×
10.02.2014
216.012.9f7a

Результат интеллектуальной деятельности: СПОСОБ НАСТРОЙКИ ТЕНЗОРЕЗИСТОРНЫХ ДАТЧИКОВ С МОСТОВОЙ ИЗМЕРИТЕЛЬНОЙ ЦЕПЬЮ ПО МУЛЬТИПЛИКАТИВНОЙ ТЕМПЕРАТУРНОЙ ПОГРЕШНОСТИ С УЧЕТОМ ПОЛОЖИТЕЛЬНОЙ НЕЛИНЕЙНОСТИ ТЕМПЕРАТУРНОЙ ХАРАКТЕРИСТИКИ ВЫХОДНОГО СИГНАЛА ДАТЧИКА

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной технике. Способ заключается в том, что при сопротивлении нагрузки R>500 кОм определяют температурный коэффициент чувствительности (ТКЧ) мостовой цепи и при температуре t, и t, соответствующей верхнему и нижнему пределу рабочего диапазона температур, и нелинейность ТКЧ мостовой цепи Если полученное значение Δα является положительным, то преобразуют положительную нелинейность ТКЧ мостовой цепи в отрицательную путем включения термозависимого резистора R в диагональ питания при одновременном шунтировании входного сопротивления мостовой цепи термонезависимым резистором R. Для этого определяют входное сопротивление и ТКС входного сопротивления, а также ТКЧ тензорезисторов и при температуре t и t и вычисляют нелинейность ТКЧ мостовой цепи Если и Δα оказываются в области преобразования положительной нелинейности ТКЧ мостовой цепи в отрицательную, то принимают номинал термонезависимого резистора R равным входному сопротивлению, вычисляют номинал резистора R. Включают резисторы R и R в диагональ питания мостовой цепи. Определяют ТКЧ мостовой цепи при температуре tи t, вычисляют нелинейность ТКЧ мостовой цепи Δ. Если Δ принимает отрицательное значение, то производят компенсацию мультипликативной температурной погрешности с учетом отрицательной нелинейности ТКЧ мостовой цепи путем включения термозависимого резистора R, зашунтированного термонезависимым резистором R, в выходную диагональ мостовой цепи при сопротивлении нагрузки R≤1 кОм. Технический результат: повышение точности компенсации. 3 ил., 3 табл.
Основные результаты: Способ настройки тензорезисторных датчиков с мостовой измерительной цепью по мультипликативной температурной погрешности с учетом положительной нелинейности температурной характеристики выходного сигнала датчика, заключающийся в том, что при сопротивлении нагрузки R>500 кОм определяют температурный коэффициент чувствительности (ТКЧ) мостовой цепи и для диапазона температур Δt=t-t и Δt=t-t, где t, t, t - нормальная температура, верхний и нижний предел рабочего диапазона температур соответственно, вычисляют нелинейность ТКЧ мостовой цепи , если нелинейность ТКЧ мостовой цепи принимает отрицательное значение, то при сопротивлении нагрузки R≤2 кОм определяют выходное сопротивление мостовой цепи, ТКС выходного сопротивления мостовой цепи для диапазона температур Δt и Δt, проверяют нахождение ТКЧ мостовой цепи и нелинейности ТКЧ мостовой цепи в области применения и, если параметры датчика находятся в области применения, вычисляют номинал резисторов R и R, устанавливают термозависимый резистор R, зашунтированный термонезависимым резистором R, в выходную диагональ мостовой цепи датчика, отличающийся тем, что, если нелинейность ТКЧ мостовой цепи принимает положительной значение, то после определения нелинейности ТКЧ мостовой цепи и до определения выходного сопротивления мостовой цепи, а также ТКС выходного сопротивления мостовой цепи, преобразуют положительную нелинейность ТКЧ мостовой цепи в отрицательную путем включения термозависимого резистора R в диагональ питания мостовой цепи, входное сопротивление которой шунтируется термонезависимым резистором R, для чего определяют при R>500 кОм ТКЧ тензорезисторов и для диапазона температур Δt и Δt соответственно, вычисляют нелинейность ТКЧ тензорезисторов определяют величину входного сопротивления R, ТКС входного сопротивления , для диапазона температур Δt и Δt соответственно, выявляют нахождение и Δα в области, заданной таблицей если и Δα удовлетворяют условиям, приведенным в таблице, принимают номинал шунта R равным входному сопротивлению датчика, определяют величину номинала термозависимого резистора R, решая уравнение: где - ТКС входного сопротивления мостовой цепи, зашунтированной термонезависимым резистором R;включают термозависимый резистор R в диагональ питания мостовой цепи датчика, термонезависимым резистором R шунтируют входное сопротивление мостовой цепи, определяют ТКЧ мостовой цепи датчика и его нелинейность после включения термозависимого резистора R и термонезависимого резистора R.

Изобретение относится к измерительной технике и может быть использовано при настройке тензорезисторной датчиковой аппаратуры с мостовой измерительной цепью по мультипликативной температурной погрешности.

Известен способ настройки тензорезисторных датчиков с мостовой измерительной цепью по мультипликативной температурной погрешности с учетом нелинейности температурной характеристики выходного сигнала датчика (см. Патент на изобретение RU 2443973 С1, G01B 7/16 «Способ настройки тензорезисторных датчиков с мостовой измерительной цепью по мультипликативной температурной погрешности с учетом нелинейности температурной характеристики выходного сигнала датчика», опубликованный 27.02.2012 в Бюл. №6), принятый за прототип, в котором для компенсации мультипликативной температурной погрешности при сопротивлении нагрузки RH>500 кОм определяют ТКЧ мостовой цепи и для диапазона температур Δt+=t+-t0 и Δt-=t--t0, где t0, t+, t- - нормальная температура, верхний и нижний предел рабочего диапазона температур соответственно. Вычисляют нелинейность ТКЧ мостовой цепи . Если Δαдо принимает отрицательное значение, то датчик подключают к нагрузке Rн≤2 кОм. Определяют выходное сопротивление мостовой цепи, ТКС выходного сопротивления датчика. Проверяют нахождение ТКЧ мостовой цепи и его нелинейности в области применения способа, если данные параметры датчика оказываются в области применения, вычисляют требуемый номинал термозависимого резистора Rαвых и термонезависимого резистора Rдвых. Устанавливают резистор Rαвых, зашунтированный резистором Rдвых, в выходную диагональ мостовой цепи.

