×
27.01.2014
216.012.9b68

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ УТИЛИЗАЦИИ ОРГАНИЧЕСКИХ СУБСТРАТОВ С ВЛАЖНОСТЬЮ 92-99% С ПОЛУЧЕНИЕМ ОРГАНИЧЕСКИХ УДОБРЕНИЙ И ЭЛЕКТРОЭНЕРГИИ

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано в сельском хозяйстве в составе животноводческих и растениеводческих комплексов, жилищно-коммунальном хозяйстве (городских и поселковых сооружений биологической очистки хозяйственно-бытовых сточных вод), перерабатывающих производствах. Устройство содержит последовательно связанные друг с другом по потоку органического вещества первый механический сгуститель, аэробный биореактор, вход которого связан с осадочной частью первого механического сгустителя, анаэробный биореактор и второй механический сгуститель. Устройство содержит механический смеситель для приготовления органических удобрений. Анаэробный биореактор выполнен в виде анаэробного биофильтра, второй механический сгуститель размещен между аэробным и анаэробным биореакторами, причем его осадочная часть связана с механическим смесителем, а надосадочные части первого и второго механических сгустителей связаны со входом анаэробного биофильтра. Устройство содержит первый генератор электрической энергии с приводом от двигателя внутреннего сгорания, оснащенным парогенерирующим утилизационным блоком, второй генератор электрической энергии с приводом от паропоршневой машины, теплонасосную установку и теплофикационный блок, причем выход анаэробного биореактора по жидкому потоку связан с основным испарителем теплонасосной установки, выход по биогазу - с двигателем внутреннего сгорания, а конденсатор теплонасосной установки, парогенерирующий утилизационный блок, паропоршневая машина и теплофикационный блок связаны друг с другом посредством пароконденсатного контура с образованием замкнутого термодинамического цикла. Техническим результатом изобретения является повышение глубины переработки органического вещества исходного субстрата в сочетании с более полным использованием биоэнергетического потенциала. 2 з.п. ф-лы, 1 ил.

Устройство для утилизации органических субстратов влажностью 92-99% с получением органических удобрений и электроэнергии предназначено для решения задач рационального природопользования, автономного энергоснабжения и обеспечения плодородия сельскохозяйственных угодий.

Задачи рационального природопользования решаются посредством малоотходной технологии переработки концентрированных жидких и полужидких субстратов, загрязняющих поверхностные и грунтовые воды, в полезные продукты и энергию.

Задачи автономного энергоснабжения решаются посредством использования биоэнергетического потенциала органического вещества с непосредственным получением высокопотенциальной энергии и трансформацией низкопотенциальной энергии в высокопотенциальную непосредственно на объекте - источнике органических субстратов.

Задачи обеспечения плодородия сельскохозяйственных угодий решаются посредством переработки исходных, непригодных для непосредственного агротехнического применения, органических субстратов в обеззараженные, стабилизированные жидкие и твердые удобрения.

Областью применения предлагаемого изобретения является сельское хозяйство в составе животноводческих и растениеводческих комплексов, жилищно-коммунальное хозяйство (городские и поселковые сооружения биологической очистки хозяйственно-бытовых сточных вод), перерабатывающие производства.

Известны устройства аналогичного назначения. В источнике «Water pollution control)), V 86, №1, 1987, в статье «Heating and cooling of sewage sludge - some recent developments)) авт. Bruce A.M. etc., представлены два основных вида устройств, предназначенных для биотехнологической переработки концентрированных органических субстратов влажностью 92-96%, таких как осадки и илы, образующиеся в процессе биологической очистки хозяйственно-бытовых сточных вод.

Устройством первого вида, наиболее широко представленным в системах утилизации органических отходов процесса очистки сточных вод, является анаэробный биореактор, принцип действия которого основан на биохимической конверсии органического вещества отходов в газообразный энергоноситель - биогаз с удельной теплотой сгорания не менее 21 МДж/ м3. В процессе конверсии из 1 т органического вещества исходного субстрата образуется 8,8 ГДж запасенной в биогазе энергии, из которой не менее 30% является товарной. По мимо биогаза, на выходе из анаэробного биореактора выделяется эффлюент, содержащий остаточное количество неразложившегося органического вещества, неразлагаемое (минеральное) вещество, иловую воду и некоторое количество биогаза. Эффлюент обладает следующими положительными свойствами:

- не содержит или содержит в малых количествах патогенную микрофлору;

- не разлагается при хранении и не является питательным субстратом для вредоносных насекомых и мезофауны;

- содержит на уровне, не меньшем чем в исходном субстрате, питательные(биогенные) вещества - соединения азота, фосфора, калия.

