×
10.02.2014
216.012.9fd3

Результат интеллектуальной деятельности: СПОСОБ ПОИСКА НЕИСПРАВНОГО БЛОКА В ДИСКРЕТНОЙ ДИНАМИЧЕСКОЙ СИСТЕМЕ

Вид РИД

Изобретение

Аннотация: Областью применения является область контроля и диагностирования систем автоматического управления и их элементов. Технический результат - расширение функциональных возможностей способа путем применения рабочего диагностирования (без использования тестового воздействия), увеличение помехоустойчивости способа диагностирования дискретных систем автоматического управления путем улучшения различимости дефектов и уменьшение аппаратных затрат на вычисление весовой функции. Достигается тем, что предварительно регистрируют реакцию заведомо исправной дискретной во времени системы для дискретных тактов диагностирования с дискретным постоянным шагом на интервале наблюдения в контрольных точках и определяют интегральные оценки выходных сигналов дискретной системы, для чего в момент подачи тестового или рабочего сигнала на вход дискретной системы с номинальными характеристиками одновременно начинают дискретное интегрирование сигналов системы управления с шагом в каждой из контрольных точек с весовой функцией, равной среднему арифметическому значению модулей производных ее сигналов в контрольных точках, где усреднение производится по числу контрольных точек. Для этого на первые входы блоков перемножения подают сигналы системы, на вторые входы блоков перемножения подают среднее арифметическое значение модулей производных по времени сигналов, выходные сигналы блоков перемножения подают на входы блоков дискретного интегрирования с шагом, дискретное интегрирование завершают в момент времени, полученные в результате интегрирования оценки выходных сигналов регистрируют, фиксируют число рассматриваемых одиночных дефектов блоков, определяют интегральные оценки сигналов модели для каждой из контрольных точек, полученных в результате пробных отклонений для одиночных дефектов блоков, для чего поочередно в каждый блок дискретной динамической системы вводят пробное отклонение параметра дискретной передаточной функции и находят интегральные оценки выходных сигналов систем с пробными отклонениями при том же тестовом или рабочем сигнале, полученные в результате дискретного интегрирования оценки выходных сигналов для каждой из контрольных точек и каждого из пробных отклонений регистрируют, определяют отклонения интегральных оценок сигналов дискретной модели, полученных в результате пробных отклонений параметров разных структурных блоков, определяют нормированные значения отклонений интегральных оценок сигналов дискретной модели, полученных в результате пробных отклонений для одиночных дефектов, в момент начала контроля на вход контролируемой системы подают аналогичный тестовый или рабочий сигнал, определяют интегральные оценки сигналов контролируемой дискретной системы для контрольных точек, полученные значения регистрируют, определяют отклонения интегральных оценок сигналов контролируемой дискретной системы для контрольных точек от номинальных значений, определяют нормированные значения отклонений интегральных оценок сигналов контролируемой дискретной системы, определяют диагностические признаки, по минимуму значения диагностического признака определяют порядковый номер дефектного блока. 1 ил.
Основные результаты: 1. Способ поиска неисправного блока в дискретной динамической системе, основанный на том, что фиксируют число k контрольных точек системы, фиксируют число m динамических элементов, входящих в состав системы, определяют время контроля Т>Т, используют входной сигнал x(t) на интервале t∈[0, T], регистрируют реакцию объекта диагностирования и реакцию заведомо исправной системы F(t), j=1,…,k для N дискретных тактов диагностирования с дискретным постоянным шагом T на интервале наблюдения [0, T] (где T=T·N) в k контрольных точках, фиксируют число различных пробных отклонений m, определяют интегральные оценки сигналов модели для каждой из k контрольных точек, полученных в результате пробных отклонений для m одиночных дефектов блоков, для чего поочередно в каждый блок дискретной динамической системы вводят пробное отклонение параметра дискретной передаточной функции и находят интегральные оценки выходных сигналов системы для входного сигнала x(t), полученные в результате дискретного интегрирования оценки выходных сигналов для каждой из k контрольных точек и каждого из m пробных отклонений регистрируют, определяют отклонения интегральных оценок сигналов дискретной модели, полученные в результате пробных отклонений параметров, определяют нормированные значения отклонений интегральных оценок сигналов дискретной модели, полученные в результате пробных отклонений параметров, определяют отклонения интегральных оценок сигналов контролируемой дискретной системы для k контрольных точек от номинальных значений, вычисляют нормированные значения отклонений интегральных оценок сигналов контролируемой дискретной системы, по минимуму диагностического признака определяют дефектный блок дискретной системы, отличающийся тем, что одновременно подают тестовый или рабочий сигнал x(t) на вход системы с номинальными характеристиками, на вход контролируемой системы, на входы m моделей с номинальными характеристиками, в каждую из которых введены пробные отклонения параметров одного блока так, что в i-ю систему вводят пробные отклонения в i-й блок, в качестве динамических характеристик системы используют интегральные оценки, полученные для весовой функции, равной среднему арифметическому модулей производных по времени от выходных сигналов системы в различных контрольных точках, из соотношения , определяют интегральные оценки выходных сигналов F(d), j=1,…,k системы с номинальными характеристиками, для чего в момент подачи тестового или рабочего сигнала на вход системы с номинальными характеристиками одновременно начинают интегрирование сигналов системы в каждой из k контрольных точек для весовой функции, путем подачи на первые входы k блоков перемножения сигналов системы на вторые входы блоков перемножения подают среднее арифметическое модулей производных по времени от выходных сигналов системы с номинальными характеристиками, выходные сигналы k блоков перемножения подают на входы k блоков интегрирования, интегрирование завершают в момент времени Т, полученные в результате интегрирования оценки выходных сигналов F(d), j=1,…,k регистрируют, аналогично определяют интегральные оценки сигналов m моделей для каждой из k контрольных точек, полученные в результате пробных отклонений параметров каждого из m блоков, полученные в результате интегрирования оценки выходных сигналов для каждой из k контрольных точек, каждого из m пробных отклонений P(d), j=1,…,k; i=1,…,m регистрируют, определяют отклонения интегральных оценок сигналов дискретной модели, полученные в результате пробных отклонений параметров одного структурного блока ΔP(d)=P(d)-F(d), j=1,…,k; i=1…,m., определяют нормированные значения отклонений интегральных оценок сигналов дискретной модели, полученные в результате пробных отклонений параметров одного блока по формуле определяют отклонения интегральных оценок сигналов контролируемой дискретной системы для k контрольных точек от номинальных значений ΔF(d)=F(d)-F(d), j=1,…,k.вычисляют нормированные значения отклонений интегральных оценок сигналов контролируемой дискретной системы по формуле: . аналогично определяют интегральные оценки сигналов m моделей для каждой из k контрольных точек, полученные в результате пробных отклонений параметров каждого из m блоков, полученные нормированные значения интегральных оценок сигналов используют для вычисления диагностических признаков , i=1,…,m.