К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа, относится то, что нелинейность ТКЧ мостовой цепи может принимать как отрицательные, так и положительные значения, как показано в описании прототипа. Прототип позволяет производить полную компенсацию мультипликативной температурной погрешности с учетом отрицательной нелинейности ТКЧ мостовой цепи, удовлетворяющей неравенству Δαдо≤-2·10-6 1/°С. В описании прототипа также показано, что отсутствие учета нелинейности ТКЧ мостовой цепи позволяет произвести компенсацию мультипликативной температурной погрешности в одной крайней точке рабочего диапазона температур, для которой вычислялись номиналы компенсационных резисторов Rαвых и Rдвых, что позволяет получить мультипликативную чувствительность датчика к температуре в пределах ±1·10-4 1/°С в данной точке рабочего диапазона температур. В другой крайней точке рабочего диапазона температур мультипликативная чувствительность датчика к температуре составляет порядка ±2·10-4 1/°С и более, превышая допустимое значение, которое составляет ±1·10-4 1/°С.

Сущность изобретения заключается в следующем.

Задачей, на решение которой направлено заявляемое изобретение, является разработка способа настройки тензорезисторных датчиков с мостовой измерительной цепью по мультипликативной температурной погрешности, который позволил бы повысить точность компенсации мультипликативной температурной погрешности в процессе настройки при положительной нелинейности ТКЧ мостовой цепи.

Технический результат заключается в повышении точности в процессе настройки тензорезисторных датчиков с мостовой измерительной цепью по мультипликативной температурной погрешности при положительной нелинейности ТКЧ мостовой цепи.

Указанный технический результат при осуществлении изобретения достигается тем, что производят предварительное преобразование положительной нелинейности ТКЧ мостовой цепи датчика в отрицательную и последующую компенсацию мультипликативной температурной погрешности в соответствии с прототипом.

Это достигается тем, что включают в диагональ питания мостовой цепи термозависимый резистор Rαвх, что дает смещение нелинейности ТКЧ мостовой цепи датчика в сторону отрицательных значений. Для расширения области преобразования положительной нелинейности ТКЧ мостовой цепи в отрицательную входное сопротивление мостовой цепи шунтируют термонезависимым резистором Rш. Номинал резистора Rαвх выбирают исходя из необходимости обеспечения отрицательной нелинейности ТКЧ мостовой цепи Δαдо≤-2·10-6 1/°С, при которой возможно использование прототипа для компенсации температурной погрешности. Для этого, если нелинейность ТКЧ мостовой цепи является положительной, при Rн>500 кОм определяют ТКЧ тензорезисторов и для диапазона температур Δt+ и Δt- соответственно и вычисляют нелинейность ТКЧ тензорезисторов . Определяют величину входного сопротивления Rвх, TKC входного сопротивления , для диапазона температур Δt+ и Δt- соответственно. Проверяют принадлежность и Δαд области преобразования положительной нелинейности ТКЧ мостовой цепи в отрицательную. Если и Δαд удовлетворяют области преобразования положительной нелинейности ТКЧ мостовой цепи в отрицательную, то принимают номинал термонезависимого резистора Rш равным входному сопротивлению мостовой цепи, поскольку меньшие номиналы шунта приведут к чрезмерному уменьшению чувствительности, что затруднит последующую настройку датчика по чувствительности. Вычисляют номинал термозависимого резистора Rαвх. Устанавливают резистор Rαвх в диагонали питания мостовой цепи, шунтируют входное сопротивление мостовой цепи резистором Rш. Вычисляют ТКЧ мостовой цепи и его нелинейность после включения термозависимого резистора Rαвх и термонезависимого резистора Rш.

Сущность изобретения поясняется чертежами, где на фиг.1 представлено влияние термозависимого резистора Rαвх на нелинейность ТКЧ мостовой цепи при шунтировании входного сопротивления мостовой цепи термонезависимым резистором Rш, номинал которого равен входному сопротивлению мостовой цепи, на фиг.2 - область преобразования положительной нелинейности ТКЧ мостовой цепи в отрицательную, на фиг.3 - схема включения резисторов Rαвх, Rш, Rαвых и Rдвых.

Способ осуществляется следующим образом.

Как показано в описании прототипа, нелинейность ТКЧ мостовой цепи включает в себя две составляющие:

1) нелинейность, вносимая тензорезисторами, установленными на упругом элементе, которая может принимать как отрицательное, так и положительное значение;

2) нелинейность, вносимая измерительной схемой, которая всегда является отрицательной при использовании мостовой цепи.

В соответствии с пунктом 2 можно получить отрицательную нелинейность ТКЧ мостовой цепи, изменяя составляющую нелинейности ТКЧ мостовой цепи, вносимую измерительной схемой. Для этого в мостовую цепь следует включить термозависимый резистор Rαвх. Выходное напряжение мостовой цепи после включения термозависимого резистора Rαвх при воздействии температуры определяется выражением:

где Uвыхt - выходное напряжение мостовой цепи при воздействии температуры;

Uпит - напряжение питания мостовой цепи;

k=R1/R2=R3/R4 - коэффициент симметрии мостовой цепи;

Rвх - входное сопротивление мостовой цепи датчика;

αвх - ТКС входного сопротивления;

Δt=t-t0 - изменение температуры;

αд - ТКЧ тензорезисторов;

Rαвх - номинал термозависимого резистора, включенного в цепь питания;

ακ - ТКС термозависимого резистора Rαвх;

t - воздействующая температура;

t0 - нормальная температура.

Анализ знаменателя зависимости (1) позволяет сделать вывод о том, что после включения резистора Rαвх у зависимости напряжения питания от температуры будет составляющая, обратно пропорциональная росту температуры, что приведет к смещению зависимости нелинейности ТКЧ мостовой цепи в сторону отрицательных значений.

