×
10.02.2014
216.012.9f93

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ЖЕСТКОСТИ ОПТИЧЕСКОГО КАБЕЛЯ ПРИ НИЗКИХ ТЕМПЕРАТУРАХ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технике измерений параметров кабелей и может быть использовано для измерения жесткости оптических кабелей с высокой прочностью на разрыв при низких температурах. Сущность: один конец образца оптического кабеля закрепляют на платформе с помощью первого зажима, а второй конец образца оптического кабеля отгибают от его оси на угол θ>45° и закрепляют на платформе с помощью второго зажима, после чего платформу с закрепленным на ней образцом кабеля помещают в климатическую камеру, устанавливают в ней заданную температуру, при которой измеряют радиус изгиба оптического кабеля на выходе из первого зажима. Предварительно, для одних и тех же значений угла θ и расстояния 1, при нормальной температуре выполняют измерения относительных радиусов изгиба на выходе из первого зажима R и R для двух образцов оптического кабеля, для которых значения жесткости при нормальной температуре В и В известны и отличаются друг от друга, после чего для тех же значений угла θ и расстояния 1 выполняют измерения относительного радиуса изгиба на выходе из первого зажима испытуемого образца оптического кабеля R при заданной низкой температуре. Относительный радиус изгиба определяют как отношение радиуса изгиба оптического кабеля на выходе из зажима к радиусу оптического кабеля, а жесткость испытуемого образца оптического кабеля при заданной низкой температуре В определяют по зависимости. Технический результат: расширение области применения и снижение затрат. 3 ил.
Основные результаты: Способ измерения жесткости оптического кабеля при низкой температуре, заключающийся в том, что один конец образца оптического кабеля закрепляют на платформе с помощью первого зажима, а к другому его концу на расстоянии l прикладывают силу, отличающийся тем, что второй конец образца оптического кабеля отгибают от его оси на угол θ>45° и закрепляют на платформе с помощью второго зажима, после чего платформу с закрепленным на ней образцом кабеля помещают в климатическую камеру, устанавливают в ней заданную температуру, при которой измеряют радиус изгиба оптического кабеля на выходе из первого зажима, при этом предварительно для одних и тех же значений угла θ и расстояния l при нормальной температуре выполняют измерения относительных радиусов изгиба на выходе из первого зажима R и R для двух образцов оптического кабеля, для которых значения жесткости при нормальной температуре В и В известны и отличаются друг от друга, после чего для тех же значений угла θ и расстояния l выполняют измерения относительного радиуса изгиба на выходе из первого зажима испытуемого образца оптического кабеля R при заданной низкой температуре, а жесткость испытуемого образца оптического кабеля при заданной низкой температуре В определяют по формуле: , ,где R, R, R - результаты измерений для одних и тех же значений угла θ и расстояния l относительных радиусов изгиба образцов оптических кабелей с жесткостью В, В, В соответственно, а относительный радиус изгиба определяют как отношение радиуса изгиба оптического кабеля на выходе из зажима к радиусу оптического кабеля.

Изобретение относится к технике измерений параметров кабелей и может быть использовано для измерения жесткости оптических кабелей с высокой прочностью на разрыв при низких температурах.

Известен способ «чистого изгиба» [1] для измерений жесткости оптических кабелей, заключающийся в том, что образец кабеля загружают по схеме однопролетной двухопорной балки с равными сосредоточенными моментами в концевых опорных ее сечениях (фиг.1), по данной схеме строят диаграмму зависимости момента M(φ) от угла закручивания φ, пренебрегают гистере-зисным характером диаграмм, осуществляют линейную аппроксимацию зависимости М(φ) и оценивают жесткость оптического кабеля как:

где В - жесткость, кг/м2; l - длина образца, м; М - нагрузочный момент, кг·м; φ - угловое перемещение, рад.