Изобретение относится к области контроля и диагностирования систем автоматического управления и их элементов.

Известен способ поиска неисправного блока в динамической системе (Патент на изобретение №2451319 от 20.05.2012 по заявке №2011129533/08(043690), МКИ 6 G05B 23/02, 2011).

Недостатком этого способа является то, что он обеспечивает определение дефектов только в непрерывной динамической системе.

Наиболее близким техническим решением (прототипом) является способ поиска неисправного блока в дискретной динамической системе (Патент на изобретение №2444774 от 10.03.2012 по заявке №2011101271/08(001575), MKH 6G05B 23/02, 2011).

Недостатком этого способа является то, что он предполагает интегрирование специальных тестовых сигналов с использованием экспоненциальной весовой функции и обеспечивает определение дефектов с невысокой различимостью, то есть обладает невысокой помехоустойчивостью.

Технической задачей, на решение которой направлено данное изобретение, является расширение функциональных возможностей способа путем применения рабочего диагностирования (без использования тестового воздействия), увеличение помехоустойчивости способа диагностирования дискретных систем автоматического управления путем улучшения различимости дефектов и уменьшение аппаратных затрат на вычисление весовой функции. Это достигается с помощью замены экспоненциальной весовой функции функцией, являющейся средним арифметическим модулей производных по времени сигналов системы с номинальными характеристиками контролируемой системы и моделей с пробными отклонениями.