С уменьшением ТКС входного сопротивления влияние термозависимого резистора Rαвх на отрицательную составляющую нелинейности ТКЧ мостовой цепи возрастает, числитель выражения (1) меньше увеличивается при воздействии температуры, что увеличивает смещение нелинейности ТКЧ мостовой цепи в область отрицательных значений. Таким образом, уменьшение ТКС входного сопротивления расширяет область преобразования положительной нелинейности ТКЧ мостовой цепи в отрицательную путем включения термозависимого резистора Rαвх. Для уменьшения ТКС входного сопротивления следует произвести шунтирование входного сопротивления термонезависимым резистором Rш, номинал которого должны быть не менее входного сопротивления мостовой цепи, как показано выше. В последующем будем принимать номинал шунта Rш равным входному сопротивлению мостовой цепи датчика.

Выведем зависимость ТКЧ мостовой цепи от параметров датчика после включения термозависимого резистора Rαвх в цепь питания мостовой цепи, входное сопротивление которой зашунтировано термонезависимым резистором Rш. С учетом равенства номинала резистора Rш и входного сопротивления после шунтирования величина входного сопротивления примет следующее значение:

где Rвхш - входное сопротивление мостовой цепи, зашунтированной термонезависимым резистором Rш.

При воздействии температуры входное сопротивление мостовой цепи датчика может быть представлено следующим образом:

где Rвхшt - входное сопротивление мостовой цепи, зашунтированной резистором Rш, при воздействии температуры.

Входное сопротивление мостовой цепи после включения термонезависимого резистора Rш при воздействии температуры может быть представлено также следующим образом:

где αвхш - ТКС входного сопротивления зашунтированной мостовой цепи.

Приравнивая правые части уравнений (3) и (4) можно вывести расчетную зависимость ТКС входного сопротивления после шунтирования:

С учетом (1) и (2) зависимость выходного сигнала датчика при нормальных условиях можно представить следующим образом:

Зависимость выходного сигнала датчика при воздействии температуры с учетом (1), (2) и (5) примет вид:

Как показано в описании прототипа, ТКЧ можно выразить через выходные сигналы датчика:

Подставив (6) и (7) в выражение (8) можно получить зависимость ТКЧ мостовой цепи:

Нелинейность ТКЧ мостовой цепи после включения термозависимого резистора Rαвх и термонезависимого Rш, может быть представлена следующим образом:

где Δt+=t+-t0, Δt-=t--t0 - положительный и отрицательный диапазон температур;

t0 - нормальная температура;

t+, t- - верхний и нижний предел рабочего диапазона температур;

, - ТКЧ мостовой цепи датчика при температуре t+ и t- соответственно;

, - ТКЧ тензорезисторов при температуре t+ и t- соответственно;

, - ТКС входного сопротивления зашунтированной мостовой цепи датчика при температуре t+ и t- соответственно;

Δαдо - нелинейность ТКЧ мостовой цепи.

Для определения влияния термозависимого резистора Rαвх на нелинейность ТКЧ мостовой цепи при шунтировании входного сопротивления мостовой цепи термонезависимым резистором Rш была вычислена нелинейность ТКЧ мостовой цепи по формуле (10) при следующих исходных данных:

1. Входное сопротивление мостовой цепи: Rвх=1000 Ом;

2. Сопротивление шунта равно входному сопротивлению мостовой цепи: Rш=1000 Ом;

3. ТКЧ тензорезисторов принимает значения: αд=(1, 5, 10)·10-4 1/°С;

4. нелинейность ТКЧ тензорезисторов принимает следующие значения:: ;

5. ТКС входного сопротивления: αвх=5·10-4 1/°C;

6. нелинейность ТКС входного сопротивления: ;

7. ТКС компенсационного резистора: ακ=4·10-3 1/°С;

8. Величина термозависимого резистора Rαвх=(1, 10, 50, 100).

Результаты расчетов представлены в таблице 1.

Анализ полученных данных (см. таблицу 1) позволяет сделать следующие выводы:

1. Нелинейность ТКЧ мостовой цепи зависит от номинала термозависимого резистора Rαвх.

2. При малых значениях номинала резистора Rαвх порядка 1 Ом нелинейность ТКЧ мостовой цепи в основном определяется нелинейностью ТКЧ тензорезисторов, установленных на упругом элементе (фиг.1).

3. При включении термозависимого резистора Rαвх нелинейность ТКЧ мостовой цепи смещается в область отрицательных значений, когда номинал составляет 10 Ом и более.

Таблица 1
Влияние резистора Raex на нелинейность ТКЧ мостовой цепи
, 1/°С Δαвх·10-6, 1/°С Δαд·10-6, 1/°С Rαвх Δαдо·10-6, 1/°С
5 -5 1 1 1 1,208
10 4,012
50 33,305
100 96,273
5 -5 1 5 1 5,205
10 7,894
50 37,176
100 100,043
5 -5 1 10 1 10,201
10 12,948
50 42,015
100 104,755
5 -5 5 1 1 0,608
10 -1,878
50 5,931
100 45,883
5 -5 5 5 1 4,605

Продолжение таблицы 1
, 1/°С Δαвх·10-6, 1/°С Δαд·10-6, 1/°С Rαвх Δαдо·10-6, 1/°С
5 -5 5 5 10 2,093
50 9,802
100 49,653
5 -5 5 10 1 9,602
10 7,058
50 14,641
100 54,365
5 -5 10 1 1 -0,141
10 -9,241
50 -28,286
100 -17,105
5 -5 10 5 1 3,856
10 -5,269
50 -24,415
100 -13,335
5 -5 10 10 1 8,852
10 -0,305
50 -19,576
100 -8,623

Таким образом, подбором номинала термозависимого резистора Rαвх можно преобразовать положительную нелинейность ТКЧ мостовой цепи в отрицательную.

