×
20.02.2014
216.012.a265

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ЧЕРНИЛ НА ОСНОВЕ НАНОЧАСТИЦ ДИОКСИДА ОЛОВА ЛЕГИРОВАННОГО СУРЬМОЙ ДЛЯ МИКРОПЕЧАТИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области неорганической химии, а именно к композиции для получения сенсорных покрытий на основе водных суспензий наночастиц диоксида олова. Согласно изобретению композиция для получения сенсорных покрытий содержит диоксид олова, легированный сурьмой, состава SbSnO, где x=0,1-0,3, и воду в соотношении SbSnO:HO, равном 89-87:11-13 мас.%. Способ получения этой композиции включает гидротермальную обработку гидроксидов олова и сурьмы при 170°C в течение 48 часов. Гидроксиды олова и сурьмы получают растворением металлических Sn и Sb в концентрированной соляной кислоте, 18-20 мас.%, с добавлением 3-5 мас.% конц. HNO. Полученный раствор в 2-3 раза разбавляют дистиллированной водой и приливают рассчитанное количество раствора аммиака. Предложенный способ при низких трудо- и энергозатратах по простой технической схеме позволяет получить наночастицы указанного состава SbSnO с размером 30 нм и площадью поверхности 154 м/г, которые могут быть использованы в качестве основного компонента электропроводящих чернил для печати сенсорных матриц и микроконтактов. 2 н. и 1 з.п. ф-лы, 6 ил., 3 пр.

Область техники, к которой относится изобретение

Изобретение относится к неорганической химии, а именно к способу получения суспензий наночастиц диоксида олова легированного сурьмой SbxSn1-xO2 (x=0.1, 0.2, 0.3) для производства сенсорных проводящих чернил для струйной микропечати.

Преимущество полученного материала заключается, в том, что полученные суспензии представляют собой электропроводящие чернила, которые при «мягком» нанесение могут образовывать наноструктурированные активные покрытия на микроконтактной площадке, что приводит к большей площади сорбции газа-аналита и соответственно большей чувствительности газовых печатных сенсоров.

Уровень техники

На сегодняшний день струйная печать наносуспензиями играет важную роль при создании различных планарных структур. Важной особенностью при формировании наноструктурированных покрытий с заданной топологией является создание подходов по получению жидкофазных коллоидных растворов на основе полупроводниковых частиц. В большинстве случаев эта задача решается обнаружением одного или нескольких синтетических подходов отличающиеся используемыми прекурсорами и условиями проведения синтеза.

В патенте (CN 101209856 Yuhan Lin; Haidong Li; Nana Zhao; Мао Jun; Yandi Fan; Xiangling Ji Method for synthesizing tin oxide nanocrystalline by mould plate method combined with hydrothermal condition) рассматривается способ получения нанокристаллического SnO2, комбинированием темплатного метода с гидротермальной обработкой. Варьируя условия синтеза можно получать наночастицы различной формы (сферы, ленты) и размеров.

Проводящий SnO2 с высоким уровнем чувствительности получают путем допирования гидроксида олова металлами Pd, Pt, Au с последующей гидротермальной обработкой смеси, высушиванием полученного продукта и отжигом (JP2008020411 Tamaoki Jun; Matsushiro Masaru, Manufacturing method for tin oxide gas sensor and tin oxide gas sensor). К сожалению, получение таких композитов на основе SnO2 и благородных металлов требует проведения достаточно длительных пошаговых синтезов. Чернила для струйной печати прозрачных электропроводящих пленок на основе SnO2, содержащих водный щелочной раствор оловянной кислоты, в патенте (JP2005015608 Uchida Takashi; Sato Hajime, Inkjet ink for forming transparent conductive tin oxide film), получают путем растворения оловянной кислоты в растворе щелочи с последующим добавлением в водорастворимый полимер. Отличие патента от предлагаемой нами разработки состоит в принципиально другом способе получения водорастворимых чернил и в легировании диоксида олова сурьмой для улучшения электропроводности. Известены способы получения оксида олова легированного сурьмой путем гидротермальной обработки гидроксидов олова и сурьмы с (JP 62223019 Nishikura Hiroshi; Yamamoto Shin; Terao Yukio, Crystalline tin-antimony oxide sol and production thereof) или путем отжига гидросмеси содержащей соединения олова и сурьмы (US4775412 Nishikura Hiroshi; Yamamoto Shin; Terao Yukio Aqueous sol of crystalline tin oxide solid solution containing antimony, and production thereof), однако они не предусматривают дальнейшую возможность их использования в качестве чернил для струйной микропечати.