Поставленная задача достигается тем, что предварительно регистрируют реакцию заведомо исправной дискретной во времени системы fjном(t),j=1,…,k для N дискретных тактов диагностирования t∈[1, N] с дискретным постоянным шагом Ts на интервале наблюдения [0,Tk] (где Тk=Ts·N) в k контрольных точках, и определяют интегральные оценки выходных сигналов , j=1,…,k дискретной системы, для чего в момент подачи тестового или рабочего сигнала на вход дискретной системы с номинальными характеристиками одновременно начинают дискретное интегрирование сигналов системы управления с шагом Ts секунд в каждой из k контрольных точек с весовой функцией, равной среднему арифметическому значению модулей производных ее сигналов в контрольных точках, где усреднение производится по числу контрольных точек k. Для этого на первые входы k блоков перемножения подают сигналы системы, на вторые входы блоков перемножения подают среднее арифметическое значение модулей производных по времени сигналов, выходные сигналы k блоков перемножения подают на входы k блоков дискретного интегрирования с шагом Ts секунд, дискретное интегрирование завершают в момент времени Тk, полученные в результате интегрирования оценки выходных сигналов fjном(d), j=1,…,k регистрируют, фиксируют число m рассматриваемых одиночных дефектов блоков, определяют интегральные оценки сигналов модели для каждой из k контрольных точек, полученных в результате пробных отклонений для m одиночных дефектов блоков, для чего поочередно в каждый блок дискретной динамической системы вводят пробное отклонение параметра дискретной передаточной функции и находят интегральные оценки выходных сигналов систем с пробными отклонениями при том же тестовом или рабочем сигнале x(t), полученные в результате дискретного интегрирования оценки выходных сигналов для каждой из k контрольных точек и каждого из m пробных отклонений , j=1,…,k; i=1,…,m регистрируют, определяют отклонения интегральных оценок сигналов дискретной модели, полученных в результате пробных отклонений параметров разных структурных блоков ΔPji(d)=Pji(d)-Fjнорм(d), j=1,…,k; i=1,…,m, определяют нормированные значения отклонений интегральных оценок сигналов дискретной модели, полученных в результате пробных отклонений для одиночных дефектов из соотношения

в момент начала контроля t=1 на вход контролируемой системы подают аналогичный тестовый или рабочий сигнал x(t), определяют интегральные оценки сигналов контролируемой дискретной системы для k контрольных точек Fj(d), j=1,…,k, полученные значения регистрируют, определяют отклонения интегральных оценок сигналов контролируемой дискретной системы для, k контрольных точек от номинальных значений ΔFj(d)=Fj(d)-Fjном(d), j=1,…,k определяют нормированные значения отклонений интегральных оценок сигналов контролируемой дискретной системы из соотношения

определяют диагностические признаки из соотношения

по минимуму значения диагностического признака определяют порядковый номер дефектного блока.

Сущность предлагаемого способа заключается в следующем.

Способ основан на использовании пробных отклонений параметров модели дискретной динамической системы. Для получения диагностических признаков динамических элементов используются интегральные оценки на временном интервале Tk в k контрольных точках

Весовая функция в формуле (4) в виде среднего значения модулей производных сигналов в контрольных точках несет информацию о важности момента времени с точки зрения скорости изменения сигналов во всех контрольных точках. Чем больше средняя скорость изменения сигналов, тем с большим весом интегрируется выходной сигнал.

Используя векторную интерпретацию выражения (3), запишем его в следующем виде

где φi(d) - угол между нормированным вектором (вектором единичной длины) отклонений интегральных оценок сигналов дискретного объекта и нормированным вектором (единичной длины) отклонений интегральных оценок сигналов дискретной модели полученных в результате пробного отклонения i-ого параметра соответствующего структурного блока.

Таким образом, нормированный диагностический признак (3) представляет собой значение квадрата синуса угла, образованного в k-мерном пространстве (где k - число контрольных точек) нормированными векторами интегральных оценок пробных отклонений сигналов дискретной модели и отклонений интегральных оценок сигналов дискретного объекта диагностирования.

Пробное отклонение параметра соответствующего структурного блока, минимизирующее значение диагностического признака (3), указывает на наличие дефекта блока. Область возможных значений диагностического признака лежит в интервале [0, 1].

