×
10.02.2014
216.012.9df1

Результат интеллектуальной деятельности: СПОСОБ РЕГУЛИРОВАНИЯ УРОВНЯ РАСПЛАВА КРИСТАЛЛИЗАТОРА НЕПРЕРЫВНОГО ЛИТЬЯ

Вид РИД

Изобретение

№ охранного документа
0002506141
Дата охранного документа
10.02.2014
Аннотация: Изобретение относится к области непрерывной разливки металлов. Подвод жидкого металла (3) в кристаллизатор (1) непрерывного литья регулируют с помощью закрывающего устройства (4). Частично затвердевшую металлическую заготовку (7) вытягивают из кристаллизатора (1) непрерывного литья с помощью вытягивающего устройства (8). Измеренное фактическое значение (hG) уровня (9) расплава в кристаллизаторе подают в регулятор уровня расплава, который на основании фактического значения (hG) и соответствующего заданного значения (hG*) определяет заданное положение (р*) для закрывающего устройства (4). С помощью компенсатора помеховых величин определяют значение (z) компенсации помеховых величин. В закрывающее устройство (4) подают исправленное заданное положение. Компенсатор номеховых величин содержит модель кристаллизатора (1) непрерывного литья, с помощью которой компенсатор на основании входного значения (i) модели определяет ожидаемое значение (hE) уровня (9) расплава. Технический результат - повышение точности регулирования уровня расплава в кристаллизаторе, обеспечивающее повышение качества затвердевшей металлической заготовки. 4 н. и 9 з.п. ф-лы, 6 ил.

Изобретение относится к способу регулирования уровня расплава кристаллизатора непрерывного литья, в котором

- подвод жидкого металла в кристаллизатор непрерывного литья регулируют с помощью закрывающего устройства, и частично затвердевшую металлическую заготовку вытягивают из кристаллизатора непрерывного литья с помощью вытягивающего устройства,

- измеренное фактическое значение уровня расплава подают в регулятор уровня расплава, который на основании фактического значения и соответствующего заданного значения определяет заданное положение для закрывающего устройства,

- измеренное фактическое значение уровня расплава подают в компенсатор помеховых величин,

- в компенсатор помеховых величин подают дополнительно заданное положение закрывающего устройства, исправленное на значение компенсации помеховых величин заданное положение для закрывающего устройства, фактическое положение закрывающего устройства или исправленное на значение компенсации помеховых величин фактическое положение закрывающего устройства,

- компенсатор помеховых величин определяет на основании введенных в него значений значение компенсации помеховых величин,

- в закрывающее устройство подают исправленное на значение компенсации помеховых величин заданное положение,

- компенсатор помеховых величин содержит модель кристаллизатора непрерывного литья, с помощью которой компенсатор помеховых величин на основании входного значения модели определяет ожидаемое значение уровня расплава,

- компенсатор помеховых величин содержит несколько компенсаторов колебаний, с помощью которых компенсатор помеховых величин на основании разницы фактического значения и ожидаемого значения определяет долю частотной помехи относительно соответствующей помеховой частоты,

- сумма долей частотных помех соответствует значению компенсации помеховых величин.

Такой способ регулирования известен, например, из US 5921313 А. В известном способе регулирования имеется лишь один единственный компенсатор колебаний. В этом случае сумма долей частотных помех идентична с одной единственной определяемой долей частотных помех.

Кроме того, данное изобретение относится к компьютерной программе, которая содержит машинный код, который предназначен для непосредственного выполнения управляющим устройством для установки непрерывного литья и выполнение которого управляющим устройством приводит к тому, что управляющее устройство регулирует уровня расплава кристаллизатора непрерывного литья в соответствии с указанным способом регулирования.

Кроме того, данное изобретение относится к управляющему устройству для установки непрерывного литья, которое выполнено так, что оно во время работы выполняет указанный способ регулирования.

Наконец, данное изобретение относится к установке непрерывного литья, управление которой осуществляется с помощью указанного управляющего устройства.

При непрерывном литье отливаемую заготовку вытягивают из кристаллизатора непрерывного литья, в то время как сердечник заготовки еще жидкий. После выхода заготовки из кристаллизатора непрерывного литья, заготовку для опоры оболочки от металлостатического давления сердечника направляют по роликовым парам и поддерживают. Опора предотвращает, среди прочего, распучивание заготовки на широкой стороне заготовки. Расстояние между роликами, на которые опирается в одном и том же месте на обеих сторонах заготовка, должно соответствовать желаемой толщине заготовки.

Отлитую заготовку после выхода из кристаллизатора непрерывного литья активно и/или пассивно охлаждают. На основании охлаждения уменьшается толщина заготовки. Поэтому расстояние между роликами, которые поддерживают отлитую заготовку в одном и том же месте с обеих сторон, должно иметь правильное значение. До точки сквозного затвердевания, называемой также нижним концом жидкой фазы в заготовке, отлитая заготовка не полностью затвердела. Таким образом, еще имеется жидкий сердечник. Поэтому неравномерное воздействие на заготовку при прохождении через роликовые пары сказывается на уровне расплава. Однако, колебания уровня расплава по различным причинам, например, из-за опасности втягивания порошкообразного флюса в поверхность заготовки, следует по возможности предотвращать.

