×
10.02.2014
216.012.9e5b

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЕВОЙ КЕРАМИКИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к порошковой металлургии и может быть использовано в производстве высокопрочных конструктивных и инструментальных материалов и изделий, например, волочильных инструментов. Способ получения циркониевой керамики заключается в том, что порошковый материал на основе диоксида циркония компактируют, размещают компакт на подложке из тугоплавкого материала в вакуумной камере, создают в ней давление остаточных газов от 5 до 20 Па, нагревают компакт и подложку электронным излучением до температуры от 1300 до 1350°С, выдерживают под действием излучения при этой температуре в течение не менее 20 мин. Во время нагрева и выдержки в нагретом состоянии постоянно измеряют температуру компакта со стороны воздействия электронного излучения и с противоположной. Обеспечивают разницу измеряемых температур не более 5С регулировкой дозы электронного излучения, попадающего на компакт, посредством изменения положения плоской заслонки из тугоплавкого материала, размещенной между источником электронного излучения и компактом, устанавливая при этом заслонку в вертикальное или горизонтальное положение. Технический результат - получение керамики с равномерно твердыми поверхностями и равномерными механическими свойствами. 1 табл., 1 ил.
Основные результаты: Способ получения циркониевой керамики, заключающийся в том, что порошковый материал на основе диоксида циркония компактируют, размещают компакт на подложке из тугоплавкого материала в вакуумной камере, создают в ней давление остаточных газов от 5 до 20 Па, нагревают компакт и подложку электронным излучением до температуры от 1300 до 1350°С, выдерживают под действием излучения при этой температуре в течение не менее 20 мин, при этом температуру компакта контролируют, измеряя температуру одной из его сторон, отличающийся тем, что во время нагрева и выдержки в нагретом состоянии под действием электронного излучения постоянно измеряют температуру компакта со стороны воздействия электронного излучения и с противоположной, обеспечивают разницу измеряемых температур не более 5°С регулировкой дозы электронного излучения, попадающего на компакт, посредством изменения положения плоской заслонки из тугоплавкого материала, размещенной между источником электронного излучения и компактом, устанавливая при этом заслонку в вертикальное или горизонтальное положение.

Изобретение относится к порошковой металлургии и может быть использовано в производстве высокопрочных конструктивных и инструментальных материалов и изделий, например волочильных инструментов.

Известен способ получения циркониевой керамики (Гынгазов С.А., Франгульян Т.С., Гореев А.К., Климов А.С. О возможности спекания циркониевой керамики пучком низкоэнергетических электронов // Известия вузов. Физика. - 2011 - Т. 54 - №. 1/3 - С.355-359), заключающийся в том, что порошковый материал на основе диоксида циркония компактируют, размещают компакт на подложке из тугоплавкого материала в вакуумной камере, создают в ней давление остаточных газов от 5 до 20 Па, нагревают компакт и подложку до температуры от 1300 до 1350°С электронным излучением, выдерживают под действием излучения при этой температуре в течение не менее 20 мин, при этом температуру компакта контролируют, измеряя температуру одной из его сторон.

Полученная керамика имеет невысокий уровень равномерности механических характеристик по объему полученного образца. Это обусловлено неравномерностью нагрева компакта во время спекания вследствие возникающего дисбаланса тепловых потоков между поверхностью, на которую воздействует электронное излучение, и противоположной. Последняя нагревается за счет теплопередачи через объем компакта от поверхности, на которую воздействует электронное излучение, и за счет теплового излучения со стороны подложки из тугоплавкого материала, нагреваемой электронным излучением, попадающим на ее поверхность вне проекции компакта.

В способе-прототипе регулировка соотношения поступающих тепловых потоков в объем компакта с разных его поверхностей не предусмотрена.

Задачей изобретения является получение циркониевой керамики с равномерно твердыми поверхностями.

Поставленная задача решена за счет того, что в способе получения циркониевой керамики, так же как в прототипе, порошковый материал на основе диоксида циркония компактируют, размещают компакт на подложке из тугоплавкого материала в вакуумной камере, создают в ней давление остаточных газов от 5 до 20 Па, нагревают компакт и подложку до температуры от 1300 до 1350°С электронным излучением, выдерживают под действием излучения при этой температуре в течение не менее 20 мин, при этом температуру компакта контролируют, измеряя температуру одной из его сторон.