Технический результат

При низких трудо- и энергозатратах и простом техническом исполнении получены наночастиц диоксида олова легированного сурьмой состава SbxSn1-xO2 (x=0.1, 0.2, 0.3) с размером ~ 30 нм и площадью поверхности 154 м2/г, что делает их перспективными для использования, в качестве основного компонента в сенсорных и проводящих чернилах для струйной микропечати.

Сущность изобретения Поставленная задача была решена настоящим изобретением. Композиция для получения сенсорных покрытий на основе водных суспензий наночастиц с размером 30 нм SnO2, согласно изобретению содержит диоксид олова легированный сурьмой состава SbxSn1-xO2 (x=0.1-0.3) и воду с соотношением SbxSn1-xO2:H2O (89-87:11-13 масс.%). Поставленная цель достигается также другим изобретением. Способ получения упомянутой композиции, включающий гидротермальную обработку гидроксидов олова и сурьмы при температуре 170°C в течение 48 часов.

Гидроксиды олова и сурьмы могут быть получены растворением металлических Sn и Sb в концентрированной соляной кислоте (18-20 масс.%) с добавлением (3-5 масс %) конц. HNO3 и полученный раствор разбавляют дистиллированной водой в 2-3 раза и приливают рассчитанное количество раствора аммиака.

Детальные описания способа получения

Наночастицы диоксида олова, легированного сурьмой состава SbxSn1-xO2, где х=0.1-0.3, синтезировали гидротермальной обработкой соосажденных гидратированных оксидов олова и сурьмы. Гидротермальную обработку производили следующим образом: садок переносили в тефлоновый сосуд, помещаемый в стальной автоклав, и заполняли водой приблизительно на 80% объема. Автоклав выдерживали при 170°C в течение 48 часов, охлаждали и затем извлекали полученную серо-голубую суспензию.

Для подтверждения физико-химических свойств полученной суспензии проводили ее криохимическое высушивание в сублиматоре Labconco Freezone 6 при давлении ~20·мбар, для чего исходные образцы разбавлялись в 10 раз и распылялись через форсунку в жидкий азот. Замороженные криогранулы переносились в сублиматор. Сушку продолжали в течение 2-3 суток при постепенном повышении температуры от -40°C до +40°C. Отжиг высушенных при комнатной температуре образцов ксерогелей проводили в трубчатой печи (Nabertherm) в интервале температур 300-700°C в течение 10-15 часов.

Анализ фазового состава образцов SbxSn1-xO2 (x=0.1, 0.2 и 0.3), полученных после криохимической сушки и отжига при 700°C в течение 15 часов, показывает, что они обладают рентгенограммами, характерными для твердых растворов со структурой рутила, и не содержат заметного количества примесей. (Рис.1). Увеличение степени замещения олова сурьмой не приводит к существенному изменению параметров кристаллической решетки, что связано с несущественным различием ионных радиусов Sn4+ и Sb5+ в четырехкоординированном окружении.

Наличие легирования диоксида олова оксидом сурьмы подтверждается характерной серо - голубой окраской суспензии непосредственно после гидротермальной обработки, которая сохраняется и после отжига.

Ожидаемый элементный состав ксерогеля подтверждался методом РСМА, в частности, для общего состава Sb0.1Sn0.9O2 он может быть оценен как Sb0.09(2)Sn0.94(5)O2.01(2), что, несомненно, демонстрирует отличное соответствие. Сильно уширенные дифракционные пики твердого раствора наблюдаются даже в исходных образцах, полученных после криохимической сушки без дополнительного отжига. Это свидетельствует о том, что образование твердого раствора происходит уже при гидротермальной обработке.