За счет возникающих в кристаллизаторе непрерывного литья колебаний толщины оболочки может возникать при прохождении роликовых пар так называемое не стационарное вспучивание. Причиной вспучивания является прохождение места с искаженной толщиной оболочки последовательно через различные роликовые пары и циклические изменения вследствие этого уровня расплава. Поскольку роликовые пары, при рассматривании в направлении транспортировки заготовки, как правило, имеют постоянное расстояние друг от друга, и скорость вытягивания, с которой заготовку вытягивают из кристаллизатора непрерывного литья, является постоянной, то не стационарное вспучивание приводит к периодическим изменениям уровня расплава. Таким образом, в уровне расплава образуются колебания постоянной частоты.

Известный из US 5921313 А способ регулирования служит цели устранения таких колебаний уровня расплава. Известный способ регулирования уже работает достаточно хорошо. В частности, можно регулировать уровень расплава с точностью до нескольких миллиметров.

Из статьи ”Suppression of Periodic Disturbances in Continuous Casting using Internal Model Predictor” (Подавление периодических помех при непрерывном литье с использованием внутренней модели предсказания), C. Furtmueller and E. Gruenbacher, IEEE International Conference on Control Application, Мюнхен, Германия, 4-6 октября 2006, стр.1764-1769, известен способ регулирования уровня расплава кристаллизатора непрерывного литья, в котором подачу жидкого металла в кристаллизатор непрерывного литья регулируют с помощью закрывающего устройства, и частично затвердевшую металлическую заготовку вытягивают из кристаллизатора непрерывного литья с помощью вытягивающего устройства. Измеренное фактическое значение уровня расплава подают в регулятор уровня расплава, который на основании фактического значения и соответствующего заданного значения определяет заданное положение для закрывающего устройства. Токи электродвигателей приводов вытягивающего устройства подвергают частотному анализу. На основании доли основной частоты и ее гармонических частот определяют значение компенсации помеховых величин, которое накладывается на выходной сигнал регулятора уровня расплава. Управление закрывающим устройством осуществляется в соответствии с исправленным так выходным сигналом регулятора уровня расплава.

Задачей данного изобретения является создание возможностей достижения еще более точного регулирования.

Задача решена с помощью способа регулирования с признаками пункта 1 формулы изобретения. Предпочтительные варианты выполнения способа регулирования, согласно изобретению, являются предметом зависимых пунктов 2-9 формулы изобретения.

Согласно изобретению, предусмотрено выполнение способа регулирования указанного в начале вида тем, что

- входное значение модели определяют из соотношения

i=p'+z',

где p' является не исправленным заданным или фактическим положением закрывающего устройства, и z' является значением компенсации скачков, и

- компенсатор помеховых величин содержит определитель скачков, с помощью которого компенсатор помеховых величин определяет значение компенсации скачков посредством интеграции разницы фактического значения и ожидаемого значения.

В одном предпочтительном варианте выполнения данного изобретения предусмотрено, что

- модель кристаллизатора непрерывного литья состоит из последовательного включения интегратора модели со звеном задержки модели, каждый компенсатор колебаний состоит из последовательного включения двух интеграторов колебаний и определитель скачков состоит из интегратора скачков,

- в качестве соответствующей входной величины подают

- в интегратор модели значение m=Vi+h1e,

- в звено задержки модели значение m'=I+h2e,

- в передний интегратор колебаний соответствующего компенсатора колебаний значение s1=h3e-S2,

- в задний интегратор колебаний соответствующего компенсатора колебаний значение s2=h4e+S1 и

- в интегратор скачков значение s3=h5e,

при этом

- V является коэффициентом усиления,

- i - входным значением модели,

- e - разницей фактического значения и ожидаемого значения,

- I - выходным сигналом интегратора модели,

- S1 - выходным сигналом соответствующего переднего интегратора колебаний,

S2 - выходным сигналом соответствующего заднего интегратора колебаний,

h1 и h2 - коэффициентами согласования модели,

h3 и h4 - специфичными для соответствующего компенсатора колебаний коэффициентами согласования колебаний и

h5 - коэффициент согласования скачков.

Различные коэффициенты согласования можно определять по потребности. В испытаниях были достигнуты хорошие результаты за счет того, что коэффициенты согласования определяли так, что полюса определяемой с помощью модели кристаллизатора непрерывного литья передаточной функции отвечали следующим условиям:

- для каждой помеховой частоты получается пара комплексно-сопряженных полюсов, действительные части которых меньше нуля, а мнимые части которых равны задаваемой соответствующей помеховой частотой круговой помеховой частоте,

- получаются три реальных полюса, которые меньше нуля.

Кроме того, в одном предпочтительном варианте выполнения предусмотрено, что коэффициенты согласования определены так, что действительные части комплексно-сопряженных полюсов лежат относительно соответствующей круговой помеховой частоты между -0,3 и -0,1. В частности, необходимо стремиться к значению примерно -0,2. С такими значениями в испытаниях были достигнуты хорошие свойства демпфирования.

Предпочтительно, коэффициенты согласования определены так, что все реальные полюса меньше -2,0. В этом случае способ регулирования работает надежно и стабильно даже тогда, когда модель кристаллизатора непрерывного литья не очень точно моделирует реальные кристаллизаторы непрерывного литья.