Таким образом, предлагаемый способ поиска неисправного блока сводится к выполнению следующих операций:

1. В качестве дискретной динамической системы рассматривают систему, например с дискретной интерполяцией нулевого порядка, с шагом дискретизации Ts, состоящую из произвольно соединенных динамических блоков, с количеством рассматриваемых одиночных дефектов блоков m.

2. Предварительно определяют время контроля ТКПП, где

ТПП время переходного процесса дискретной системы. Время переходного процесса оценивают для номинальных значений параметров динамической системы.

3. Фиксируют число контрольных точек k.

4. Одновременно подают входной сигнал x(t) (единичный ступенчатый, линейно возрастающий, прямоугольный импульсный и т.д.) на вход системы управления с номинальными характеристиками, на вход контролируемой системы, на входы m моделей с номинальными параметрами, в каждую из которых введены пробные отклонения параметров одного блока так, что в i-ю систему введены пробные отклонения в i-й блок. Принципиальных ограничений на вид входного воздействия предлагаемый способ не предусматривает.

5. Одновременно регистрируют реакцию системы fjнорм(t), j=1,…,k на интервале t∈[1,N] с дискретным шагом Ts секунд на интервале наблюдения [0, Tk] (где Тk=Ts·N) в k контрольных точках и определяют дискретные интегральные оценки выходных сигналов , j=1,…,k системы с номинальными характеристиками, контролируемой системы Fj(d), j=1,…,k моделей с пробными отклонениями в i-м блоке Pji(d), j=1,…,k; i=1,…,m (формула 4). Для этого в момент подачи входного сигнала одновременно начинают дискретное интегрирование сигналов системы управления с шагом Ts секунд в каждой из k контрольных точек системы с номинальными характеристиками, контролируемой системы, моделей с пробными отклонениями параметров блоков с весовой функцией, равной среднему арифметическому значению модулей производных сигналов в контрольных точках, где усреднение производится по числу контрольных точек, для чего выходные сигналы каждой системы подают на первые входы k блоков перемножения, на вторые входы блоков перемножения подают среднее арифметическое значение модулей производных сигналов системы в контрольных точках, где усреднение производится по числу контрольных точек выходных сигналов системы, выходные сигналы k блоков- перемножения подают на входы k блоков дискретного интегрирования с шагом Ts секунд, дискретное интегрирование завершают в момент времени Тk, полученные в результате дискретного интегрирования с шагом Ts секунд оценки выходных сигналов Fjном(d) , j=1,…,k, Fj(d), j=1,…,k, Pji(d), j=1,…,k; i=1,…,m регистрируют.

6. Определяют отклонения интегральных оценок сигналов дискретной модели, полученные в результате пробных отклонений параметров одного структурного блока ΔPji(d)=Pji(d)-Fjном(d), j=1,…,k; i=1…,m.

7. Определяют нормированные значения отклонений интегральных оценок сигналов дискретной модели, полученные в результате пробных отклонений параметров одного блока по формуле:

8. Определяют отклонения интегральных оценок сигналов контролируемой дискретной системы для k контрольных точек от номинальных значений ΔFj(d)=Fj(d)-Fjном(d), j=1,…,k,

9. Вычисляют нормированные значения отклонений интегральных оценок сигналов контролируемой дискретной системы по формуле:

10. Вычисляют диагностические признаки наличия неисправного структурного блока по формуле (3).

11. По минимуму значения диагностического признака определяют дефектный блок.

Рассмотрим реализацию предлагаемого способа поиска дефекта для дискретной системы, структурная схема которой представлена на фиг.1.

Дискретные передаточные функции блоков:

; ,

где номинальные значения параметров: k1=5; Z1=0.98; k2=0.09516; Q2=0.9048; k3=0.0198; Q3=0.9802.

При моделировании в качестве входного сигнала будем использовать псевдослучайный сигнал (при моделировании использовался блок Band-Limited White Noise в среде Matlab). Время контроля выберем Тk равным 10 с.

Величину пробных отклонений параметров модели выбираем равной 10%.

Моделирование процессов поиска дефектов в блоке 1 (в виде уменьшения параметра k1 на 20%) приводит к вычислению диагностических признаков по формуле (3): J1=0, J2=0.184, J3=0.2361.

Различимость дефекта: ΔJ2-J1=0.184.