На фиг.2 представлена схема устройства для измерения жесткости описанным выше способом «чистого» изгиба в положении, позволяющем осуществить деформацию чистого изгиба образца кабеля 1, снабженного захватами 2, соединенными с захватами нагрузочного устройства 3. Загрузочное устройство установлено на подвижные платформы 5 и снабжено шкивами 4, охваченными гибкими нитями с нагрузочными площадками 6. Нагрузочные шкивы посредством шестеренчатой передачи связаны с отсчетными дисками 7, помещенными на той же подвижной платформе, имеющей возможность свободного перемещения на рейки 8, прикрепленной стойками к неподвижному основанию 10. Описанная схема является универсальной для измерений жесткости образцов оптического кабеля. Однако, реализация данного способа при низких отрицательных температурах в условиях климатической камеры требует значительных дополнительных затрат на обеспечение свободного вращения шкивов, шестеренчатых передач и свободного перемещения подвижной платформы.

Известен способ [2] измерения жесткости оптических кабелей, заключающийся в том, что испытуемый образец оптического кабеля располагают на платформе горизонтально, один его конец закрепляют на платформе с помощью зажима, а к другому его концу на расстоянии l прикладывают силу F и в этой точке измеряют смещение У этого конца оптического кабеля относительно его оси, после чего определяют жесткость оптического кабеля по формуле:

Однако данный способ требует выполнения операций с испытуемым образцом оптического кабеля при низких отрицательных температурах в условиях климатической камеры, а при испытании образцов жестких кабелей для корректного отсчета смещения конца оптического кабеля регулирования прикладываемой силы. А это, в свою очередь, требует либо автоматизации процессов, выполняемых в условиях климатической камеры при низких температурах, либо действий человека-оператора также в условиях климатической камеры при низких температурах, что связано со значительными затратами.

Сущностью предполагаемого изобретения является расширение области применения и снижение затрат.

Эта сущность достигается тем, что, согласно способу измерения жесткости оптического кабеля при низкой температуре один конец образца оптического кабеля закрепляют на платформе с помощью первого зажима, а к другому его концу на расстоянии l прикладывают силу, причем второй конец образца оптического кабеля отгибают от его оси на угол θ>45° и закрепляют на платформе с помощью второго зажима, после чего платформу с закрепленным на ней образцом кабеля помещают в климатическую камеру, устанавливают в ней заданную температуру, при которой измеряют радиус изгиба оптического кабеля на выходе из первого зажима, при этом предварительно, для одних и тех же значений угла θ и расстояния l, при нормальной температуре выполняют измерения относительных радиусов изгиба на выходе из первого зажима R0 и R1, для двух образцов оптического кабеля, для которых значения жесткости при нормальной температуре B0 и B1 известны и отличаются друг от друга, после чего, для тех же значений угла в и расстояния l выполняют измерения относительного радиуса изгиба на выходе из первого зажима испытуемого образца оптического кабеля Rx при заданной низкой температуре, а жесткость испытуемого образца оптического кабеля при заданной низкой температуре Bx определяют по формуле:

где R0, R1, Rx - результаты измерений для одних и тех же значений угла в и расстояния l относительных радиусов изгиба образцов оптических кабелей с жесткостью В0, В1, Вx, соответственно, а относительный радиус изгиба определяют как отношение радиуса изгиба оптического кабеля на выходе из зажима к радиусу оптического кабеля.

На фиг.3 представлена структурная схема устройства для реализации заявляемого способа.

Устройство содержит образец оптического кабеля 1, первый зажим 2 и второй зажим 3, платформу 4 и климатическую камеру 5, при этом один конец образца оптического кабеля закреплен на платформе 4 с помощью первого зажима 2, а другой его конец отогнут от его оси на угол 6 и закреплен на платформе 4 с помощью второго зажима 3, платфома 4 с закрепленным на ней образцом оптического кабеля 1 помещена в климатическую камеру 5.

Способ осуществляется следующим образом.