Кроме того, особенно хорошие результаты достигаются, когда коэффициенты согласования определены так, что реальные полюса являются попарно отличными друг от друга.

Обе названные последними меры (реальные полюса меньше -2,0 и попарно отличаются друг от друга) можно, естественно, комбинировать друг с другом. Оптимальные результаты достигались, когда реальные полюса лежат при -3,0, -4,0 и -5,0, каждый раз +/-0,5.

Предпочтительно, количество компенсаторов колебаний больше единицы. За счет этого можно компенсировать больше одного колебания вспучивания.

Кроме того, предпочтительно, что в компенсатор помеховых величин подают заданное положение для закрывающего устройства или исправленное на значение компенсации помеховых величин заданное положение для закрывающего устройства, а не фактическое положение закрывающего устройства или исправленное на значение компенсации помеховых величин фактическое положение закрывающего устройства. Это приводит к лучшим результатам.

Кроме того, задача изобретения решена с помощью компьютерной программы указанного в начале вида, при этом выполнение компьютерной программы приводит к тому, что управляющее устройство регулирует уровень расплава кристаллизатора непрерывного литья в соответствии со способом регулирования, согласно изобретению. Компьютерная программа может быть записана, например, на носителе данных в читаемом машиной виде.

Кроме того, задача решена с помощью управляющего устройства для установки непрерывного литья, которое выполнено так, что оно выполняет при работе способ регулирования, согласно изобретению. Наконец, задача решена с помощью установки непрерывного литья, управление которой осуществляется с помощью управляющего устройства, согласно изобретению.

Другие преимущества и подробности следуют из приведенного ниже описания примеров выполнения со ссылками на прилагаемые чертежи, на которых схематично изображено:

фиг.1 - установка непрерывного литья;

фиг.2 - блок-схема системы регулирования;

фиг.3 - внутренняя структура компенсатора помеховых величин;

фиг.4 - возможное выполнение компенсатора помеховых величин, согласно фиг.3;

фиг.5 - ход изменения во времени фактического значения уровня расплава и положения закрывания при применении способа регулирования, согласно изобретению; и

фиг.6 - соответствующее величины при применении способа регулирования, согласно уровню техники.

Как показано на фиг.1, установка непрерывного литья имеет кристаллизатор 1 непрерывного литья. В кристаллизатор 1 непрерывного литья наливают через погружную трубу 2 жидкий металл 3, например, сталь или алюминий. Подачу жидкого металла 3 в кристаллизатор 1 непрерывного литья регулируют с помощью закрывающего устройства 4. На фиг.1 показано выполнение закрывающего устройства 4 в виде закрывающей пробки. В этом случае положение закрывающего устройства 4 соответствует положению хода закрывающей пробки. В качестве альтернативного решения, закрывающее устройство 4 может быть выполнено в виде заслонки. В этом случае положение закрывания соответствует положению заслонки.

Находящийся в кристаллизаторе жидкий металл 3 охлаждается с помощью охлаждающих устройств, так что образуется оболочка 5 заготовки. Однако сердечник 6 металлической заготовки 7 еще жидкий. Он затвердевает лишь позже. Охлаждающие устройства на фиг.1 не изображены. Частично затвердевшая металлическая заготовка 7 (затвердевшая оболочка 5 заготовки, жидкий сердечник 6) вытягивают из кристаллизатора 1 непрерывного литья с помощью вытягивающего устройства 8.

Уровень 9 расплава жидкого металла 3 в кристаллизаторе 1 непрерывного литья необходимо удерживать возможно более постоянным. Скорость v вытягивания, с которой частично затвердевшая металлическая заготовка 7 вытягивается из кристаллизатора 1 непрерывного литья, как правило, постоянна. Поэтому, как в уровне техники, так и в данном изобретении, регулируют положение закрывающего устройства 4, с целью установки подачи жидкого металла 3 в кристаллизатор 1 непрерывного литья так, что уровень 9 расплава удерживается возможно более постоянным.

С помощью соответствующего измерительного устройства 10 (само по себе известного) измеряют фактическое значение hG уровня 9 расплава. Фактическое значение уровня hG расплава подают в управляющее устройство 11 для установки непрерывного литья. Управляющее устройство 11 определяет в соответствии со способом регулирования, подробное пояснение которого будет приведено ниже, заданное положение p*, которое должно принимать закрывающее устройство 4. Затем управляющее устройство 11 выполняет соответствующее управление закрывающим устройством 4. Как правило, управляющее устройство 11 выдает соответствующий управляющий сигнал в перестановочное устройство 12 для закрывающего устройства 4. Перестановочное устройство 12 может быть, например, блоком гидравлического цилиндра.

Кроме того, с помощью соответствующего измерительного устройства 13 (само по себе известного) измеряют фактическое положение р закрывающего устройства 4 и подают в управляющее устройство 11. Обычно, за этим следует регулирование (closed loop control) положения закрывания. В качестве альтернативного решения, возможно также чистое управление (open loop control).