Типичная микрофотография криохимически высушенной суспензии представлена на рис.2. В суспензии присутствуют две фракции - ультрадисперсные частицы, а также их гелеобразные агломераты. Существование двух фракций в суспензии подтверждается и данными динамического светорассеяния. На рис.3 отчетливо видно существование двух пиков на кривой распределения при ~30 нм и ~150 нм. Оценка удельной площади поверхности, как одного из важных факторов, определяющих дисперсность полученных частиц и возможности их практического использования, дает значение ~154 м2/г, для образца «Sb0.1Sn0.9O2». Подобная величина вполне коррелирует с обнаруженными микроструктурыми особенностями и кривой распределения частиц по размерам.

Сенсорные свойства ксерогеля измеряли в диапазоне температур 100-200°C при периодическом введении 0.8 миллионных долей NO2 в поток инертного газа-носителя. Электрическую проводимость полученных частиц SbxSn1-xO2 (x=0.1-0.3) тестировали с помощью двухконтактного метода. Для этого суспензию наносили на стеклянную подложку, высушивали в сушильном шкафу при ~100°C, после чего проверяли проводимость нанесенной пленки. Полученные образцы обладали электрическим сопротивлением на уровне всего 10-100 Ом при расстоянии между измерительными электродами ~1 мм и толщине пленки ~100-500 нм.

Изобретение иллюстрируется следующими рисунками и примерами.

Рис.1. Дифрактограмма образца «SbxSn1-xO2, где x=0.1» после отжига при температуре 700°C

Рис.2. Данные РЭМ для криохимически высушенной суспензии SbxSn1-xO2, где x=0.1, состоящей из ультрадисперсных частиц, а также их гелеобразных агломератов

Рис.3. Распределение частиц по размерам для образца SbxSn1-xO2, где х=0.2, полученное методом динамического светорассеяния.

Рис.4. Результаты измерений проводимости образца SbxSn1-xO2, где x=0.1 при различных температурах при наличии NO2 в газовой атмосфере.

Рис.5. Кривые потери массы для образцов SbxSn1-xO2, x=0.1 - а) и 0.3 - б).

Рис.6. Микроструктура, напечатанная суспензией наночастиц SbxSn1-xO2 на кремниевой подложке с помощью стандартного струйного принтера.

Пример 1. Гидроксиды олова и сурьмы получали из хлоридов олова (IV) и сурьмы (V), которые синтезировались путем растворения металлических Sn и Sb в конц. HCl (18 масс.%) с добавлением конц. HNO3 (3 масс.%). К полученному раствору разбавленному водой в 2-3 раза приливали аммиак до нейтрализации. Образовавшийся рыхлый белый осадок гидроксидов олова и сурьмы многократно промывают дистиллированной водой до отрицательной реакции на Cl- и NH4+. Ксерогель, полученный гидротермальной обработкой гидроксидов, обладает заметным сенсорным сигналом (рис.4.) в отношении оксидов азота и достигает значений R0/Rg=30-40 при температурах от 100 до 150°C, где Ro - сопротивление в чистом воздухе, Rg - сопротивление в атмосфере NO2.

Пример 2. Чернила состава SbxSn1-xO2, где х=0.1-0.3, полученные гидротермальной обработкой, характеризуются наличием воды, после проведения криохимической сушки по данным ТГА потеря массы происходит в две стадии - первая заканчивается около 100°C (~6 масс.% от исходной навески), а вторая длится от 200°C вплоть до высоких температур (дополнительно ~6 масс.%) (рис.5а, б). Состав чернил можно записать как SbxSn1-xO2*H2О, где соотношения между SbxSn1-xO2:H2O составляют (89-87:11-13 масс.%).

Пример 3.

Микропечать планарных структур на легированной кремниевой подложке в виде двух параллельных стрелок толщиной около 200 нм (рис.6) осуществлялась с использованием стандартного струйного принтера (Epson) с набором дополнительных пустых картриджей, в которые помещали полученные гидротермальным методом суспензии SbxSn1-xO2, х=0.1-0.3.