Предварительно, устройство калибруют. Для этого при заданных значениях угла θ и расстояния l, при нормальной температуре выполняют измерения относительных радиусов изгиба R0 и R1 для двух образцов оптического кабеля, для которых значения жесткости при нормальной температуре В0 и B1 известны и отличаются друг от друга, и рассчитывают константу С по формуле (2). Измерения радиусов изгиба выполняют в следующей последовательности. Один конец образца оптического кабеля 1 закрепляют на платформе 4 с помощью первого зажима 1, к другому его концу на расстоянии l прикладывают силу, отгибают его от оси на угол θ и закрепляют на платформе 4 с помощью второго зажима 3. Затем платформу 4 с закрепленным на ней образцом оптического кабеля 1 помещают в климатическую камеру 5, в которой устанавливают заданную температуру, после чего измеряют относительный радиус изгиба оптического кабеля 1 на выходе из первого зажима 2. Затем, для тех же значений угла θ и расстояния l выполняют измерения радиуса изгиба на выходе из первого зажима испытуемого образца оптического кабеля - Rx при заданной низкой температуре и определяют жесткость испытуемого образца оптического кабеля при заданной низкой температуре - Вx по формуле (1).

По сравнению с прототипом предлагаемый способ не требует регулирования параметров и выполнения каких-либо операций с испытуемым образцом оптического кабеля при низких отрицательных температурах в условиях климатической камеры. Измерения радиуса изгиба могут быть выполнены по фотографии платформы с закрепленным на ней образцом оптического кабеля, которую можно сделать через окно климатической камеры. Это, в свою очередь, исключает потребность в автоматизации процессов, выполняемых с образцом оптического кабеля в климатической камере, и присутствия человека-оператора в климатической камере при низких температурах, что и обеспечивает расширение области применения и снижение затрат.

ЛИТЕРАТУРА

1. Мусалимов В.М., Соханев Б.В. Механические испытания гибких кабелей // Томск: Изд-во Томского университета, 1984. - 64 с.

2. IEC 60794-1-2:1999. Optical fibers - Part 1-2: Generic specification - Basic optical cable test procedures.

Способ измерения жесткости оптического кабеля при низкой температуре, заключающийся в том, что один конец образца оптического кабеля закрепляют на платформе с помощью первого зажима, а к другому его концу на расстоянии l прикладывают силу, отличающийся тем, что второй конец образца оптического кабеля отгибают от его оси на угол θ>45° и закрепляют на платформе с помощью второго зажима, после чего платформу с закрепленным на ней образцом кабеля помещают в климатическую камеру, устанавливают в ней заданную температуру, при которой измеряют радиус изгиба оптического кабеля на выходе из первого зажима, при этом предварительно для одних и тех же значений угла θ и расстояния l при нормальной температуре выполняют измерения относительных радиусов изгиба на выходе из первого зажима R и R для двух образцов оптического кабеля, для которых значения жесткости при нормальной температуре В и В известны и отличаются друг от друга, после чего для тех же значений угла θ и расстояния l выполняют измерения относительного радиуса изгиба на выходе из первого зажима испытуемого образца оптического кабеля R при заданной низкой температуре, а жесткость испытуемого образца оптического кабеля при заданной низкой температуре В определяют по формуле: , ,где R, R, R - результаты измерений для одних и тех же значений угла θ и расстояния l относительных радиусов изгиба образцов оптических кабелей с жесткостью В, В, В соответственно, а относительный радиус изгиба определяют как отношение радиуса изгиба оптического кабеля на выходе из зажима к радиусу оптического кабеля.
СПОСОБ ИЗМЕРЕНИЯ ЖЕСТКОСТИ ОПТИЧЕСКОГО КАБЕЛЯ ПРИ НИЗКИХ ТЕМПЕРАТУРАХ
СПОСОБ ИЗМЕРЕНИЯ ЖЕСТКОСТИ ОПТИЧЕСКОГО КАБЕЛЯ ПРИ НИЗКИХ ТЕМПЕРАТУРАХ
СПОСОБ ИЗМЕРЕНИЯ ЖЕСТКОСТИ ОПТИЧЕСКОГО КАБЕЛЯ ПРИ НИЗКИХ ТЕМПЕРАТУРАХ
СПОСОБ ИЗМЕРЕНИЯ ЖЕСТКОСТИ ОПТИЧЕСКОГО КАБЕЛЯ ПРИ НИЗКИХ ТЕМПЕРАТУРАХ
СПОСОБ ИЗМЕРЕНИЯ ЖЕСТКОСТИ ОПТИЧЕСКОГО КАБЕЛЯ ПРИ НИЗКИХ ТЕМПЕРАТУРАХ
Источник поступления информации: Роспатент