Управляющее устройство 11 выполнено так, что оно при работе выполняет способ регулирования, согласно изобретению. Как правило, принцип действия управляющего устройства 11 определяется компьютерной программой 14, с помощью которой программируется управляющее устройство 11. Для этой цели компьютерная программа 14 записана внутри управляющего устройства 11 на носителе 15 данных, например, флэш-ППЗУ. Запись осуществляется, естественно, в читаемом машиной виде.

Компьютерную программу 14 можно вводить в управляющее устройство 11 с помощью мобильного носителя 16 данных, например, карты памяти USB (изображена) или карты памяти SD (не изображена). На мобильном носителе 16 данных компьютерная программа 14 записана, естественно, в читаемом машиной виде. В качестве альтернативного решения, компьютерную программу 14 можно вводить в управляющее устройство через соединение с вычислительной сетью или с помощью устройства программирования.

Компьютерная программа 14 содержит машинный код 17, который предназначен для непосредственного выполнения управляющим устройством 11. Выполнение машинного кода 17 управляющим устройством приводит к тому, что управляющее устройство 11 регулирует уровень 9 расплава кристаллизатора 1 непрерывного литья в соответствии со способом регулирования, согласно изобретению. Ниже приводится более подробное пояснение этого способа регулирования со ссылками на фиг.2 и 3.

На фиг.2 показан выполняемый управляющим устройством 11 способ регулирования. Работа системы регулирования, согласно фиг.2, обеспечивает выполнение способа регулирования, согласно изобретению, уровня 9 расплава кристаллизатора 1 непрерывного литья.

Как показано на фиг.2, система регулирования имеет регулятор 18 уровня расплава. Регулятор 18 уровня расплава определяет на основании заданного значения hG* уровня 9 расплава и с помощью измеренного с помощью измерительного устройства 10 фактического значения hG уровня 9 расплава в соответствии с характеристикой регулирования заданное положение p* для закрывающего устройства 4. Характеристика регулирования регулятора 18 уровня расплава является, как показано на фиг.2, пропорционально-интегральной. Однако в качестве альтернативного решения возможны другие характеристики регулирования, например, PID, PT1, PT2 и т.д.

Заданное положение p* для закрывающего устройства 4 подается в закрывающее устройство 4. Однако перед этим заданное положение p* подвергается исправлению на значение z компенсации помеховых величин.

Как указывалось выше, установка закрывающего устройства 4 происходит обычно с регулированием. В этом случае, который показан на фиг.2, в регулятор 19 положения подают исправленное заданное положение, т.е. значение

p*-z,

в который также подают дополнительно фактическое положение p закрывающего устройства 4. Регулятор 19 положения может быть выполнен, например, в виде Р-регулятора.

Фактическое положение p закрывающего устройства 4 воздействует на основании устанавливаемого с его помощью притока жидкого металла 3 на действительный уровень 9 расплава. Фактическое значение hG уровня 9 расплава измеряют и, как указывалось выше, подают в регулятор 18 уровня расплава.

На кристаллизатор 1 непрерывного литья могут воздействовать помеховые величины, которые могут оказывать влияние на уровень 9 расплава. Для компенсации помеховых величин предусмотрен компенсатор 20 помеховых величин. В компенсатор 20 помеховых величин подают измеренное значение hG уровня 9 расплава, а также другие величины.

Как показано на фиг.2, в компенсатор 20 помеховых величин подают в качестве дополнительной величины исправленное на значение z компенсации помеховых величин заданное положение p* закрывающего устройства 4. В качестве альтернативного решения, в компенсатор 20 помеховых величин можно подавать не исправленное заданное положение p*. Это альтернативное решение показано на фиг.2. Его равноценность реализованному решению очевидна, поскольку значение z компенсации помеховых величин компенсатор 20 помеховых величин определяет, как показано на фиг.2, на основе подаваемых в него значений. Поэтому исправленное значение положения, т.е. значение p* - z можно просто определять также внутри компенсатора 20 помеховых величин.

Определение значения z компенсации помеховых величин с применением (среди прочего) исправленного или не исправленного заданного положения p* - z соответственно, p* закрывающего устройства 4 является предпочтительным в рамках данного изобретения. В качестве альтернативного решения, можно подавать в компенсатор 20 помеховых величин фактическое положение p или исправленное на значение z компенсации помеховых величин фактическое положение p - z закрывающего устройства 4. Эта альтернатива также показана на фиг.2 штриховыми линиями.

Ниже приводится более подробное пояснение выполнения и принципа действия компенсатора 20 помеховых величин со ссылками на фиг.3.

Как показано на фиг.3, компенсатор 20 помеховых величин содержит, среди прочего, модель 21 кристаллизатора 1 непрерывного литья. С помощью модели 21 компенсатор 20 помеховых величин определяет ожидаемое значение hE уровня 9 расплава. Для этой цели в модель 21 подают входное значение i модели, которое определяется соотношением

i=p'+z',

где p' является не исправленным заданным положением p* закрывающего устройства 4, т.е. выходным сигналом регулятора 18 уровня расплава. Если в компенсатор 20 помеховых величин подавать вместо заданного положения p* фактическое положение p закрывающего устройства 4, то в указанном выше соотношении необходимо применять вместо значения p* значение p. z' является значением компенсации скачков.