Материал, предложенный в настоящем изобретении, представляет большой интерес для использования в качестве основного компонента электропроводящих «чернил» для струйной микропечати различных объектов путем контролируемого распределения микропорций суспензии, например, для печати сенсорных матриц или микроконтактов.


СПОСОБ ПОЛУЧЕНИЯ ЧЕРНИЛ НА ОСНОВЕ НАНОЧАСТИЦ ДИОКСИДА ОЛОВА ЛЕГИРОВАННОГО СУРЬМОЙ ДЛЯ МИКРОПЕЧАТИ
СПОСОБ ПОЛУЧЕНИЯ ЧЕРНИЛ НА ОСНОВЕ НАНОЧАСТИЦ ДИОКСИДА ОЛОВА ЛЕГИРОВАННОГО СУРЬМОЙ ДЛЯ МИКРОПЕЧАТИ
СПОСОБ ПОЛУЧЕНИЯ ЧЕРНИЛ НА ОСНОВЕ НАНОЧАСТИЦ ДИОКСИДА ОЛОВА ЛЕГИРОВАННОГО СУРЬМОЙ ДЛЯ МИКРОПЕЧАТИ
СПОСОБ ПОЛУЧЕНИЯ ЧЕРНИЛ НА ОСНОВЕ НАНОЧАСТИЦ ДИОКСИДА ОЛОВА ЛЕГИРОВАННОГО СУРЬМОЙ ДЛЯ МИКРОПЕЧАТИ
СПОСОБ ПОЛУЧЕНИЯ ЧЕРНИЛ НА ОСНОВЕ НАНОЧАСТИЦ ДИОКСИДА ОЛОВА ЛЕГИРОВАННОГО СУРЬМОЙ ДЛЯ МИКРОПЕЧАТИ
СПОСОБ ПОЛУЧЕНИЯ ЧЕРНИЛ НА ОСНОВЕ НАНОЧАСТИЦ ДИОКСИДА ОЛОВА ЛЕГИРОВАННОГО СУРЬМОЙ ДЛЯ МИКРОПЕЧАТИ
Источник поступления информации: Роспатент

Показаны записи 11-20 из 30.
10.04.2015
№216.013.3ab6

Способ анализа мембраносвязанного гемоглобина в эритроцитах с помощью спектроскопии гигантского комбинационного рассеивания на наноструктурированных покрытиях

Изобретение относится к области медицинской диагностики и биоаналитических исследований и может быть использовано для анализа мембраносвязанного гемоглобина в эритроцитах с помощью спектроскопии гигантского комбинационного рассеивания (ГКР). Для этого используют наноструктурированные покрытия в...
Тип: Изобретение
Номер охранного документа: 0002546518
Дата охранного документа: 10.04.2015
20.05.2015
№216.013.4b9d

Штамп для морфологической модификации полимеров, способ его получения и способ формирования супергидрофильных и супергидрофобных самоочищающихся покрытий с его использованием

Изобретение относится к области нанотехнологий и касается штампа для морфологической модификации полимеров, способа его получения и способа формирования супергидрофильных и супергидрофобных самоочищающихся покрытий с его использованием. Штамп представляет собой пленку пористого анодного оксида...
Тип: Изобретение
Номер охранного документа: 0002550871
Дата охранного документа: 20.05.2015
10.07.2015
№216.013.5b67

Способ получения гибридного материала (варианты) для перезаряжаемых химических источников тока

Изобретение относится к катодному органо-неорганическому гибридному материалу для вторичных литий-ионных источников тока состава (CHN)*xVO*yHO, где х=0.10-0.12, y=0.7-0.9 в виде наносвитков длиной от 100 до 500 нм и диаметром от 10 до 20 нм с площадью поверхности 60 м/г и диаметром пор 20-30...
Тип: Изобретение
Номер охранного документа: 0002554940
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5d11

Способ получения анодного оксида алюминия с высокоупорядоченной пористой структурой и способ формирования массивов анизотропных наноструктур на его основе