Показаны записи 21-25 из 25.
26.08.2017
№217.015.de11

Способ измерения сдвига частоты рассеяния мандельштама-бриллюэна на длине оптического волокна

Изобретение относится к области измерительной техники, в частности к способам измерения сдвига частоты рассеяния Мандельштама-Бриллюэна. При реализации способа измерения сдвига частоты рассеяния Мандельштама-Бриллюэна на длине оптического волокна непрерывное оптическое излучение задающего...
Тип: Изобретение
Номер охранного документа: 0002624827
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.de6e

Способ построения базовой станции волоконно-эфирной телекоммуникационной системы сети мобильной радиосвязи

Изобретение относится к области электросвязи и может использоваться в комбинированных системах волоконно-эфирной структуры сетей мобильной радиосвязи. Технический результат состоит в расширении области применения. Для этого центральную станцию соединяют через оптический разветвитель оптическим...
Тип: Изобретение
Номер охранного документа: 0002624771
Дата охранного документа: 06.07.2017
26.08.2017
№217.015.de74

Способ выравнивания связи мод в оптических волокнах на строительной длине оптического кабеля модульной конструкции с многомодовыми или маломодовыми оптическими волокнами

Изобретение относится к области электротехники и может быть использовано для выравнивания связи мод в оптических волокнах на строительной длине оптического кабеля модульной конструкции с многомодовыми или маломодовыми оптическими волокнами. Согласно способу выравнивания связи мод в оптических...
Тип: Изобретение
Номер охранного документа: 0002624770
Дата охранного документа: 06.07.2017
13.02.2018
№218.016.1fd7

Способ увеличения срока службы оптического кабеля

Изобретение относится к области электротехники. Согласно способу увеличения срока службы оптического кабеля строительную длину оптического кабеля подвергают воздействию температурных циклов, для чего барабан со строительной длиной оптического кабеля помещают в климатическую камеру, в которой...
Тип: Изобретение
Номер охранного документа: 0002641298
Дата охранного документа: 17.01.2018
13.02.2018
№218.016.269a

Способ измерения избыточной длины оптического волокна в модульной трубке оптического кабеля

Изобретение относится к измерительной технике и может быть использовано для измерения избыточной длины оптического волокна в оптическом модуле оптического кабеля. Согласно способу измерения избыточной длины оптического волокна в модульной трубке оптического кабеля характеристики обратного...
Тип: Изобретение
Номер охранного документа: 0002644032
Дата охранного документа: 07.02.2018
Показаны записи 31-40 из 50.
09.06.2018
№218.016.5e36

Способ дистанционного поиска местоположения подземных коммуникаций и определения их поперечного размера и глубины залегания в грунте

Изобретение относится к измерительной технике и может быть использовано для дистанционного определения местоположения подземных коммуникаций (трубопроводов, кабелей и т.п.), их поперечного размера и глубины залегания в грунте. Технический результат: расширение области применения. Сущность:...
Тип: Изобретение
Номер охранного документа: 0002656287
Дата охранного документа: 04.06.2018
12.07.2018
№218.016.6fa5

Способ лечения больных острым инфарктом миокарда с поздней госпитализацией

Изобретение относится к медицине, а именно к кардиологии. Перед эндоваскулярным этапом лечения, включающим эндоваскулярную коронарную ангиопластику и стентирование инфаркт-связанной артерии, у пациента осуществляют забор костного мозга в количестве 120-140 мл из области рукоятки грудины и...
Тип: Изобретение
Номер охранного документа: 0002661048
Дата охранного документа: 11.07.2018
19.07.2018
№218.016.720d