Значение z' компенсации скачков определяет компенсатор 20 помеховых величин с помощью определителя 22 скачков, который также является составной частью компенсатора 20 помеховых величин. Определение значения z' компенсации скачков происходит, как показано на фиг.3, на основе разницы е фактического значения hG и ожидаемого значения hE уровня 9 расплава, называемой в последующем применительно к фиг.3 лишь коротко разницей е.

Как показано на фиг.3, компенсатор 20 помеховых величин содержит дополнительно несколько компенсаторов 23 колебаний. С помощью компенсаторов 23 колебаний, компенсатор 20 помеховых величин определяет относительно соответствующей помеховой частоты fS долю zS помех, называемую в дальнейшем долей zS частотных помех. Определение осуществляется на основе разницы е.

Количество компенсаторов 23 колебаний составляет минимально единицу. В этом случае компенсируется лишь одна единственная доля zS частотных помех. В качестве альтернативного решения, количество компенсаторов 23 колебаний может быть больше единицы. В этом случае каждый компенсатор 23 колебаний определяет на собственной помеховой частоте fS соответствующую долю zS частотных помех. На фиг.3 показаны два компенсатора 23 колебаний. Однако возможно также выполнение с тремя, четырьмя, пятью и т.д. компенсаторами 23 колебаний.

Выходные сигналы zS компенсаторов 23 колебаний суммируются в узловой точке 24, в результате чего получают значение z компенсации помеховых величин. В случае лишь одного единственного компенсатора 23 колебаний суммирование, естественно, не требуется, поскольку в этом случае сумма идентична единственному слагаемому.

В одном предпочтительном варианте выполнения компенсатора 20 помеховых величин, показанном на фиг.4, модель 21 кристаллизатора 1 непрерывного литья состоит из интегратора 25 и звена 26 задержки, которые включены, как показано на фиг.4, последовательно. Поскольку интегратор 25 и звено 26 задержки являются составляющими частями модели 21 кристаллизатора 1 непрерывного литья, то они называются в последующем с добавлением слова «модели». Таким образом, они называются интегратор 25 модели и звено 26 задержки модели. Однако добавка «модели» служит лишь для обозначения их принадлежности. Другого значения добавка «модели» не имеет.

Интегратор 25 модели имеет постоянную времени интегрирования Т1, звено 26 задержки модели имеет постоянную времени задержки Т2. Постоянные Т1, Т2 времени заданы так, что они возможно более реалистично отражают реальный кристаллизатор 1 непрерывного литья.

В интегратор 25 модели в качестве входного сигнала m подают значение

m=V·i+h1·e,

где V является коэффициентом усиления, i - уже упомянутым входным значением модели, е - также уже упомянутой разницей, h1 является коэффициентом согласования.

Интегратор 25 модели выдает выходной сигнал I. Выходной сигнал I исправляется в узловой точке 27 на значение

h2·e,

а затем подается в звено 26 задержки модели в качестве его входного сигнала. h2 является другим коэффициентом согласования.

Подаваемые в узловую точку значения I, h2·e суммируются в узловой точке 27. Это обеспечивается тем, что оба входных сигнала I, h2·e узловой точки 27 не снабжаются на стороне входа узловой точки 27 отрицательным знаком.

Коэффициенты согласования h1 и h2 относятся к модели 21 кристаллизатора 1 непрерывного литья. Поэтому они называются в последующем коэффициентами h1, h2 согласования модели.

Компенсаторы 23 колебаний выполнены в принципе аналогично друг другу. Поэтому ниже приводится подробное описание лишь одного из компенсаторов 23 колебаний, а именно, верхнего на фиг.4 компенсатора 23 колебаний. Однако приведенные ниже выкладки справедливы аналогичным образом для других компенсаторов 23 колебаний.

Как показано на фиг.4, верхний компенсатор 23 колебаний состоит из двух интеграторов 28, 29, которые включены последовательно. Оба интегратора 28, 29 называются в последующем интеграторами 28, 29 колебаний, поскольку они является соответствующими составляющими частями компенсатора 23 колебаний. Добавка «колебаний» служит лишь для обозначения принадлежности обоих интеграторов 28, 29 к соответствующему компенсатору 23 колебаний. Другого значения добавка «колебаний» не имеет.

Интеграторы 28, 29 колебаний имеют постоянную времени интегрирования а. Постоянная времени интегрирования получается из соотношения

где fS является соответствующей подлежащей компенсации помеховой частотой. Помеховая частота fS должна быть известной заранее.

В передний интегратор 28 колебаний подается, как показано на фиг.4, в качестве входной величины s1 значение

s1=h3·e-S2

В задний интегратор 29 колебаний подается в качестве входной величины s2 значение

s2=h4·e+S1,

где S1 и S2 являются выходными сигналами переднего и заднего интегратора 28, 29 колебаний, h3 и h4 являются коэффициентами согласования. На основании их принадлежности к соответствующему компенсатору 23 колебаний они называются в последующем коэффициентами h3, h4 согласования колебаний.

Определитель 22 скачков состоит из одного единственного интегратора 30, называемого в последующем на основании своей принадлежности к определителю 22 скачков интегратором 30 скачков. В него подается значение s3=h5·e, где h5 является коэффициентом согласования, называемым в последующем коэффициентом согласования скачков.