Изобретение относится к способу получения пористой пленки с высокоупорядоченной системой пор, образующих строгую гексагональную решетку, а также к способу формирования высокоупорядоченных массивов анизотропных структур. В качестве исходного материала для осуществления способа получения пористой...
Тип: Изобретение
Номер охранного документа: 0002555366
Дата охранного документа: 10.07.2015
20.01.2016
№216.013.a0c7

Химически модифицированный планарный оптический сенсор, способ его изготовления и способ анализа полиароматических гетероциклических серосодержащих соединений с его помощью

Группа изобретений относится к области аналитических исследований и может быть использована в нефтехимической промышленности для качественного и количественного обнаружения полиароматических гетероциклических серосодержащих соединений в нефтепродуктах. Химически модифицированный планарный...
Тип: Изобретение
Номер охранного документа: 0002572801
Дата охранного документа: 20.01.2016
27.03.2016
№216.014.c859

Литий-воздушный аккумулятор и способ его изготовления

Изобретение относится к области электротехники, а именно к литий-воздушному аккумулятору и способу его изготовления, и может быть использовано для электропитания различного оборудования. Сущность изобретения заключается в том, что литий-воздушный аккумулятор заполнен неводным литий-проводящим...
Тип: Изобретение
Номер охранного документа: 0002578196
Дата охранного документа: 27.03.2016
10.04.2016
№216.015.2c3b

Электрод для источника электрического тока и способ его получения

Изобретение относится к области производства литий-ионных источников тока, в частности к способу с получения стержневидных кристаллов оксида ванадия, способу получения из них электрода, а также к электроду, содержащему в своем составе стержневидные кристаллы оксида длиной 1-1000 мкм и...
Тип: Изобретение
Номер охранного документа: 0002579445
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2cc7

Анодный материал с покрытием и аккумулятор с металлическим анодом

Изобретение относится к анодному материалу с покрытием и к аккумулятору с металлическим анодом с покрытием. Техническим результатом изобретения является увеличение емкости и количества циклов перезарядки аккумулятора. Анодный материал содержит металлический литий, на поверхность которого...
Тип: Изобретение
Номер охранного документа: 0002579357
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2dd1

Электролит для вторичного аккумулятора и аккумулятор с металлическим анодом

Изобретение относится к жидкому электролиту для вторичного аккумулятора, включающему смесь двух солей, растворенных в органическом растворителе. При этом первая соль содержит катион металла, совпадающий с материалом анода, и анион, выбранный из группы: , TFSI, BOB, , I, Br, , , а вторая...
Тип: Изобретение
Номер охранного документа: 0002579145
Дата охранного документа: 10.04.2016
27.05.2016
№216.015.427d

Способ анализа цитохрома с в интактных митохондриях с помощью спектроскопии гигантского комбинационного рассеивания на наноструктурированных покрытиях

Настоящее изобретение относится к области биоаналитических исследований и представляет собой способ анализа цитохрома С в интактных митохондриях с помощью спектроскопии гигантского комбинационного рассеяния (ГКР), включающий подготовку митохондрий и их нанесение на подложку на основе...
Тип: Изобретение
Номер охранного документа: 0002585118
Дата охранного документа: 27.05.2016
Показаны записи 11-20 из 57.
10.04.2015
№216.013.3ab6

Способ анализа мембраносвязанного гемоглобина в эритроцитах с помощью спектроскопии гигантского комбинационного рассеивания на наноструктурированных покрытиях

Изобретение относится к области медицинской диагностики и биоаналитических исследований и может быть использовано для анализа мембраносвязанного гемоглобина в эритроцитах с помощью спектроскопии гигантского комбинационного рассеивания (ГКР). Для этого используют наноструктурированные покрытия в...
Тип: Изобретение
Номер охранного документа: 0002546518
Дата охранного документа: 10.04.2015
20.05.2015
№216.013.4b9d

Штамп для морфологической модификации полимеров, способ его получения и способ формирования супергидрофильных и супергидрофобных самоочищающихся покрытий с его использованием