Способ определения трассы прокладки и локализации места повреждения кабеля

Изобретение относится к измерительной технике и может быть использовано для определения трассы прокладки и локализации мест повреждений кабелей со сложной конфигурацией прокладки. Сущность изобретения заключается в том, что способ определения трассы прокладки и локализации места повреждения...
Тип: Изобретение
Номер охранного документа: 0002661551
Дата охранного документа: 17.07.2018
19.08.2018
№218.016.7deb

Способ дистанционного поиска местоположения подземных коммуникаций и определения их поперечного размера и глубины залегания в грунте

Изобретение относится к измерительной технике и может быть использовано для дистанционного поиска трасс подземных коммуникаций и определения их поперечного размера и глубины залегания в грунте. Способ дистанционного поиска местоположения подземных коммуникаций и определения их поперечного...
Тип: Изобретение
Номер охранного документа: 0002664253
Дата охранного документа: 15.08.2018
09.11.2018
№218.016.9c19

Способ симплексной передачи данных по оптическому волокну кабельной линии

Изобретение относится к технике связи, в частности к способам передачи информации по линиям связи, а именно к низкоскоростной передаче данных по оптическим волокнам кабельных линий.Технический результат состоит в расширении области применения. Для этого в способе симплексной передачи данных...
Тип: Изобретение
Номер охранного документа: 0002671855
Дата охранного документа: 07.11.2018
11.11.2018
№218.016.9c46

Способ защиты от утечки речевой информации через волоконно-оптические линии

Изобретение относится к области обеспечения информационной безопасности переговоров в выделенных помещениях путем нейтрализации каналов утечки речевой информации через волоконно-оптические линии и может быть использовано в системах защиты конфиденциальной речевой информации. Технический...
Тип: Изобретение
Номер охранного документа: 0002672049
Дата охранного документа: 09.11.2018
14.12.2018
№218.016.a75f

Способ обнаружения акустооптоволоконного канала утечки речевой информации через оптические волокна кабельных линий и защиты от утечки речевой информации через оптические волокна

Изобретение относится к технике связи и может быть использовано для обеспечения информационной безопасности переговоров в выделенных помещениях от угроз утечки акустической (речевой) информации через волоконно-оптические коммуникации. Технический результат состоит в повышении защиты...
Тип: Изобретение
Номер охранного документа: 0002674751
Дата охранного документа: 13.12.2018
15.12.2018
№218.016.a7fd

Способ защиты от утечки речевой информации через обратнорассеянное оптическое излучение в оптических волокнах кабельных линий

Изобретение относится к области обеспечения информационной безопасности переговоров в выделенных помещениях путем нейтрализации каналов утечки речевой информации через волоконно-оптические линии и может быть использовано в системах защиты конфиденциальной речевой информации. Технический...
Тип: Изобретение
Номер охранного документа: 0002674988
Дата охранного документа: 14.12.2018
01.03.2019
№219.016.cb6d

Способ определения длины биений оптического волокна на участке линии передачи

Изобретение относится к волоконно-оптической технике связи и может быть использовано для определения распределения длины биений оптического волокна на участке линии передачи, что позволяет оценивать такие характеристики линейного тракта, как длина корреляции, поляризационная модовая дисперсия....
Тип: Изобретение
Номер охранного документа: 0002393635
Дата охранного документа: 27.06.2010
19.04.2019
№219.017.1d46

Способ измерения избыточной длины оптического волокна в модуле оптического кабеля

Изобретение относится к измерительной технике и может быть использовано для измерения избыточной длины оптического волокна в модуле оптического кабеля. В способе измерения избыточной длины оптического волокна в модуле оптического кабеля измеряют и запоминают поляризационную характеристику...
Тип: Изобретение
Номер охранного документа: 0002685066
Дата охранного документа: 16.04.2019
+ добавить свой РИД