Как указывалось выше, могут быть предусмотрены несколько компенсаторов 23 колебаний. В этом случае коэффициенты h3, h4 согласования колебаний отдельных компенсаторов 23 колебаний не зависят друг от друга. Кроме того, постоянные а времени интегрирования всех компенсаторов 23 колебаний отличаются друг от друга.

Для определения коэффициентов h1-h5 согласования, т.е. коэффициентов h1, h2 согласования модели, коэффициента h5 согласования скачков и для каждого компенсатора 23 колебаний обоих соответствующих коэффициентов h3, h4 согласования колебаний, сначала предпочтительно определяют передаточную функцию показанной на фиг.4 системы. Передаточная функция является дробнорациональной функцией оператора Лапласа, т.е. функцией, которая может быть представлена в виде частного числителя и знаменателя, при этом как числитель, так и знаменатель являются полиномами оператора Лапласа. Как полином числителя, так и полином знаменателя содержат в своих коэффициентах коэффициенты согласования h1-h5.

Затем для полинома знаменателя задают его желаемые нулевые точки, т.е. желаемые полюса передаточной функции. Это приводит к системе уравнений, в которой неизвестны лишь коэффициенты согласования h1-h5. Уравнения системы уравнений являются независимыми друг от друга. Их количество соответствует количеству коэффициентов h1-h5 согласования. Поэтому на основании системы уравнений можно однозначно определять коэффициенты h1-h5 согласования.

Предпочтительно, желаемые полюса задают следующим образом:

Для каждой подлежащей компенсации помеховой частоты fS задают пару комплексно-сопряженных полюсов. Мнимые доли соответствующей пары полюсов равны +/-2πfS, где, как указывалось выше, fS является подлежащей компенсации помеховой частотой. Таким образом, мнимые доли равны (по величине) соответствующей подлежащей компенсации круговой частоте ωS. Действительные части соответствующей пары полюсов меньше нуля.

Три других полюса являются предпочтительно все реальными и меньше нуля, т.е. отрицательными.

Когда постоянные T1, T2 времени модели хорошо моделируют реальный кристаллизатор 1 непрерывного литья, то действительные части комплексно-сопряженных полюсов и реальные полюса могут изменяться в широких пределах, без оказания отрицательного влияния на качество способа регулирования. Однако правильные постоянные Т1, Т2 времени модели можно часто оценивать лишь приблизительно. Тем не менее, обеспечивается хорошее качество регулирования, когда действительные части комплексно-сопряженных полюсов и реальные полюса отвечают определенным критериям.

Стабильность способа регулирования может быть достигнута, например, за счет того, что действительные части комплексно-сопряженных полюсов лежат между -0,1 и -0,3 соответствующей круговой частоты ωS. В ходе испытаний было установлено, что особенно предпочтительно, когда действительные части примерно равны -0,2 соответствующей круговой частота ωS.

Кроме того, предпочтительно, когда реальные полюса все меньше -2,0 или отличаются попарно друг от друга. Еще лучше, когда выполняются оба критерия. Особенно хорошие результаты достигались, когда один из реальных полюсов лежит при -3,0, -4,0 и -5,0 (соответственно, +/-0,5, предпочтительно +/-0,2).

На фиг.5 показан ход изменения фактического значения hG уровня 9 расплава и соответствующий ход изменения фактического положения р закрывающего устройства 4 реального кристаллизатора 1 непрерывного литья в зависимости от времени. При показанных на фиг.5 кривых уровень 9 расплава регулировали с помощью способа, согласно изобретению, при этом осуществлялась компенсация двух помеховых частот fS, и коэффициенты h1-h5 согласования были установлены на поясненные выше оптимальные значения. Можно видеть значительные изменения фактического положения р закрывающего устройства 4. Однако достигается, что уровень расплава остается очень стабильным. Колебания составляют лишь примерно +/-3 мм.

В противоположность этому, на фиг.6 показаны соответствующие кривые регулирования уровня расплава, согласно уровню техники. Очевидно, что уровень 9 расплава колеблется значительно сильней. Кратковременно, а именно, в точках 31 и 32 он даже выходит за изображенный диапазон допусков +/-10 мм.

Выше упоминалось, что подлежащие компенсации помеховые частоты fS должны быть известны заранее. Определение помеховых частот fS можно осуществлять, например, посредством оценки хода изменения фактического значения р уровня 9 расплава, показанного на фиг.6. Из него можно затем определять соответствующие помеховые частоты fS и тем самым также постоянные а времени интегрирования.

Приведенное выше описание служит исключительно для пояснения данного изобретения. В противоположность этому, объем защиты данного изобретения определяется исключительно прилагаемой формулой изобретения.