Изобретение относится к области нанотехнологий и касается штампа для морфологической модификации полимеров, способа его получения и способа формирования супергидрофильных и супергидрофобных самоочищающихся покрытий с его использованием. Штамп представляет собой пленку пористого анодного оксида...
Тип: Изобретение
Номер охранного документа: 0002550871
Дата охранного документа: 20.05.2015
10.07.2015
№216.013.5b67

Способ получения гибридного материала (варианты) для перезаряжаемых химических источников тока

Изобретение относится к катодному органо-неорганическому гибридному материалу для вторичных литий-ионных источников тока состава (CHN)*xVO*yHO, где х=0.10-0.12, y=0.7-0.9 в виде наносвитков длиной от 100 до 500 нм и диаметром от 10 до 20 нм с площадью поверхности 60 м/г и диаметром пор 20-30...
Тип: Изобретение
Номер охранного документа: 0002554940
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5d11

Способ получения анодного оксида алюминия с высокоупорядоченной пористой структурой и способ формирования массивов анизотропных наноструктур на его основе

Изобретение относится к способу получения пористой пленки с высокоупорядоченной системой пор, образующих строгую гексагональную решетку, а также к способу формирования высокоупорядоченных массивов анизотропных структур. В качестве исходного материала для осуществления способа получения пористой...
Тип: Изобретение
Номер охранного документа: 0002555366
Дата охранного документа: 10.07.2015
20.01.2016
№216.013.a0c7

Химически модифицированный планарный оптический сенсор, способ его изготовления и способ анализа полиароматических гетероциклических серосодержащих соединений с его помощью

Группа изобретений относится к области аналитических исследований и может быть использована в нефтехимической промышленности для качественного и количественного обнаружения полиароматических гетероциклических серосодержащих соединений в нефтепродуктах. Химически модифицированный планарный...
Тип: Изобретение
Номер охранного документа: 0002572801
Дата охранного документа: 20.01.2016
27.03.2016
№216.014.c859

Литий-воздушный аккумулятор и способ его изготовления

Изобретение относится к области электротехники, а именно к литий-воздушному аккумулятору и способу его изготовления, и может быть использовано для электропитания различного оборудования. Сущность изобретения заключается в том, что литий-воздушный аккумулятор заполнен неводным литий-проводящим...
Тип: Изобретение
Номер охранного документа: 0002578196
Дата охранного документа: 27.03.2016
10.04.2016
№216.015.2c3b

Электрод для источника электрического тока и способ его получения

Изобретение относится к области производства литий-ионных источников тока, в частности к способу с получения стержневидных кристаллов оксида ванадия, способу получения из них электрода, а также к электроду, содержащему в своем составе стержневидные кристаллы оксида длиной 1-1000 мкм и...
Тип: Изобретение
Номер охранного документа: 0002579445
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2cc7

Анодный материал с покрытием и аккумулятор с металлическим анодом

Изобретение относится к анодному материалу с покрытием и к аккумулятору с металлическим анодом с покрытием. Техническим результатом изобретения является увеличение емкости и количества циклов перезарядки аккумулятора. Анодный материал содержит металлический литий, на поверхность которого...
Тип: Изобретение
Номер охранного документа: 0002579357
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2dd1

Электролит для вторичного аккумулятора и аккумулятор с металлическим анодом

Изобретение относится к жидкому электролиту для вторичного аккумулятора, включающему смесь двух солей, растворенных в органическом растворителе. При этом первая соль содержит катион металла, совпадающий с материалом анода, и анион, выбранный из группы: , TFSI, BOB, , I, Br, , , а вторая...
Тип: Изобретение
Номер охранного документа: 0002579145
Дата охранного документа: 10.04.2016
27.05.2016
№216.015.427d

Способ анализа цитохрома с в интактных митохондриях с помощью спектроскопии гигантского комбинационного рассеивания на наноструктурированных покрытиях

Настоящее изобретение относится к области биоаналитических исследований и представляет собой способ анализа цитохрома С в интактных митохондриях с помощью спектроскопии гигантского комбинационного рассеяния (ГКР), включающий подготовку митохондрий и их нанесение на подложку на основе...
Тип: Изобретение
Номер охранного документа: 0002585118
Дата охранного документа: 27.05.2016
+ добавить свой РИД