Области применения прототипа определяется системой неравенств:

С учетом системы (11) применение прототипа возможно, когда нелинейность ТКЧ мостовой цепи Δαдо≤-2·10-6 1/°С. По этой причине для преобразования положительной нелинейности в отрицательную, обеспечивающую применение прототипа, следует решить следующее уравнение:

С целью определения областей преобразования положительной нелинейности ТКЧ мостовой цепи датчика в отрицательную была произведена оценка номинала термозависимого резистора Rαвх, необходимого для преобразования положительной нелинейности ТКЧ мостовой цепи в отрицательную, когда это возможно, при шунтировании входного сопротивления мостовой цепи термонезависимым резистором Rш, номинал которого равен входному сопротивлению мостовой цепи. Для этого было решено уравнение (12) при следующих условиях:

1) Входное сопротивление мостовой цепи: Rвх=1000 Ом;

2) Сопротивление шунта равно входному сопротивлению датчика: Rш=1000 Ом;

3) ТКЧ тензорезисторов принимает значения: αд=(0…10)·10-4 1/°С;

4) нелинейность ТКЧ тензорезисторов принимает следующие значения: Δαд=(0, 1, 5, 10)·10-4 1/°С;

5) ТКС входного сопротивления: ;

6) нелинейность ТКС входного сопротивления: ;

7) ТКС компенсационного резистора: ακ=4·10-3 1/°С.

При оценке области преобразования положительной нелинейности ТКЧ мостовой цепи в отрицательную рассматривалось одно из предельных значений нелинейности ТКС входного сопротивления (Δαвх=-5·10-6 1/°С), поскольку ранее был проведен численный эксперимент, который позволил установить, что влияние нелинейности ТКС входного сопротивления на предельное значение нелинейности ТКЧ мостовой цепи, при котором возможно преобразование положительной нелинейности ТКЧ мостовой цепи в отрицательную, во всем диапазоне возможных значений ТКС входного сопротивления и его нелинейности является малым (не более 2%).

Поскольку с ростом номинала термозависимого резистора Rαвх происходит уменьшение чувствительности датчика, то при расчетах номинала резистора Rαвх следует выбирать меньший из корней.

Результаты расчетов для Δαд=(0, 1, 5, 10)·10-4 1/°С 1/°С приводятся в таблице 2, в которую вносили меньший из корней уравнения (12), когда преобразование положительной нелинейности ТКЧ мостовой цепи в отрицательную возможно.

Таблица 2
Пределы области получения отрицательной нелинейности ТКЧ мостовой цепи
, 1/°С Δαвх·10-6, 1/°С Δαд·10-6, 1/°С Rαвх, Ом
0 -5 0 1,981 Корней нет
1,982 12,444
10,000 1,264
0 -5 1 2,424 Корней нет
2,425 15,508

Продолжение таблицы 2
, 1/°С Δαвх·10-6, 1/°С Δαд·10-6, 1/°С Rαвх, Ом
0 -5 1 10,000 1,907
0 -5 5 3,697 Корней нет
3,698 24,224
10,000 4,561
0 -5 10 4,829 Корней нет
4,830 32,537
10,000 8,081
1 -5 0 2,474 Корней нет
2,475 2,616
10,000 1,348
1 -5 1 2,918 Корней нет
2,919 15,717
10,000 2,035
1 -5 5 4,190 Корней нет
4,191 24,495
10,000 4,880
1 -5 10 5,322 Корней нет
5,323 32,712
10,000 8,681
5 -5 0 4,313 Корней нет
4,314 13,455
10,000 1,770

Продолжение таблицы 2
, 1/°С Δαвх·10-6, 1/°С Δαд·10-6, 1/°С Rαвх, Ом
5 -5 1 4,757 Корней нет
4,758 16,756
10,000 2,682
5 -5 5 6,029 Корней нет
6,030 25,687
10,000 6,535
5 -5 10 7,160 Корней нет
7,161 34,454
10,000 11,923
10 -5 0 6,282 Корней нет
6,283 14,272
10,000 2,584
10 -5 1 6,726 Корней нет
6,727 17,590
10,000 9,500
10 -5 5 7,996 Корней нет
7,997 27,544
10,000 10,059
10 -5 10 9,126 Корней нет
9,127 36,163
20,137

Анализ результатов позволяет сделать следующие выводы:

1. С помощью схемы компенсации, состоящей из термозависимого резистора Rαвх, установленного в цепь питания мостовой схемы, входное сопротивление которой зашунтировано термонезависмым резистором Rш, можно преобразовать положительное значение нелинейности ТКЧ мостовой цепи в отрицательное в ограниченной области значений ТКЧ тензорезисторов и ТКС входного сопротивления мостовой цепи.

2. Область преобразования сокращается с ростом положительной нелинейности ТКЧ тензорезисторов для всех значений ТКС входного сопротивления, см. фиг 2, таблицу 3.

3. Область преобразования сокращается с ростом ТКС входного сопротивления.

4. Область преобразования положительной нелинейности ТКЧ мостовой цепи в отрицательную сокращается с уменьшением ТКЧ мостовой цепи.

5. ТКЧ мостовой цепи в области преобразования уменьшается по сравнению с ТКЧ тензорезисторов.

На основе результатов решения уравнения (12) были установлены области преобразования положительной нелинейности ТКЧ мостовой цепи в отрицательную, заданные таблицей 3.

Таблица 3
Пределы области преобразования положительной нелинейности ТКЧ мостовой цепи в отрицательную
Нелинейность ТКЧ тензорезистора Δαд·10-6, 1/°С Минимальное значение ТКЧ тензорезистора
0 0,4301·αвх+1,982·10-4
1 0,4301·αвх+2,426·10-4
2 0,4300·αвх+2,800·10-4
3 0,4299·αвх+3,129·10-4

Продолжение таблицы 3
Нелинейность ТКЧ тензорезистора Δαд·10-6, 1/°С Минимальное значение ТКЧ тензорезистора
4 0,4299·αвх+3,426·10-4
5 0,4299·αвх+3,698·10-4
6 0,4298·αвх+3,952·10-4
7 0,4298·αвх+4,189·10-4
8 0,4297·αвх+4,414·10-4
9 0,4297·αвх+4,627·10-4
10 0,4297·αвх+4,830·10-4

Для проверки правильности предложенного решения произведем расчет компенсационных элементов и мультипликативной чувствительности датчика после компенсации.

