.0b3d

Выпрямитель газотурбинного двигателя с лопатками улучшенного профиля

Изобретение относится к энергетике. Выпрямитель газотурбинного двигателя, содержащий множество лопаток, расположенных вокруг кольца с центром на оси газотурбинного двигателя, при этом каждая лопатка имеет переднюю кромку и проходит между концом ножки и концом головки. Передняя кромка на конце...
Тип: Изобретение
Номер охранного документа: 0002632350
Дата охранного документа: 04.10.2017
19.01.2018
№218.016.0e26

Контроль датчика типа линейного переменного дифференциального трансформатора

Способ контроля LVDT-датчика, включающего в себя две вторичные цепи, отличающийся тем, что он состоит из итеративных этапов, на которых: рассчитывают (E1) разность между напряжениями на клеммах одной из вторичных цепей в данный момент времени и в предшествующий момент времени, рассчитывают (E1)...
Тип: Изобретение
Номер охранного документа: 0002633448
Дата охранного документа: 12.10.2017
19.01.2018
№218.016.0e9d

Способ и инструмент для сборки ступени выпрямления

Изобретение касается способа и инструмента для сборки ступени выпрямления (1), включающего соосные внутреннюю обечайку (6) и наружную обечайку, соединенные радиальными лопатками (8), при этом способ состоит из этапа поддержания пластин (19) с упором на наружную поверхность внутренней обечайки...
Тип: Изобретение
Номер охранного документа: 0002633312
Дата охранного документа: 11.10.2017
20.01.2018
№218.016.0f7b

Ступень турбины турбомашины и турбомашина

Ступень турбины турбомашины содержит неподвижный сопловой направляющий аппарат и колесо турбины. Сопловой направляющий аппарат подвешен на картере и на выходе аксиально удерживается опиранием на разрезное кольцо, установленное в кольцевой выточке рельса картера. Колесо установлено внутри...
Тип: Изобретение
Номер охранного документа: 0002633316
Дата охранного документа: 11.10.2017
20.01.2018
№218.016.10e3

Камера сгорания постоянного объема для авиационного турбинного двигателя, содержащая впускной/выпускной клапан, имеющий сферическую заглушку

Камера сгорания постоянного объема для авиационного турбинного двигателя содержит клапан впуска сжатого газа, выполненный с возможностью принятия открытого положения и закрытого положения, в котором он блокирует впуск сжатого газа в камеру. Камера дополнительно содержит клапан выпуска...
Тип: Изобретение
Номер охранного документа: 0002633743
Дата охранного документа: 17.10.2017
Показаны записи 611-620 из 667.
19.01.2018
№218.016.069d

Способ изготовления металлического элемента усиления лопатки турбомашины

Изобретение относится к области газотурбостроения и может быть использовано при изготовлении металлических элементов усиления, предназначенных для установки на передней или задней кромке композитной лопатки турбомашины. Двум листам придают форму, приближенную к окончательной форме элемента...
Тип: Изобретение
Номер охранного документа: 0002631218
Дата охранного документа: 19.09.2017
19.01.2018
№218.016.07e4

Направляющий аппарат компрессора для турбомашины

Разделенный на сектора направляющий аппарат компрессора турбомашины содержит скрепленные сектора, образующие внешнее и внутреннее концентрические кольца, между которыми размещены лопатки. Внешнее кольцо снаружи снабжено средством крепления с внешним корпусом и содержит боковую стенку,...
Тип: Изобретение
Номер охранного документа: 0002631585
Дата охранного документа: 25.09.2017
19.01.2018
№218.016.08e9

Турбореактивный двигатель, содержащий термоэлектрические генераторы

Турбореактивный двигатель с передним вентилятором содержит по меньшей мере один контур текучей среды и теплообменник воздух/текучая среда, посредством которого упомянутая текучая среда охлаждается воздухом, наружным относительно турбореактивного двигателя, и разделитель потока. Разделитель...
Тип: Изобретение
Номер охранного документа: 0002631847
Дата охранного документа: 26.09.2017
19.01.2018
№218.016.0a20

Устройство для обеспечения уплотнения между коаксиальными валами турбомашины

Настоящее изобретение относится к устройству (20) для обеспечения уплотнения коаксиальных валов турбомашины, содержащему кольцевое уплотнение (23), выполненное с возможностью выполнять уплотнение путем контакта с наружным валом (12), причем упомянутое устройство отличается тем, что оно содержит...
Тип: Изобретение
Номер охранного документа: 0002632066
Дата охранного документа: 02.10.2017
19.01.2018
№218.016.0a4c

Компонент газотурбинного двигателя и способ его изготовления

Компонент газотурбинного двигателя содержит внутренний бандаж, наружный бандаж и направляющие лопатки, выполненные из композиционного материала, имеющего переплетенное волоконное армирование, уплотненное матрицей. Волоконное армирование включает в себя комплект нитей, простирающихся непрерывно...
Тип: Изобретение
Номер охранного документа: 0002632065
Дата охранного документа: 02.10.2017
19.01.2018
№218.016.0b0c

Способ неразрушающего контроля заготовки лопатки

Изобретение относится к автоматизированному способу неразрушающего контроля тканой заготовки, предназначенной для производства части турбомашины и содержащей множество первых маркирующих нитей, пересекающихся со вторыми маркирующими нитями, первые и вторые нити имеют свойства отражения света,...
Тип: Изобретение
Номер охранного документа: 0002632352
Дата охранного документа: 04.10.2017
19.01.2018
№218.016.0b3d

Выпрямитель газотурбинного двигателя с лопатками улучшенного профиля

Изобретение относится к энергетике. Выпрямитель газотурбинного двигателя, содержащий множество лопаток, расположенных вокруг кольца с центром на оси газотурбинного двигателя, при этом каждая лопатка имеет переднюю кромку и проходит между концом ножки и концом головки. Передняя кромка на конце...
Тип: Изобретение
Номер охранного документа: 0002632350
Дата охранного документа: 04.10.2017
19.01.2018
№218.016.0e26

Контроль датчика типа линейного переменного дифференциального трансформатора

Способ контроля LVDT-датчика, включающего в себя две вторичные цепи, отличающийся тем, что он состоит из итеративных этапов, на которых: рассчитывают (E1) разность между напряжениями на клеммах одной из вторичных цепей в данный момент времени и в предшествующий момент времени, рассчитывают (E1)...
Тип: Изобретение
Номер охранного документа: 0002633448
Дата охранного документа: 12.10.2017
19.01.2018
№218.016.0e9d

Способ и инструмент для сборки ступени выпрямления

Изобретение касается способа и инструмента для сборки ступени выпрямления (1), включающего соосные внутреннюю обечайку (6) и наружную обечайку, соединенные радиальными лопатками (8), при этом способ состоит из этапа поддержания пластин (19) с упором на наружную поверхность внутренней обечайки...
Тип: Изобретение
Номер охранного документа: 0002633312
Дата охранного документа: 11.10.2017
20.01.2018
№218.016.0f7b

Ступень турбины турбомашины и турбомашина

Ступень турбины турбомашины содержит неподвижный сопловой направляющий аппарат и колесо турбины. Сопловой направляющий аппарат подвешен на картере и на выходе аксиально удерживается опиранием на разрезное кольцо, установленное в кольцевой выточке рельса картера. Колесо установлено внутри...
Тип: Изобретение
Номер охранного документа: 0002633316
Дата охранного документа: 11.10.2017
+ добавить свой РИД