Согласно изобретению во время нагрева электронным излучением и выдержки в нагретом состоянии под действием этого излучения постоянно измеряют температуру компакта со стороны воздействия электронного излучения и с противоположной. Обеспечивают разницу измеряемых температур не более 5°С регулировкой дозы электронного излучения, попадающего на компакт, посредством изменения положения плоской заслонки из тугоплавкого материала, размещенной между источником электронного излучения и компактом, устанавливая при этом заслонку в вертикальное или горизонтальное положение.

Таким образом, более равномерный нагрев компакта обеспечивает получение циркониевой керамики с равномерно твердыми поверхностями.

На фиг.1 представлена схема установки для спекания компактов.

В таблице 1 представлены результаты получения циркониевой керамики предлагаемым способом и способом-прототипом.

Предложенный способ получения циркониевой керамики

осуществляли с помощью установки для спекания компактов, содержащей вакуумную камеру 1 (ВК), внутри которой размещен источник электронов 2 (ИЭ), перед которым на оси траектории распространения электронного излучения расположен держатель 3 компакта, две термопары 4 и 5, измерительные спаи которых расположены в области держателя 3 компакта так, чтобы они контактировали с верхней и нижней поверхностями спекаемого компакта 6. Между источником электронов 2 (ИЭ) и компактом 6, помещенным на держатель 3, размещена плоская заслонка 7, закрепленная на поворотном механизме 8 (ПМ). Блок управления заслонкой 9 (БУЗ), расположенный вне вакуумной камеры 1 (ВК), электрически связан с термопарами 4, 5 и с поворотным механизмом 8 (ПМ).

Вакуумная камера 1 (ВК) представляет собой герметичную металлическую конструкцию, снабженную фланцами и электрическими разъемами.

Источник электронов 2 (ИЭ) представляет собой плазменный источник электронов в форвакуумной области давлений 5-15 Па (Жирков И.С., Федоров М.В., Осипов И.В. и др. // Приборы и техника эксперимента. - 2005. - №6. - С.66-68). Технические характеристики плазменного источника электронного пучка:

- ускоряющее напряжение - от 2 до 25 кВт;

- ток разряда - от 0,1 до 1 А;

- ток электронного пучка - от 0,1 до 0,5 А;

- мощность электронного пучка - до 5 кВ;

- рабочий газ - остаточная атмосфера;

- давление рабочего газа - от 5 до 20 Па;

- режим работы - непрерывный;

- диаметр электронного пучка - от 3 до 20 мм;

- плотность мощности - не менее 50 кВт/см.

Держатель компакта 3 и заслонка 7 выполнены из вольфрамовых

пластин. Термопары 4 и 5 представляют собой платина-платинородиевые термопары. Поворотный механизм 8 (ПМ) представляет собой тяговое реле.

Блок управления заслонкой 9 (БУЗ) представляет собой аналоговый компаратор (http://chipenable.ru/index.php/how-connection/99-comparator-trigger-shmitta.html). Его схема выполнена на базе сумматора аналоговых сигналов на операционных усилителях (http://logic-bratsk.m/radio/ewb/ewb_kg/3 -4-2/3 -4-2. htm).

В качестве сырья для изготовления компактов использовали ультрадисперсные порошки твердого раствора ZrO2 - 3 мол.% Y2О3, синтезированные в Сибирском химическом комбинате методом разложения водных растворов азотнокислых солей циркония и иттрия в плазме высокочастотного разряда.

Компакт 6 формовали сухим одноосным прессованием при помощи пресса ПГР-10 в виде таблеток диаметром 9 мм и толщиной 3,5 мм при давлении 600 МПа.

Компакт 6 размещали в вакуумной камере 1 (ВК) на держателе 3 в плоскости падения электронною пучка так, чтобы диаметр пучка в этой плоскости превышал размеры компакта 6 и перекрывал большую часть поверхности держателя 3 вне поверхности, занятой компактом 6. К верхней и нижней поверхностям компакта 6 прижимали измерительные спаи термопар 4 и 5, соответственно.

Затем проводили откачку воздуха из вакуумной камеры 1 (ВК) до форвакуумных давлений от 5 до 20 Па и включали питание источника электронов 2 (ИЭ) (на фиг.1 не показан) и питание блока управления заслонкой 9 (БУЗ).