Пример

Произвести компенсацию мультипликативной температурной погрешности и определить температурные чувствительности датчика с равноплечей мостовой измерительной цепью при температурах, соответствующих пределам рабочего диапазона температур, с учетом следующих исходных данных:

- сопротивления тензорезисторов: R1=R2=R3=R4=1000 Ом;

- ТКС термозависимых резисторов Rαвх и Rαвых составляет: αк=4·10-3 1/°С;

- ТКС выходного сопротивления при температурах, соответствующих пределам рабочего диапазона температур: ;

- ТКС входного сопротивления при температурах, соответствующих пределам рабочего диапазона температур: ;

- ТКЧ тензорезисторов при температурах, соответствующих пределам рабочего диапазона температур: ;

- суммарное относительное изменение сопротивления тензорезисторов при номинальном значении измеряемого параметра ;

- температурный диапазон эксплуатации датчика: 20±100°С;

- напряжение питания Uпит=10 В.

Поскольку нелинейность ТКЧ мостовой цепи и сопротивление источника питания пренебрежимо мало, то для обеспечения отрицательной нелинейности ТКЧ мостовой цепи датчика следует включить термозависимый резистор Rαвх в цепь питании и произвести шунтирование входного сопротивления термонезависимым шунтом Rш. Для проверки возможности применения предлагаемого схемного способа следует проверить принадлежность ТКЧ мостовой цепи и его нелинейности области преобразования положительной нелинейности ТКЧ мостовой цепи в отрицательную. С учетом того, что , , в соответствии с таблицей (3) область преобразования положительной нелинейности ТКЧ мостовой цепи в отрицательную определяется неравенством:

.

Выполнение данного неравенства позволяет сделать вывод о том, что преобразовать положительную нелинейность ТКЧ мостовой цепи в отрицательную можно путем включения термозависимого резисторами Rαвх в цепь питания мостовой цепи, входное сопротивление которой зашунтировано термонезависимым резистором Rш.

Выходное сопротивление зашунтированной мостовой цепи составит:

.

ТКС входного сопротивления зашунтированной мостовой цепи, в соответствии с (5) при t+=120°С:

.

При t-=-80°С ТКС зашунтированной мостовой цепи составит:

.

Для вычисления номинала термозависимого резистора Rαвх следует решить уравнение (12):

.

Решением данного уравнения является номинал Rαвх=20,138 Ом. В этом случае номинальный выходной сигнал, в соответствии с (6), составит:

При температуре t+=120°С выходное напряжение мостовой цепи в соответствии с (7) составит:

При температуре t-=-80°С выходное напряжение мостовой цепи составит:

Тогда ТКЧ мостовой цепи после включения термозавсимого резистора Rαвх составит:

;

;

С учетом ТКС выходного сопротивления мостовой цепи , полученного значения ТКЧ мостовой цепи и его нелинейности Δαд=-2·10-6 1/°С система (11), определяющая область применения прототипа, примет вид:

Приведенная система подтверждает, что для компенсации мультипликативной температурной погрешности можно включить термозависимый резистор Rαвых, зашунтированный термонезависимым резистором Rдвых, в выходную диагональ мостовой цепи датчика. Сопротивление нагрузки должно составлять Rн≤2 кОм. Допустим, что датчик после включения компенсационных резисторов будет подключен к нагрузке Rн=2 кОм. Для вычисления номиналов компенсационных резисторов необходимо решить следующую систему уравнений в соответствии с прототипом:

Решением данной системы уравнений являются следующие номиналы компенсационных резисторов: Rαвых=513,671 Ом, Rдвых=5,021·109 Ом. При включении компенсационных элементов схема примет вид, изображенный на фиг.3.

Для оценки мультипликативной чувствительности следует вычислить выходной сигнал датчика при нормальных условиях и при воздействии температуры. Номинал резистора Rдвых является довольно большим, поэтому для компенсации мультипликативной температурной погрешности достаточно установить только термозависимый резистор Rαвых=513,671 Ом.

Номинальный выходной сигнала датчика после компенсации температурной погрешности составит:

.

При температуре t+=120°С выходной сигнал датчика составит:

При температуре t-=-80°С выходной сигнал датчика составит:

С учетом полученных выходных напряжений датчика в соответствии с прототипом мультипликативная чувствительность датчика к температуре составит:

;

.

Таким образом, полученная после компенсации чувствительность значительно меньше предельно допустимого значения температурной чувствительности (Skt=10-4 1/°С).

Предлагаемый способ полной компенсации мультипликативной температурной погрешности показал высокую точность компенсации, которая зависит только от точности изготовления компенсационных резисторов и точности определения физических характеристик тензорезисторов.