Недостатками являются значительные потери энергии с нагретым в биоректоре эффлюентом - до 58% от начального энергосодержания субстрата - и проблемы, связанные с остаточным газовыделением (низкая эффективность гравитационного разделения на фракции, неконтролируемая эмиссия парниковых газов в атмосферу).

В целом

анаэробный процесс в рассматриваемом устройстве обладает двумя основными недостатками:

1. Значительными (до 70%) затратами энергии на собственные нужды, в первую очередь на нагрев и перемешивание субстрата.

2. Невысокой интенсивностью процесса биоконверсии, что связанно в основном с проблемами доступа анаэробной микрофлоры к твердым частицам субстрата и отводом продуктов метаболизма.

Устройством второго вида является аэробный биореактор, принцип действия которого основан на биохимической конверсии органического вещества отходов, сопровождающийся нагревом субстрата в процессе его переработки аэробными микроорганизмами. В процессе конверсии из 1 т органического вещества исходного субстрата выделяется 8,4 ГДж тепловой энергии. Образующийся в процессе переработки эффлюент является обеззараженным и стабилизированным продуктом.

Основным преимуществом переработки субстрата в аэробном биореакторе является высокая интенсивность процесса конверсии, что позволяет в несколько раз снизить объем биореактора.

Основными недостатками являются: значительные затраты энергии на перемешивание субстрата - до 1,5 ГДж на 1 т загруженного органического вещества, и необходимость подачи в биореактор кислорода воздуха в количестве 0,6 т на 1 т органического вещества.

Дополнительным недостатком является низкий потенциал получаемого в процессе переработки теплоносителя - нагретого до 50-60°С эффлюента и наличие интенсивной эмиссии СО2 в атмосферу.

В силу указанных причин, в сельском и жилищно-коммунальном хозяйстве используют в основном биореакторы анаэробного типа, а аэробный процесс применяют для переработки субстратов с исходной влажность до 65% в компост.

Известны технические решения данного типа. В патенте США №5593590, Кл. C02F 3/28 (МКИ 210/603) от 1997 года исходный субстрат подвергается разделению на фракции, твердая фракция влажностью 65% подвергается компостированию, жидкая фракция - переработке в анаэробном биореакторе с получением эффлюента и биогаза. Так как анаэробной переработке подвергается субстрат, органическое вещество в котором представлено в основном в мелкодисперсном и растворенном виде, интенсивность процесса переработки существенно возрастает и, соответственно, в несколько раз снижается объем биореактора. Согласно пат. США №5593590, эффлюент подвергается сгущению. Жидкая фракция направляется на физико-химическую очистку с применением флокулянтов с целью достижения уровня загрязненности, допускающего последующую очистку на типовых очистных сооружениях. Осадок направляется на вход устройства, что обеспечивает рециркуляцию анаэробной биомассы и увеличение выхода твердой фракции.

Основным недостатком данного технического решения является необходимость использовать значительную часть энергии биогаза для нагрева жидкой фракции до рабочей температуры в диапазонах 33-37°С и 53-57°С для обеспечения необходимой интенсивности процесса анаэробной переработки. Другими недостатками являются невозможность повышения рН в случае утилизации кислого исходного субстрата, и недостаточная степень гидролиза исходного органического вещества, что не позволяет в полной мере реализовать его биоэнергетический потенциал в процессе анаэробной переработки в биореакторе.

Наиболее близким к предлагаемому изобретению является техническое решение, представленное в кн. Гюнтер Л.И., Гольдфарб Л.Л. «Метантенки» М:, Стройиздат, 1991 г.

Устройство состоит из последовательно связанных по потоку органического вещества первого механического сгустителя, аэробного биореактора, анаэробного биореактора и второго механического сгустителя. Биореакторы оснащены стандартными средствами перемешивания и нагрева биомассы и утилизации биогаза.

Исходный субстрат влажностью 92-99% поступает в первый механический сгуститель, образующийся осадок насосом перекачивается в аэробный биореактор, в котором осуществляется его предварительная обработка с распадом органического вещества не более 10-15% и получение промежуточного субстрата с повышенным (не менее 6,5-7) значением рН и содержанием растворенного органического вещества. Далее промежуточный субстрат загружается в анаэробный биореактор с целью получения биогаза и обеззараженного стабилизированного эффлюента. Эффлюент подвергается разделению на фракции во втором механическом сгустителе. Полученный осадок может быть утилизирован в качестве органического удобрения, жидкая фракция вместе с надосадочной жидкостью из первого механического сгустителя может быть подвергнута доочистке известными способами.