На основании сравнения сигналов ЭДС измерительных термопар 4 и 5 блок управления заслонок 9 (БУЗ) формировал сигнал для управления поворотным механизмом 8 (ПМ) по следующему алгоритму. Как только разница измеряемых термопарами 4 и 5 ЭДС достигала значения более чем +3×10-5 В, заслонка 7 при помощи поворотного механизма 8 (ПМ) приводилась в горизонтальное положение, соответствующее максимальному перекрытию электронного пучка в области размещения компакта 6. И, наоборот, при достижении значения более - 3×10-5В заслонка 7 переводилась в вертикальное положение, соответствующее максимальному облучению поверхности компакта 6 электронным пучком.

По показаниям ЭДС одной из термопар 4 или 5 определяли температуру компакта. Путем регулировки тока пучка электронного излучения источника электронов 2 (ИЭ) нагревали по линейному закону компакт 6 до температуры спекания от 1300 до 1350°С. При этой температуре компакт 6 выдерживали под действием электронного излучения в течение заданного времени. После окончания времени спекания выключали питание источника электронов 2 (ИЭ) и блока управления заслонкой 9 (БУЗ) и естественным образом охлаждали спеченный компакт до комнатной температуры. После чего напускали воздух в вакуумную камеру 1 (ВК) и извлекали компакт.

Из одной и той же партии ультрадисперсных порошков были приготовлены 40 компактов. При средней толщине 3,5 мм отклонение от данной величины от образца к образцу составляло не более 0,01 мм.

Данная партия компактов была разделена на две группы по 20 компактов. Компакты из первой группы спекали согласно способу-прототипу. Компакты из второй группы спекали по предлагаемому способу. При спекании компактов по способу-прототипу заслонку 7 фиксировали в вертикальном положении. Спекание образцов провели при остаточном давлении в вакуумной камере 1 (ВК) - 5, 10 и 20 Па. Вне этого диапазона источник электронов 2 (ИЭ) работает неустойчиво, поэтому спекание при давлении, не соответствующему данному интервалу, нецелесообразно.

Спекание провели при температурах изотермической выдержки, начиная с 1275°С с шагом 25 градусов, кончая температурой 1375°С.

Измеренные со стороны электронного облучения и с противоположной стороны значения микротвердости циркониевой керамики, полученной по способу-прототипу и по предлагаемому способу при различных давлениях воздушной среды и температурах при времени спекания 20 минут, приведены в таблице 1.

В диапазоне рабочих давлений от 5 до 20 Па наименьший разброс значений миротвердости порядка 1-1,5% получен для предлагаемого способа в диапазоне температуры спекания от 1300 до 1350°С. При спекании компактов по способу-прототипу, независимо от температуры спекания, разброс значений микротвердости достигает 25-30%. При уменьшении времени спекания до 15 минут образцы циркониевой керамики, независимо от способа изготовления, обладали пониженным значением микротвердости при сохранении характерного для рассматриваемых способов разброса значений миикротвердости. То есть уменьшение времени спекания менее 20 минут приводит к резкому ухудшению качества спекаемой керамики. При увеличении времени спекания до 30 минут получены значения микротвердости, аналогичные представленным в таблице 1. То есть увеличение времени спекания более 20 минут не приводит к заметному улучшению свойств полученной циркониевой керамики.

Для проверки влияния степени выравнивания температур нижней и верхней поверхностей компакта на результаты спекания циркониевой керамики указанную последовательность действий провели для точности поддержания температуры ±10 градусов. В этом случае разброс значений микротвердости в предлагаемом способе увеличился до 15-20%. Опытным путем установлено, что наиболее оптимальным для получения равномерности механических свойств спеченной керамики является режим поддержания разницы температур противоположных сторон компакта не более чем ±5 градусов.

Таким образом, предлагаемый способ позволяет осуществлять равномерное спекание компактов и обеспечивает получение циркониевой керамики с равномерно твердыми повехностями.