Способ настройки тензорезисторных датчиков с мостовой измерительной цепью по мультипликативной температурной погрешности с учетом положительной нелинейности температурной характеристики выходного сигнала датчика, заключающийся в том, что при сопротивлении нагрузки R>500 кОм определяют температурный коэффициент чувствительности (ТКЧ) мостовой цепи и для диапазона температур Δt=t-t и Δt=t-t, где t, t, t - нормальная температура, верхний и нижний предел рабочего диапазона температур соответственно, вычисляют нелинейность ТКЧ мостовой цепи , если нелинейность ТКЧ мостовой цепи принимает отрицательное значение, то при сопротивлении нагрузки R≤2 кОм определяют выходное сопротивление мостовой цепи, ТКС выходного сопротивления мостовой цепи для диапазона температур Δt и Δt, проверяют нахождение ТКЧ мостовой цепи и нелинейности ТКЧ мостовой цепи в области применения и, если параметры датчика находятся в области применения, вычисляют номинал резисторов R и R, устанавливают термозависимый резистор R, зашунтированный термонезависимым резистором R, в выходную диагональ мостовой цепи датчика, отличающийся тем, что, если нелинейность ТКЧ мостовой цепи принимает положительной значение, то после определения нелинейности ТКЧ мостовой цепи и до определения выходного сопротивления мостовой цепи, а также ТКС выходного сопротивления мостовой цепи, преобразуют положительную нелинейность ТКЧ мостовой цепи в отрицательную путем включения термозависимого резистора R в диагональ питания мостовой цепи, входное сопротивление которой шунтируется термонезависимым резистором R, для чего определяют при R>500 кОм ТКЧ тензорезисторов и для диапазона температур Δt и Δt соответственно, вычисляют нелинейность ТКЧ тензорезисторов определяют величину входного сопротивления R, ТКС входного сопротивления , для диапазона температур Δt и Δt соответственно, выявляют нахождение и Δα в области, заданной таблицей если и Δα удовлетворяют условиям, приведенным в таблице, принимают номинал шунта R равным входному сопротивлению датчика, определяют величину номинала термозависимого резистора R, решая уравнение: где - ТКС входного сопротивления мостовой цепи, зашунтированной термонезависимым резистором R;включают термозависимый резистор R в диагональ питания мостовой цепи датчика, термонезависимым резистором R шунтируют входное сопротивление мостовой цепи, определяют ТКЧ мостовой цепи датчика и его нелинейность после включения термозависимого резистора R и термонезависимого резистора R.
СПОСОБ НАСТРОЙКИ ТЕНЗОРЕЗИСТОРНЫХ ДАТЧИКОВ С МОСТОВОЙ ИЗМЕРИТЕЛЬНОЙ ЦЕПЬЮ ПО МУЛЬТИПЛИКАТИВНОЙ ТЕМПЕРАТУРНОЙ ПОГРЕШНОСТИ С УЧЕТОМ ПОЛОЖИТЕЛЬНОЙ НЕЛИНЕЙНОСТИ ТЕМПЕРАТУРНОЙ ХАРАКТЕРИСТИКИ ВЫХОДНОГО СИГНАЛА ДАТЧИКА
СПОСОБ НАСТРОЙКИ ТЕНЗОРЕЗИСТОРНЫХ ДАТЧИКОВ С МОСТОВОЙ ИЗМЕРИТЕЛЬНОЙ ЦЕПЬЮ ПО МУЛЬТИПЛИКАТИВНОЙ ТЕМПЕРАТУРНОЙ ПОГРЕШНОСТИ С УЧЕТОМ ПОЛОЖИТЕЛЬНОЙ НЕЛИНЕЙНОСТИ ТЕМПЕРАТУРНОЙ ХАРАКТЕРИСТИКИ ВЫХОДНОГО СИГНАЛА ДАТЧИКА
СПОСОБ НАСТРОЙКИ ТЕНЗОРЕЗИСТОРНЫХ ДАТЧИКОВ С МОСТОВОЙ ИЗМЕРИТЕЛЬНОЙ ЦЕПЬЮ ПО МУЛЬТИПЛИКАТИВНОЙ ТЕМПЕРАТУРНОЙ ПОГРЕШНОСТИ С УЧЕТОМ ПОЛОЖИТЕЛЬНОЙ НЕЛИНЕЙНОСТИ ТЕМПЕРАТУРНОЙ ХАРАКТЕРИСТИКИ ВЫХОДНОГО СИГНАЛА ДАТЧИКА
СПОСОБ НАСТРОЙКИ ТЕНЗОРЕЗИСТОРНЫХ ДАТЧИКОВ С МОСТОВОЙ ИЗМЕРИТЕЛЬНОЙ ЦЕПЬЮ ПО МУЛЬТИПЛИКАТИВНОЙ ТЕМПЕРАТУРНОЙ ПОГРЕШНОСТИ С УЧЕТОМ ПОЛОЖИТЕЛЬНОЙ НЕЛИНЕЙНОСТИ ТЕМПЕРАТУРНОЙ ХАРАКТЕРИСТИКИ ВЫХОДНОГО СИГНАЛА ДАТЧИКА