СПОСОБ РЕГУЛИРОВАНИЯ УРОВНЯ РАСПЛАВА КРИСТАЛЛИЗАТОРА НЕПРЕРЫВНОГО ЛИТЬЯ
СПОСОБ РЕГУЛИРОВАНИЯ УРОВНЯ РАСПЛАВА КРИСТАЛЛИЗАТОРА НЕПРЕРЫВНОГО ЛИТЬЯ
СПОСОБ РЕГУЛИРОВАНИЯ УРОВНЯ РАСПЛАВА КРИСТАЛЛИЗАТОРА НЕПРЕРЫВНОГО ЛИТЬЯ
СПОСОБ РЕГУЛИРОВАНИЯ УРОВНЯ РАСПЛАВА КРИСТАЛЛИЗАТОРА НЕПРЕРЫВНОГО ЛИТЬЯ
СПОСОБ РЕГУЛИРОВАНИЯ УРОВНЯ РАСПЛАВА КРИСТАЛЛИЗАТОРА НЕПРЕРЫВНОГО ЛИТЬЯ
СПОСОБ РЕГУЛИРОВАНИЯ УРОВНЯ РАСПЛАВА КРИСТАЛЛИЗАТОРА НЕПРЕРЫВНОГО ЛИТЬЯ
Источник поступления информации: Роспатент

Показаны записи 171-180 из 1 427.
20.03.2014
№216.012.aceb

Устройство отображения и способ для отображения измеренных данных

Изобретение относится к измерению данных (M(t)) установки (35) передачи энергии и/или распределения энергии. Способ контроля установки (35) передачи или распределения энергии, в котором посредством множества полевых и/или управляющих приборов формируют измеренные данные M(t) установки передачи...
Тип: Изобретение
Номер охранного документа: 0002509982
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.acf0

Устройство для измерения вибраций подшипников для турбомашины

Изобретение касается устройства для измерения вибраций подшипников для турбомашины и турбомашины, которая снабжена устройством для измерения вибрации подшипников. Заявленная группа устройств содержит устройство для измерения вибраций подшипников для турбомашины (1), в котором с помощью по...
Тип: Изобретение
Номер охранного документа: 0002509987
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.ad57

Устройство с разрядником защиты от перенапряжений

Устройство защиты содержит разрядник (1, 1a) для защиты от перенапряжений, который содержит первый (4) и второй (5) присоединительные терминалы. По меньшей мере, один присоединительный терминал (4, 5) соединен с электропроводящей присоединительной токовой цепью (6), которая установлена...
Тип: Изобретение
Номер охранного документа: 0002510090
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.ad5b

Вакуумная переключающая лампа

Изобретение касается вакуумной переключающей лампы (1) с корпусом, который имеет два размещенных и выполненных симметрично относительно средней плоскости (S) участка (16, 17) корпуса из изолирующего материала. Каждый из обоих участков (16, 17) корпуса из изолирующего материала включает в себя...
Тип: Изобретение
Номер охранного документа: 0002510094
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.ad6c

Система с герметизированным корпусом

Изобретение относится к устройству передачи электроэнергии, изолированному сжатым газом, содержащему герметизированный участок. Герметизированный корпус имеет первый трубчатый участок (2), а также второй трубчатый участок (3). Трубчатые участки (2, 3) расположены с возможностью перемещения...
Тип: Изобретение
Номер охранного документа: 0002510111
Дата охранного документа: 20.03.2014
27.03.2014
№216.012.ae28

Способ для установки приводной нагрузки для множества приводов прокатного стана для прокатки прокатываемого материала, устройство управления и/или регулирования, носитель информации, программный код и прокатная установка

Группа изобретений относится к прокатному производству и состоит из способа установки приводной нагрузки для приводов (20, 21, 22, 23) прокатного стана, устройства управления регулирования и прокатной установки (1) с прокатным станом (2), содержащим несколько прокатных клетей (4, 5, 6, 7), с...
Тип: Изобретение
Номер охранного документа: 0002510299
Дата охранного документа: 27.03.2014
27.03.2014
№216.012.aedd

Способ и устройство для регулирования выбросов окиси углерода электродуговой печи

Изобретение относится к металлургии. Технический результат - повышение качества регулирования и оптимизация дожигания окиси углерода. Согласно способу регулирования выбросов окиси углерода электродуговой печи определяют высоту вспененного шлака в по меньшей мере трех зонах корпуса печи на...
Тип: Изобретение
Номер охранного документа: 0002510480
Дата охранного документа: 27.03.2014
27.03.2014
№216.012.af1b

Смотровое окно и контактный вывод заземления для высоковольтной системы

Изобретение относится к высоковольтной системе (10), содержащей по меньшей мере одно коммутационное устройство (20), корпус (300) и привод (200) для коммутационного устройства. Согласно изобретению предусмотрено, что корпус (300) имеет первое отверстие (320) корпуса и второе отверстие (330)...
Тип: Изобретение
Номер охранного документа: 0002510542
Дата охранного документа: 27.03.2014
27.03.2014
№216.012.af2d

Электрическая машина с несколькими охлаждающими потоками и способ охлаждения

Изобретение относится к электрической машине с несколькими охлаждающими потоками и способу охлаждения. Монтаж электрической машины и, в частности, генератора на постоянных магнитах должен быть упрощен без потерь качества охлаждения. Электрическая машина включает в себя статор (12), который...
Тип: Изобретение
Номер охранного документа: 0002510560
Дата охранного документа: 27.03.2014
27.03.2014
№216.012.af59