Способ получения циркониевой керамики

Таблица 1
Давление остаточных газов в вакуумной камере, Па Температура спекания, °С Способ спекания Микротвердость керамики
Сверху, ГПа Снизу, ГПа
5 1275 Прототип 9,3 6,8
Предлагаемый 10,8 10,5
1300 Прототип 10,6 8,2
Предлагаемый 10,9 10,9
1325 Прототип 11,5 8,7
Предлагаемый 11,9 11,8
1350 Прототип 11,0 9,2
Предлагаемый 11,0 11,4
1375 Прототип 10,9 9,9
Предлагаемый 11,1 10,0
12 1275 Прототип 9,2 6,7
Предлагаемый 10,9 10,1
1300 Прототип 10,7 8,3
Предлагаемый 11,9 11,8
1325 Прототип 11,2 8,8
Предлагаемый 11,9 11,9
1350 Прототип 11,1 9,1
Предлагаемый 11,4 11,5
1375 Прототип 11,1 8,8
Предлагаемый 11,5 10,5
20 1275 Прототип 9,0 7,4
Предлагаемый 10,9 10,2
1300 Прототип 10,5 8,0
Предлагаемый 10,8 10,9
1325 Прототип 11,4 8,2
Предлагаемый 11,7 11,8
1350 Прототип 11,2 8,2
Предлагаемый 11,6 11,6
1375 Прототип 10,9 9,1
Предлагаемый 11,0 10,2

Способ получения циркониевой керамики, заключающийся в том, что порошковый материал на основе диоксида циркония компактируют, размещают компакт на подложке из тугоплавкого материала в вакуумной камере, создают в ней давление остаточных газов от 5 до 20 Па, нагревают компакт и подложку электронным излучением до температуры от 1300 до 1350°С, выдерживают под действием излучения при этой температуре в течение не менее 20 мин, при этом температуру компакта контролируют, измеряя температуру одной из его сторон, отличающийся тем, что во время нагрева и выдержки в нагретом состоянии под действием электронного излучения постоянно измеряют температуру компакта со стороны воздействия электронного излучения и с противоположной, обеспечивают разницу измеряемых температур не более 5°С регулировкой дозы электронного излучения, попадающего на компакт, посредством изменения положения плоской заслонки из тугоплавкого материала, размещенной между источником электронного излучения и компактом, устанавливая при этом заслонку в вертикальное или горизонтальное положение.
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЕВОЙ КЕРАМИКИ
Источник поступления информации: Роспатент

Показаны записи 1-4 из 4.
20.02.2014
№216.012.a164

Способ синтеза ферритов

Изобретение относится к порошковой металлургии, в частности к получению ферритов. Может использоваться в электронной и радио промышленностях. Исходные компоненты смешивают, подвергают помолу и проводят механическую активацию смеси в энергонапряженном аппарате в течение не менее 10 минут....
Тип: Изобретение
Номер охранного документа: 0002507031
Дата охранного документа: 20.02.2014
27.11.2014
№216.013.0c01

Способ получения материала на основе оксидного гексагонального ферримагнетика с w-структурой и материал, полученный этим способом

Изобретение относится к порошковой металлургии, в частности к получению материала на основе оксидного гексагонального ферримагнетика с W-структурой. Может использоваться в радиотехнике и радиоэлектронике, например, в качестве радиопоглощающих покрытий. Компоненты сушат, смешивают путем...
Тип: Изобретение
Номер охранного документа: 0002534481
Дата охранного документа: 27.11.2014
10.08.2015
№216.013.6c75

Устройство для определения содержания феррита в материале

Изобретение относится к измерительной технике, представляет собой устройство для определения содержания феррита в материале и может быть использовано для определения содержания феррита, измерения температурных зависимостей степени ферритизации и определения по ним температур магнитных фазовых...
Тип: Изобретение
Номер охранного документа: 0002559323
Дата охранного документа: 10.08.2015
25.08.2017
№217.015.c902

Устройство для определения содержания феррита в материале

Изобретение относится к измерительной технике, а именно к испытаниям магнитных материалов, и может быть использовано для определения содержания феррита в материале, измерения температурных зависимостей степени ферритизации и определения по ним температур магнитных фазовых переходов. Устройство...
Тип: Изобретение
Номер охранного документа: 0002619310
Дата охранного документа: 15.05.2017
Показаны записи 11-20 из 234.
10.04.2013
№216.012.34aa