СПОСОБ НАСТРОЙКИ ТЕНЗОРЕЗИСТОРНЫХ ДАТЧИКОВ С МОСТОВОЙ ИЗМЕРИТЕЛЬНОЙ ЦЕПЬЮ ПО МУЛЬТИПЛИКАТИВНОЙ ТЕМПЕРАТУРНОЙ ПОГРЕШНОСТИ С УЧЕТОМ ПОЛОЖИТЕЛЬНОЙ НЕЛИНЕЙНОСТИ ТЕМПЕРАТУРНОЙ ХАРАКТЕРИСТИКИ ВЫХОДНОГО СИГНАЛА ДАТЧИКА
СПОСОБ НАСТРОЙКИ ТЕНЗОРЕЗИСТОРНЫХ ДАТЧИКОВ С МОСТОВОЙ ИЗМЕРИТЕЛЬНОЙ ЦЕПЬЮ ПО МУЛЬТИПЛИКАТИВНОЙ ТЕМПЕРАТУРНОЙ ПОГРЕШНОСТИ С УЧЕТОМ ПОЛОЖИТЕЛЬНОЙ НЕЛИНЕЙНОСТИ ТЕМПЕРАТУРНОЙ ХАРАКТЕРИСТИКИ ВЫХОДНОГО СИГНАЛА ДАТЧИКА
СПОСОБ НАСТРОЙКИ ТЕНЗОРЕЗИСТОРНЫХ ДАТЧИКОВ С МОСТОВОЙ ИЗМЕРИТЕЛЬНОЙ ЦЕПЬЮ ПО МУЛЬТИПЛИКАТИВНОЙ ТЕМПЕРАТУРНОЙ ПОГРЕШНОСТИ С УЧЕТОМ ПОЛОЖИТЕЛЬНОЙ НЕЛИНЕЙНОСТИ ТЕМПЕРАТУРНОЙ ХАРАКТЕРИСТИКИ ВЫХОДНОГО СИГНАЛА ДАТЧИКА
СПОСОБ НАСТРОЙКИ ТЕНЗОРЕЗИСТОРНЫХ ДАТЧИКОВ С МОСТОВОЙ ИЗМЕРИТЕЛЬНОЙ ЦЕПЬЮ ПО МУЛЬТИПЛИКАТИВНОЙ ТЕМПЕРАТУРНОЙ ПОГРЕШНОСТИ С УЧЕТОМ ПОЛОЖИТЕЛЬНОЙ НЕЛИНЕЙНОСТИ ТЕМПЕРАТУРНОЙ ХАРАКТЕРИСТИКИ ВЫХОДНОГО СИГНАЛА ДАТЧИКА
СПОСОБ НАСТРОЙКИ ТЕНЗОРЕЗИСТОРНЫХ ДАТЧИКОВ С МОСТОВОЙ ИЗМЕРИТЕЛЬНОЙ ЦЕПЬЮ ПО МУЛЬТИПЛИКАТИВНОЙ ТЕМПЕРАТУРНОЙ ПОГРЕШНОСТИ С УЧЕТОМ ПОЛОЖИТЕЛЬНОЙ НЕЛИНЕЙНОСТИ ТЕМПЕРАТУРНОЙ ХАРАКТЕРИСТИКИ ВЫХОДНОГО СИГНАЛА ДАТЧИКА
СПОСОБ НАСТРОЙКИ ТЕНЗОРЕЗИСТОРНЫХ ДАТЧИКОВ С МОСТОВОЙ ИЗМЕРИТЕЛЬНОЙ ЦЕПЬЮ ПО МУЛЬТИПЛИКАТИВНОЙ ТЕМПЕРАТУРНОЙ ПОГРЕШНОСТИ С УЧЕТОМ ПОЛОЖИТЕЛЬНОЙ НЕЛИНЕЙНОСТИ ТЕМПЕРАТУРНОЙ ХАРАКТЕРИСТИКИ ВЫХОДНОГО СИГНАЛА ДАТЧИКА
СПОСОБ НАСТРОЙКИ ТЕНЗОРЕЗИСТОРНЫХ ДАТЧИКОВ С МОСТОВОЙ ИЗМЕРИТЕЛЬНОЙ ЦЕПЬЮ ПО МУЛЬТИПЛИКАТИВНОЙ ТЕМПЕРАТУРНОЙ ПОГРЕШНОСТИ С УЧЕТОМ ПОЛОЖИТЕЛЬНОЙ НЕЛИНЕЙНОСТИ ТЕМПЕРАТУРНОЙ ХАРАКТЕРИСТИКИ ВЫХОДНОГО СИГНАЛА ДАТЧИКА
СПОСОБ НАСТРОЙКИ ТЕНЗОРЕЗИСТОРНЫХ ДАТЧИКОВ С МОСТОВОЙ ИЗМЕРИТЕЛЬНОЙ ЦЕПЬЮ ПО МУЛЬТИПЛИКАТИВНОЙ ТЕМПЕРАТУРНОЙ ПОГРЕШНОСТИ С УЧЕТОМ ПОЛОЖИТЕЛЬНОЙ НЕЛИНЕЙНОСТИ ТЕМПЕРАТУРНОЙ ХАРАКТЕРИСТИКИ ВЫХОДНОГО СИГНАЛА ДАТЧИКА
СПОСОБ НАСТРОЙКИ ТЕНЗОРЕЗИСТОРНЫХ ДАТЧИКОВ С МОСТОВОЙ ИЗМЕРИТЕЛЬНОЙ ЦЕПЬЮ ПО МУЛЬТИПЛИКАТИВНОЙ ТЕМПЕРАТУРНОЙ ПОГРЕШНОСТИ С УЧЕТОМ ПОЛОЖИТЕЛЬНОЙ НЕЛИНЕЙНОСТИ ТЕМПЕРАТУРНОЙ ХАРАКТЕРИСТИКИ ВЫХОДНОГО СИГНАЛА ДАТЧИКА
СПОСОБ НАСТРОЙКИ ТЕНЗОРЕЗИСТОРНЫХ ДАТЧИКОВ С МОСТОВОЙ ИЗМЕРИТЕЛЬНОЙ ЦЕПЬЮ ПО МУЛЬТИПЛИКАТИВНОЙ ТЕМПЕРАТУРНОЙ ПОГРЕШНОСТИ С УЧЕТОМ ПОЛОЖИТЕЛЬНОЙ НЕЛИНЕЙНОСТИ ТЕМПЕРАТУРНОЙ ХАРАКТЕРИСТИКИ ВЫХОДНОГО СИГНАЛА ДАТЧИКА
СПОСОБ НАСТРОЙКИ ТЕНЗОРЕЗИСТОРНЫХ ДАТЧИКОВ С МОСТОВОЙ ИЗМЕРИТЕЛЬНОЙ ЦЕПЬЮ ПО МУЛЬТИПЛИКАТИВНОЙ ТЕМПЕРАТУРНОЙ ПОГРЕШНОСТИ С УЧЕТОМ ПОЛОЖИТЕЛЬНОЙ НЕЛИНЕЙНОСТИ ТЕМПЕРАТУРНОЙ ХАРАКТЕРИСТИКИ ВЫХОДНОГО СИГНАЛА ДАТЧИКА
СПОСОБ НАСТРОЙКИ ТЕНЗОРЕЗИСТОРНЫХ ДАТЧИКОВ С МОСТОВОЙ ИЗМЕРИТЕЛЬНОЙ ЦЕПЬЮ ПО МУЛЬТИПЛИКАТИВНОЙ ТЕМПЕРАТУРНОЙ ПОГРЕШНОСТИ С УЧЕТОМ ПОЛОЖИТЕЛЬНОЙ НЕЛИНЕЙНОСТИ ТЕМПЕРАТУРНОЙ ХАРАКТЕРИСТИКИ ВЫХОДНОГО СИГНАЛА ДАТЧИКА
СПОСОБ НАСТРОЙКИ ТЕНЗОРЕЗИСТОРНЫХ ДАТЧИКОВ С МОСТОВОЙ ИЗМЕРИТЕЛЬНОЙ ЦЕПЬЮ ПО МУЛЬТИПЛИКАТИВНОЙ ТЕМПЕРАТУРНОЙ ПОГРЕШНОСТИ С УЧЕТОМ ПОЛОЖИТЕЛЬНОЙ НЕЛИНЕЙНОСТИ ТЕМПЕРАТУРНОЙ ХАРАКТЕРИСТИКИ ВЫХОДНОГО СИГНАЛА ДАТЧИКА
СПОСОБ НАСТРОЙКИ ТЕНЗОРЕЗИСТОРНЫХ ДАТЧИКОВ С МОСТОВОЙ ИЗМЕРИТЕЛЬНОЙ ЦЕПЬЮ ПО МУЛЬТИПЛИКАТИВНОЙ ТЕМПЕРАТУРНОЙ ПОГРЕШНОСТИ С УЧЕТОМ ПОЛОЖИТЕЛЬНОЙ НЕЛИНЕЙНОСТИ ТЕМПЕРАТУРНОЙ ХАРАКТЕРИСТИКИ ВЫХОДНОГО СИГНАЛА ДАТЧИКА
СПОСОБ НАСТРОЙКИ ТЕНЗОРЕЗИСТОРНЫХ ДАТЧИКОВ С МОСТОВОЙ ИЗМЕРИТЕЛЬНОЙ ЦЕПЬЮ ПО МУЛЬТИПЛИКАТИВНОЙ ТЕМПЕРАТУРНОЙ ПОГРЕШНОСТИ С УЧЕТОМ ПОЛОЖИТЕЛЬНОЙ НЕЛИНЕЙНОСТИ ТЕМПЕРАТУРНОЙ ХАРАКТЕРИСТИКИ ВЫХОДНОГО СИГНАЛА ДАТЧИКА
Источник поступления информации: Роспатент