В сравнении с аналогом пат. США №5593590, устройство-прототип обладает следующими преимуществами:

- нагрев порции исходного субстрата, загружаемого в анаэробный биореактор, осуществляется за счет использования автотермического аэробного процесса; снижение выхода биогаза (не более 10-30%) значительно меньше снижения затрат биогаза на собственные нужды анаэробного процесса;

- гидролиз исходного субстрата в сочетании с повышением рН позволяет увеличить удельный выход биогаза в сочетании с увеличением стабильности процесса;

- двухступенчатая микробиологическая переработка обеспечивает гарантированные обеззараживание и стабилизацию исходного субстрата. Основными недостатками устройства-прототипа являются:

- вовлечение в анаэробную переработку всего объема аэробно подготовленного субстрата, что отрицательно сказывается на интенсивности анаэробного процесса и приводит к значительному увеличению объема биореактора;

- биоэнергетический потенциал жидких фракций (надосадочных жидкостей) из первого и второго механических разделителей, а также явное тепло эффлюента не используются;

- значительные (до 25%) потери энергии в виде скрытого и явного тепла влажных газов метаболического процесса, отводимых из рабочего пространства аэробного биореактора;

- отсутствие рециркуляции анаэробной биомассы, и, как следствие, снижение интенсивности процессов разделения на фракции в первом механическом сгустителе и анаэробной переработки.

Задачей, решаемой в рамках предлагаемого изобретения, является устранение указанных недостатков.

Техническим результатом, достигаемым при реализации предлагаемого изобретения, является повышение глубины переработки органического вещества исходного субстрата в сочетании с более полным использованием биоэнергетического потенциала. Конечным результатом от использования предлагаемого изобретения является создание на его основе биоэнергетических природоохранных комплексов - источников автономного энергоснабжения и удобрений (удобрительных смесей).

Указанный технический результат достигается следующим образом.

Устройство содержит последовательно связанные друг с другом по потоку органического вещества первый механический сгуститель, аэробный биореактор, анаэробный биореактор и второй механический сгуститель. Вход аэробного биореактора связан с осадочной частью первого механического сгустителя. Дополнительно предусматривается механический смеситель для приготовления органических удобрений, связанный с осадочной частью второго механического сгустителя. Второй механический сгуститель размещен между аэробным и анаэробным биореакторами. Анаэробный биореактор выполнен в виде анаэробного биофильтра. Надосадочные части первого и второго механических сгустителей связаны со входом анаэробного биофильтра. Дополнительно предусматриваются первый генератор электрической энергии с приводом от двигателя внутреннего сгорания, оснащенным парогенерирующим утилизационным блоком, второй генератор электрической энергии с приводом от паропоршневой машины, теплонасосная и теплофикационная установки. Выход анаэробного биореактора по жидкому потоку связан с основным испарителем теплонасосной установки, выход по биогазу - двигателем внутреннего сгорания. Конденсатор теплонасосной установки, парогенерирующий утилизационный блок, паропоршневыя машина и теплофикационный блок связаны друг с другом посредством пароконденсатного контура с образованием замкнутого термодинамического цикла. Между выходом анаэробного биореактора по жидкому потоку и основным испарителем теплонасосной установки предусмотрен третий механический сгуститель, осадочная часть которого связана с надосадочной частью первого механического сгустителя. На выходе из аэробного биореактора по газовому потоку установлен дополнительный испаритель теплонасосной установки, подключенный по холодильному агенту параллельно основному испарителю, и связанный посредством гидрозатвора со входом анаэробного биореактора. На выходе из механического сгустителя предусматривается площадка для компостирования, аэрирующее устройство которой по газовому потоку связано с выходом дополнительного испарителя теплонасосной установки.

Принципиальная технологическая схема устройства для утилизации органических субстратов представлена на фигуре 1.