Для сравнения приведем диагностические признаки наличия неисправного блока с использованием экспоненциального веса при одном параметре интегрирования α=0.5 (Патент на изобретение №2444774 от 10.03.2012 по заявке №2011101271/08(001575), МКИ6 G05В 23/02, 2011):

J1=0, J2=0.3587, J3=0.1605. Различимость дефекта

ΔJ=J3-J1=0.1605.

Приведенные результаты показывают, что фактическая различимость нахождения дефектов этим способом выше, следовательно, выше будет и помехоустойчивость способа.

Моделирование процессов поиска дефектов в блоке 2 (в виде уменьшения параметра k2 на 20%) для данного объекта диагностирования с использованием дифференциального веса и при таком же входном сигнале дает следующие значения диагностических признаков:

J1=0.173, J2=0, J3=0.6335.

Различимость дефекта: ΔJ=J1-J2=0.173.

Для сравнения приведем диагностические признаки наличия неисправного блока с использованием экспоненциального веса при одном

параметре интегрирования α=0.5: J1=0.3557, J2=0, J3=0.6732.

Различимость дефекта: ΔJ=J1-J2=0.3557.

Моделирование процессов поиска дефектов в блоке 3 (в виде уменьшения параметра k3 на 20%) для данного объекта диагностирования при тех же состояниях дает следующие значения:

J1=0.2457, J2=0.6634, J3=0.

Различимость дефекта: ΔJ=J1-J3=0.2457.

Для сравнения приведем диагностические признаки наличия неисправного блока при одном параметре интегрирования α=0.5:

J1=0.1652, J2,=0.668, J3=o.

Различимость дефекта ΔJ=J1-J3=0.1652.

Минимальное значение диагностического признака во всех случаях правильно указывает на дефектный блок, а данный способ в двух случаях из трех улучшает фактическую различимость дефектов, следовательно, увеличивает помехоустойчивость диагностирования. Кроме того, заявляемый способ позволяет осуществлять диагностирование в условиях реального функционирования объекта диагностирования (рабочее диагностирование).