Энергетический преобразовательный модуль с охлаждаемой ошиновкой

Изобретение относится к энергетическому преобразовательному модулю, по меньшей мере, с одним силовым полупроводниковым модулем (2, 4), которые термически активно соединены механически с жидкостным охладителем (6) и которые посредством ошиновки (8), содержащей по меньшей мере две изолированные...
Тип: Изобретение
Номер охранного документа: 0002510604
Дата охранного документа: 27.03.2014
Показаны записи 171-180 из 943.
27.02.2014
№216.012.a5cb

Способ и устройство для отделения диоксида углерода от отходящего газа работающей на ископаемом топливе энергоустановки

Изобретение относится к способу отделения диоксида углерода от дымового газа работающей на ископаемом топливе энергоустановки. Сначала в процессе сжигания сжигается ископаемое топливо (2), причем образуется горячий, содержащий диоксид углерода отходящий газ (3). На следующем этапе в процессе...
Тип: Изобретение
Номер охранного документа: 0002508158
Дата охранного документа: 27.02.2014
27.02.2014
№216.012.a61e

Намоточная машина

Изобретение относится к области электротехники и может быть применено для изготовления высоковольтных вводов. Намоточная машина содержит удерживающие средства, средства подачи слоев намотки и несущую охватывающую ленту конструкцию. Удерживающие средства удерживают и вращают высоковольтный...
Тип: Изобретение
Номер охранного документа: 0002508241
Дата охранного документа: 27.02.2014
27.02.2014
№216.012.a6ef

Сегментированная в осевом направлении обойма направляющих лопаток для газовой турбины, а также газовая турбина и газопаровая турбинная установка с сегментированной обоймой направляющих лопаток

Обойма направляющих лопаток газовой турбины содержит осевые сегменты, по меньшей мере, один из которых выполнен в виде решетчатой структуры из труб. Решетчатая структура соответствующего осевого сегмента с внутренней и/или наружной стороны снабжена облицовкой из листового металла, имеющей...
Тип: Изобретение
Номер охранного документа: 0002508450
Дата охранного документа: 27.02.2014
27.02.2014
№216.012.a6f3

Энергоустановка с перегрузочным регулирующим клапаном

Изобретение относится к энергетике. Энергоустановка, содержащая перегрузочный паропровод, в котором расположен перегрузочный регулирующий клапан, управляемый регулятором давления, причем перегрузочный регулирующий клапан открывается прежде, чем откроется обводной регулирующий клапан, который...
Тип: Изобретение
Номер охранного документа: 0002508454
Дата охранного документа: 27.02.2014
27.02.2014
№216.012.a6f4

Способ дооборудования сжигающей ископаемое топливо энергоустановки устройством отделения диоксида углерода

Изобретение относится к энергетике. Способ дооборудования энергоустановки, включающей в себя многокорпусную паровую турбину, работающую на ископаемом топливе, устройство отделения диоксида углерода, при котором поглощающая способность паровой турбины согласуется с технологическим паром,...
Тип: Изобретение
Номер охранного документа: 0002508455
Дата охранного документа: 27.02.2014
27.02.2014
№216.012.a728

Устройство с теплозащитным экраном, камера сгорания и газовая турбина

Устройство с теплозащитным экраном состоит из несущей конструкции и закрепленного на ней теплозащитного экрана с прилегающей к несущей конструкции, огибающей боковой стенкой и с обращенным к несущей конструкции внутренним пространством и кромками паза, образованными основанием паза и боковой...
Тип: Изобретение
Номер охранного документа: 0002508507
Дата охранного документа: 27.02.2014
10.03.2014
№216.012.a92a

Устройство и способ для создания сигнала местоположения

Группа изобретений относится к определению местоположения рельсового транспортного средства. Способ создания сигнала местоположения, который указывает местоположение транспортного средства, заключается в том, что заранее внесенный в память опорный объект идентифицируют в окружении транспортного...
Тип: Изобретение
Номер охранного документа: 0002509021
Дата охранного документа: 10.03.2014
10.03.2014
№216.012.a9c6

Подложка с керамическим покрытием, создающим термический барьер, с двумя керамическими слоями

Изобретение относится к многослойным системам, создающим термический барьер. Подложка с покрытием, создающим термический барьер, содержит упомянутую подложку, упомянутое керамическое покрытие, выполненное из двух керамических слоев, при этом упомянутое покрытие имеет разные толщины на разных...
Тип: Изобретение
Номер охранного документа: 0002509177
Дата охранного документа: 10.03.2014
10.03.2014
№216.012.a9ec

Способ управления газопаротурбинной установкой с частотным преобразователем

Изобретение относится к энергетике. В способе управления газопаротурбинной установкой, содержащей связанный с пусковым устройством газовой турбины частотный преобразователь и связанный с паровой турбиной генератор, электрическая мощность от генератора при оборотах турбины меньших, чем частота...
Тип: Изобретение
Номер охранного документа: 0002509215
Дата охранного документа: 10.03.2014
10.03.2014
№216.012.aa61

Конфигурирование энергетического устройства автоматизации

Данная группа изобретений относится к средствам конфигурирования энергетического устройства автоматизации. Технический результат заключается в повышении качества, скорости процесса конфигурирования энергетического устройства автоматизации, а также в уменьшении ошибок. Для этого предложено, что...
Тип: Изобретение
Номер охранного документа: 0002509332
Дата охранного документа: 10.03.2014
+ добавить свой РИД