Показаны записи 11-11 из 11.
10.12.2015
№216.013.95a1

Косвенный способ настройки тензорезисторных датчиков с мостовой измерительной цепью по мультипликативной температурной погрешности с учетом нелинейности температурной характеристики выходного сигнала датчика

Изобретение относится к измерительной технике. Сущность: датчик подключают к высокоомной нагрузке R>500 кОм, измеряют начальный разбаланс и выходной сигнал датчика при нормальной температуре t, а также температурах t и t, соответствующих верхнему и нижнему пределу рабочего диапазона температур....
Тип: Изобретение
Номер охранного документа: 0002569925
Дата охранного документа: 10.12.2015
Показаны записи 81-90 из 412.
20.10.2013
№216.012.76bf

Система теплоснабжения

Изобретение относится к области теплоэнергетики и может быть использовано в городских системах теплоснабжения. Система теплоснабжения, содержащая централизованный базовый и установленный в местной системе потребителя пиковый источники теплоты, подключенные подающими и обратными сетевыми...
Тип: Изобретение
Номер охранного документа: 0002496059
Дата охранного документа: 20.10.2013
27.10.2013
№216.012.7b1f

Логический модуль

Изобретение предназначено для реализации симметричных логических функций и может быть использовано в системах цифровой вычислительной техники как средство преобразования кодов. Техническим результатом является обеспечение реализации любой из трех простых симметричных булевых функций, зависящих...
Тип: Изобретение
Номер охранного документа: 0002497181
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.7b28

Функциональный формирователь

Изобретение предназначено для воспроизведения функций непрерывной логики и может быть использовано в системах вычислительной техники как средство логической обработки континуальных данных. Техническим результатом является обеспечение воспроизведения произвольной непрерывно-логической функции,...
Тип: Изобретение
Номер охранного документа: 0002497190
Дата охранного документа: 27.10.2013
20.12.2013
№216.012.8cf4

Способ конвективной сушки керамических изделий с регенерацией сушильного агента в трубе газодинамической температурной стратификации

Изобретение относится к технологическим процессам сушки керамических изделий. Техническим результатом предлагаемого способа является повышение энергетической эффективности процесса сушки. Способ сушки включает регенерацию сушильного агента, заключающуюся в том, что сушильный агент подают в...
Тип: Изобретение
Номер охранного документа: 0002501767
Дата охранного документа: 20.12.2013
27.12.2013
№216.012.9140

Способ работы тепловой электрической станции

Изобретение относится к области теплоэнергетики и может быть использовано на тепловых электростанциях. В котле вырабатывают пар и направляют в турбину, затем пар конденсируют в конденсаторе, основной конденсат турбины удаляют из конденсатора по трубопроводу основного конденсата конденсатным...
Тип: Изобретение
Номер охранного документа: 0002502877
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.9141

Способ работы тепловой электрической станции

Изобретение относится к области теплоэнергетики и может быть использовано на тепловых электростанциях. В котле вырабатывают пар и направляют в турбину, затем пар конденсируют в конденсаторе, основной конденсат турбины удаляют из конденсатора по трубопроводу основного конденсата конденсатным...
Тип: Изобретение
Номер охранного документа: 0002502878
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.9142

Способ работы тепловой электрической станции

Изобретение относится к области теплоэнергетики и может быть использовано на тепловых электростанциях. В котле вырабатывают пар и направляют в турбину, затем пар конденсируют в конденсаторе, основной конденсат турбины удаляют из конденсатора по трубопроводу основного конденсата конденсатным...
Тип: Изобретение
Номер охранного документа: 0002502879
Дата охранного документа: 27.12.2013
10.01.2014
№216.012.93ce

Способ комбинированной обработки точением и поверхностным пластическим деформированием

Способ относится к комбинированной обработке точением и поверхностным пластическим деформированием цилиндрической поверхности вращающейся заготовки. Для повышения производительности формирования в поверхностном слое заготовки остаточных сжимающих напряжений обработку ведут токарным резцом и...
Тип: Изобретение
Номер охранного документа: 0002503532
Дата охранного документа: 10.01.2014
10.01.2014
№216.012.93cf

Устройство для микроподачи заготовок при шлифовании

Изобретение относится к абразивной обработке и может быть использовано в машиностроении и приборостроении при окончательной обработке заготовок шлифованием. Устройство для микроподачи заготовок содержит основание, расположенную параллельно ему верхнюю плиту и силовой элемент, включающий упор и...
Тип: Изобретение
Номер охранного документа: 0002503533
Дата охранного документа: 10.01.2014
10.01.2014
№216.012.93d1

Шлифовальный круг

Изобретение относится к машиностроению, а именно к области абразивной обработки материалов с применением СОЖ, и может быть использовано при круглом наружном, бесцентровом, плоском и других видах шлифования. Шлифовальный круг выполнен в виде ступенчатого диска с центральным посадочным...
Тип: Изобретение
Номер охранного документа: 0002503535
Дата охранного документа: 10.01.2014
+ добавить свой РИД