1. Способ поиска неисправного блока в дискретной динамической системе, основанный на том, что фиксируют число k контрольных точек системы, фиксируют число m динамических элементов, входящих в состав системы, определяют время контроля Т>Т, используют входной сигнал x(t) на интервале t∈[0, T], регистрируют реакцию объекта диагностирования и реакцию заведомо исправной системы F(t), j=1,…,k для N дискретных тактов диагностирования с дискретным постоянным шагом T на интервале наблюдения [0, T] (где T=T·N) в k контрольных точках, фиксируют число различных пробных отклонений m, определяют интегральные оценки сигналов модели для каждой из k контрольных точек, полученных в результате пробных отклонений для m одиночных дефектов блоков, для чего поочередно в каждый блок дискретной динамической системы вводят пробное отклонение параметра дискретной передаточной функции и находят интегральные оценки выходных сигналов системы для входного сигнала x(t), полученные в результате дискретного интегрирования оценки выходных сигналов для каждой из k контрольных точек и каждого из m пробных отклонений регистрируют, определяют отклонения интегральных оценок сигналов дискретной модели, полученные в результате пробных отклонений параметров, определяют нормированные значения отклонений интегральных оценок сигналов дискретной модели, полученные в результате пробных отклонений параметров, определяют отклонения интегральных оценок сигналов контролируемой дискретной системы для k контрольных точек от номинальных значений, вычисляют нормированные значения отклонений интегральных оценок сигналов контролируемой дискретной системы, по минимуму диагностического признака определяют дефектный блок дискретной системы, отличающийся тем, что одновременно подают тестовый или рабочий сигнал x(t) на вход системы с номинальными характеристиками, на вход контролируемой системы, на входы m моделей с номинальными характеристиками, в каждую из которых введены пробные отклонения параметров одного блока так, что в i-ю систему вводят пробные отклонения в i-й блок, в качестве динамических характеристик системы используют интегральные оценки, полученные для весовой функции, равной среднему арифметическому модулей производных по времени от выходных сигналов системы в различных контрольных точках, из соотношения , определяют интегральные оценки выходных сигналов F(d), j=1,…,k системы с номинальными характеристиками, для чего в момент подачи тестового или рабочего сигнала на вход системы с номинальными характеристиками одновременно начинают интегрирование сигналов системы в каждой из k контрольных точек для весовой функции, путем подачи на первые входы k блоков перемножения сигналов системы на вторые входы блоков перемножения подают среднее арифметическое модулей производных по времени от выходных сигналов системы с номинальными характеристиками, выходные сигналы k блоков перемножения подают на входы k блоков интегрирования, интегрирование завершают в момент времени Т, полученные в результате интегрирования оценки выходных сигналов F(d), j=1,…,k регистрируют, аналогично определяют интегральные оценки сигналов m моделей для каждой из k контрольных точек, полученные в результате пробных отклонений параметров каждого из m блоков, полученные в результате интегрирования оценки выходных сигналов для каждой из k контрольных точек, каждого из m пробных отклонений P(d), j=1,…,k; i=1,…,m регистрируют, определяют отклонения интегральных оценок сигналов дискретной модели, полученные в результате пробных отклонений параметров одного структурного блока ΔP(d)=P(d)-F(d), j=1,…,k; i=1…,m., определяют нормированные значения отклонений интегральных оценок сигналов дискретной модели, полученные в результате пробных отклонений параметров одного блока по формуле определяют отклонения интегральных оценок сигналов контролируемой дискретной системы для k контрольных точек от номинальных значений ΔF(d)=F(d)-F(d), j=1,…,k.вычисляют нормированные значения отклонений интегральных оценок сигналов контролируемой дискретной системы по формуле: . аналогично определяют интегральные оценки сигналов m моделей для каждой из k контрольных точек, полученные в результате пробных отклонений параметров каждого из m блоков, полученные нормированные значения интегральных оценок сигналов используют для вычисления диагностических признаков , i=1,…,m.
СПОСОБ ПОИСКА НЕИСПРАВНОГО БЛОКА В ДИСКРЕТНОЙ ДИНАМИЧЕСКОЙ СИСТЕМЕ
СПОСОБ ПОИСКА НЕИСПРАВНОГО БЛОКА В ДИСКРЕТНОЙ ДИНАМИЧЕСКОЙ СИСТЕМЕ
СПОСОБ ПОИСКА НЕИСПРАВНОГО БЛОКА В ДИСКРЕТНОЙ ДИНАМИЧЕСКОЙ СИСТЕМЕ
СПОСОБ ПОИСКА НЕИСПРАВНОГО БЛОКА В ДИСКРЕТНОЙ ДИНАМИЧЕСКОЙ СИСТЕМЕ
СПОСОБ ПОИСКА НЕИСПРАВНОГО БЛОКА В ДИСКРЕТНОЙ ДИНАМИЧЕСКОЙ СИСТЕМЕ
Источник поступления информации: Роспатент

Показаны записи 21-23 из 23.
25.08.2017
№217.015.c039

Способ поиска топологического дефекта в дискретной динамической системе на основе введения пробных отклонений

Изобретение относится к способу поиска топологического дефекта в дискретной динамической системе на основе введения пробных отклонений. Для поиска дефекта предварительно определяют время контроля с учетом времени переходного процесса для номинальных значений параметров, определяют параметр...
Тип: Изобретение
Номер охранного документа: 0002616499
Дата охранного документа: 17.04.2017
25.08.2017
№217.015.c0a2

Способ поиска топологического дефекта в непрерывной динамической системе на основе введения пробных отклонений

Изобретение относится к способу поиска топологического дефекта в непрерывной динамической системе на основе пробных отклонений. Для поиска топологического дефекта фиксируют определенное число возможных неисправностей, определяют время контроля сравнительно со временем переходного процесса,...
Тип: Изобретение
Номер охранного документа: 0002616512
Дата охранного документа: 17.04.2017
25.08.2017
№217.015.c0ab

Способ поиска топологического дефекта в непрерывной динамической системе на основе введения пробных отклонений

Изобретение относится к способу поиска топологического дефекта в непрерывной динамической системе на основе введения пробных отклонений. Для поиска топологического дефекта определяют время контроля, фиксируют число контрольных точек системы, одновременно подают тестовый или рабочий сигнал на...
Тип: Изобретение
Номер охранного документа: 0002616501
Дата охранного документа: 17.04.2017
Показаны записи 21-30 из 190.
10.09.2013
№216.012.6861