Устройство для моделирования трехфазного многообмоточного трансформатора

Изобретение относится к моделированию трансформатора. Технический результат заключается в повышении точности моделирования трансформатора и в расширении функциональных возможностей устройств моделирования трансформатора за счет обеспечения автоматизированного изменения параметров моделируемого...
Тип: Изобретение
Номер охранного документа: 0002479025
Дата охранного документа: 10.04.2013
20.04.2013
№216.012.37cc

Способ определения платины в рудах и рудных концентратах методом инверсионной вольтамперометрии по пикам селективного электроокисления висмута из интерметаллического соединения ptbi

Изобретение может быть использовано в различных отраслях народного хозяйства для определения содержания в растворах концентраций различных ионов металлов. Способ определения платины в рудах и рудных концентратах методом инверсионной вольтамперометрии согласно изобретению заключается в том, что...
Тип: Изобретение
Номер охранного документа: 0002479837
Дата охранного документа: 20.04.2013
20.05.2013
№216.012.3fe0

Способ формирования структуры многокомпонентных бронз

Изобретение относится к литейному производству. Литейную форму нагревают до температуры 550-650°С. Затем форму извлекают из печи и на ее поверхность наносят обмазку, содержащую, вес.%: индустриальное масло 70-80, графитовый порошок 10-15, ультрадисперсный порошок оксидов металлов 10-15. После в...
Тип: Изобретение
Номер охранного документа: 0002481922
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.406e

Способ получения пентафторида ниобия и/или тантала

Изобретение относится к области материаловедения и металлургии, а именно к способам получения пентафторидов ниобия или тантала. Способ включает взаимодействие металлических ниобия или тантала с фторирующим агентом, в качестве которого используют фторид меди в соотношении не более 4 моль фторида...
Тип: Изобретение
Номер охранного документа: 0002482064
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.4265

Сверхпроводящий выключатель

Изобретение относится к области сверхпроводниковой электротехники и может быть использовано для коммутации тока сверхпроводящих магнитных систем и сверхпроводящих индуктивных накопителей энергии, в системах защиты сверхпроводящих обмоток электрических машин, сверхпроводящих кабелей и линий...
Тип: Изобретение
Номер охранного документа: 0002482567
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.42af

Источник тормозного излучения

Изобретение относится к ускорительной технике и может быть использовано в средствах неразрушающего контроля материалов и изделий. Источник тормозного излучения содержит магнитопровод, полюсы, обмотки возбуждения, центральные вкладыши, ускорительную камеру, мишень, две системы обмоток смещения с...
Тип: Изобретение
Номер охранного документа: 0002482641
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.42b0

Источник тормозного излучения

Изобретение относится к ускорительной технике и может быть использовано в средствах неразрушающего контроля материалов и изделий. Источник тормозного излучения содержит магнитопровод, полюсы, обмотки возбуждения, центральные вкладыши, ускорительную камеру, мишень, две системы обмоток смещения с...
Тип: Изобретение
Номер охранного документа: 0002482642
Дата охранного документа: 20.05.2013
27.05.2013
№216.012.44d6

Устройство для одновременно-раздельной эксплуатации многопластовых скважин

Изобретение относится к одновременно-раздельной эксплуатации продуктивных пластов скважины. Устройство для одновременно-раздельной эксплуатации многопластовых скважин содержит спуско-подъемный механизм, управляющий снаряд и клапанные втулки. Клапанные втулки включают неподвижную втулку с...
Тип: Изобретение
Номер охранного документа: 0002483199
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.455d

Способ геохимических поисков залежей нефти и газа

Изобретение относится к области геохимии и может быть использовано для поисков нефти и газа. Сущность: в конце зимнего периода отбирают пробы снега. Причем пробоотбор выполняют на 0,3 м выше поверхности Земли в точках регулярной сети или профилей с шагом 250-2000 м. Определяют в талой воде...
Тип: Изобретение
Номер охранного документа: 0002483334
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.45b4

Устройство управления асинхронным двигателем

Изобретение относится к электротехнике. Технический результат заключается в повышении надежности. Для этого заявленное устройство содержит автономный инвертор напряжения, силовые выходы которого подключены через датчики токов к статорным обмоткам асинхронного двигателя, наблюдатель состояния и...
Тип: Изобретение
Номер охранного документа: 0002483421
Дата охранного документа: 27.05.2013
+ добавить свой РИД