Способ изготовления подшипника скольжения

Изобретение относится к области изготовления слоистых изделий намоткой и может быть использовано для изготовления подшипников скольжения. Способ изготовления подшипника скольжения заключается в намотке ленты на вращающуюся оправку с пропиткой ленты полимерным связующим с наполнителями с...
Тип: Изобретение
Номер охранного документа: 0002492368
Дата охранного документа: 10.09.2013
20.09.2013
№216.012.6962

Машина для лесопользования

Машина содержит ходовую часть, двигатель, кабину оператора и технологическое оборудование. Технологическое оборудование включает захватно-срезающее устройство и дополнительно снабжено выкапывающим подрост устройством. Выкапывающее подрост устройство установлено на захватно-срезающем устройстве...
Тип: Изобретение
Номер охранного документа: 0002492629
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6c94

Способ изготовления подшипника скольжения

Изобретение относится к области изготовления слоистых изделий намоткой и может быть использовано для изготовления подшипников скольжения. Способ изготовления подшипника скольжения заключается в намотке ленты на вращающуюся оправку с пропиткой ленты полимерным связующим с наполнителями с...
Тип: Изобретение
Номер охранного документа: 0002493447
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6c95

Способ изготовления подшипника скольжения

Изобретение относится к способу формирования изделий из полимерных композиционных материалов центробежным способом и может быть использовано для изготовления подшипников скольжения. Способ заключается в том, что подшипник формуют послойно и в зависимости от слоя в металлическую втулку,...
Тип: Изобретение
Номер охранного документа: 0002493448
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6cf7

Стенд для моделирования воздействия продуктов взрыва на забойку взрывных скважин

Изобретение относится к лабораторному оборудованию и предназначено для моделирования процессов, происходящих во взрывной полости скважин при ведении взрывных работ. Стенд для моделирования воздействия продуктов взрыва на забойку взрывных скважин включает камеру высокого давления, закрытую...
Тип: Изобретение
Номер охранного документа: 0002493546
Дата охранного документа: 20.09.2013
10.10.2013
№216.012.7217

Способ обработки заготовок из пластмасс

Изобретение относится к обработке материалов резанием и может быть использовано при механической обработке заготовок из пластмасс, преимущественно из капролона. Техническим результатом заявленного изобретения является повышение производительности обработки заготовки и физико-механических...
Тип: Изобретение
Номер охранного документа: 0002494864
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.7218

Способ обработки заготовок из пластмасс

Изобретение относится к способу обработки изделий из пластмасс. Способ заключается в том, что заготовке и режущему инструменту сообщают относительное движение формообразования, а подачу осуществляют дискретно. Поверхность заготовки из пластмассы подвергают обработке химическими реагентами и...
Тип: Изобретение
Номер охранного документа: 0002494865
Дата охранного документа: 10.10.2013
20.10.2013
№216.012.75d8

Водоочиститель

Изобретение относится к устройствам для доочистки водопроводной, артезианской, колодезной и другой условно питьевой воды. Устройство включает расположенные последовательно в одном продольном сосуде зону замораживания воды с кольцевой морозильной камерой, зону вытеснения примесей из фронта льда...
Тип: Изобретение
Номер охранного документа: 0002495828
Дата охранного документа: 20.10.2013
10.11.2013
№216.012.7cfd

Способ токарной обработки заготовок из капролона

Изобретение относится к обработке материалов резанием и может быть использовано при механической обработке заготовок из пластмасс, преимущественно из капролона. Технической задачей, на решение которой направлено изобретение, является повышение производительности обработки заготовки и качества...
Тип: Изобретение
Номер охранного документа: 0002497670
Дата охранного документа: 10.11.2013
27.11.2013
№216.012.84ec

Аэростатно-канатная система для воздушной заготовки и транспортировки древесины

Изобретение относится к лесозаготовительной промышленности, в частности к процессу трелевки древесины. Аэростатно-канатная система для воздушной заготовки и транспортировки древесины содержит аэростатный носитель, несущий канат, грузовую каретку, установленную с возможностью перемещения по...
Тип: Изобретение
Номер охранного документа: 0002499706
Дата охранного документа: 27.11.2013
+ добавить свой РИД