Устройство состоит из первого механического сгустителя 1, осадочная часть 2 которого посредством насоса 3 соединена с аэробным биореактором 4. Аэробный биореактор 4 представляет собой герметичный резервуар, снабженный средствами перемешивания - механической мешалкой 5, и аэрации - аэратором 6, подключенным к воздушному компрессору 7. средства перемешивания могут быть агрегированы в единый аэрационно-перемешивающий узел. Внутри аэробного биореактора находится сгущенный субстрат и аэробная микрофлора, обеспечивающая обработку данного субстрата. Для отведения обработанного субстрата предусмотрен разгрузочный патрубок 8; для отведения газообразных продуктов метаболизма - газоотводящий патрубок 9. Разгрузочный патрубок 8 связан со входом второго механического сгустителя 10, осадочная часть 11 которого в свою очередь связана со входом механического смесителя 12. Помимо аэробно обработанного сгущенного субстрата, на вход механического смесителя 12 могут подаваться корректирующие состав питательных веществ, рН и другие показатели добавки, а также влагопоглощающие наполнители. Выход механического смесителя 12 связан с площадкой для компостирования 13, снабженной аэрирующим устройством 14. устройство содержит также анаэробный биореактор 15, выполненный в виде аппарата проточного типа - анаэробного биофильтра с пористым материалом 16 для иммобилизации анаэробной микрофлоры. Вход анаэробного биореактора 15 посредством подающего насоса 17 связан с надосадочными частями 18 и 19 соответственно первого механического сгустителя 1 и второго механического сгустителя 10, а также с жидкостным выходом дополнительного испарителя 20 теплонасосной установки 21, размещенным на газоотводящем тракте аэробного биореактора 4.

На выходе газожидкостного потока из анаэробного биореактора 15 предусмотрен сепаратор фаз 22, служащий для выделения биогаза из потока. Посредством газоотводящего тракта сепаратор фаз 22 связан с газохранилищем 23 и двигателем внутреннего сгорания 24, приводящим в действие первый генератор электрической энергии 25. биогаз также может подаваться к газомоторному приводу компрессора теплонасосной установки 21 (в случае применения парокомпрессионного цикла). По жидкому потоку сепаратор фаз 22 связан с третьим механическим сгустителем 26, надосадочная часть 27 которого связана с основным испарителем 28 теплонасосной установки 21, а осадочная часть 29 посредством насоса 30 - с надосадочной частью 18 первого механического сгустителя 1. Устройство содержит также второй генератор электрической энергии 31, приводимый в действие паропоршневой машиной 32, и теплофикационный блок 33, базовым элементом которого является теплообменный аппарат известного типа, и обеспечивающий передачу тепловой энергии от пароконденсатной смеси к теплоносителю. Двигатель внутреннего сгорания 24 оснащен утилизационным блоком 34,связанным посредством замкнутого пароконденсатного контура с конденсатором 35 теплонасосоной установки 21, теплофикационным блоком 33 и паропоршневой машиной 32. В состав парогенерирующего утилизационного блока 34 входят теплообменники «конденсат -вода» и «продукты сгорания -пар» известного типа.

Предлагаемое устройство работает следующим образом.

Исходный субстрат (жидкий и полужидкий бесподстилочный навоз, помет, осадки, или различные концентрированные органические смеси) поступает в первый механический сгуститель 1, в котором под действием гравитационных и/или иных сил происходит его разделение на фракции. Сгущенная фракция (осадок) из осадочной части 2 первого механического сгустителя 1 насосом 3 подается на вход аэробного реактора 4, в котором вступает во взаимодействие с аэробной термофильной микрофлорой. Процесс осуществляется в условиях активной аэрации и перемешивания системы «субстрат - аэробная микрофлора»; температура процесса достигает 50-60°С, что соответствует верхнему температурному пределу обработки субстрата в анаэробном биореакторе 15. Помимо нагрева субстрата, который осуществляется в автотермическом режиме, происходит его частичное обеззараживание и гидролиз, а также повышение щелочности. Процесс осуществляется таким образом, что распадается не более 10-15% (по ХПК) органического вещества. Такой глубины распада достаточно для быстрого достижения требуемых температур (временной интервал 0,5-1,5 сут, в зависимости от вида субстрата и параметров технологического режима), в то же время снижение выхода биогаза на последующей стадии микробиологической обработки - не более 10-30% от максимально достижимого уровня выхода. Процесс обработки осуществляется, в отличие от распространенного процесса аэробной стабилизации, в условиях недостатка кислорода. Перемешивание обеспечивается механической мешалкой 5, аэрация - посредством аэратора бот воздушного компрессора 7. Возможно применение комбинированных аэрационно-перемешивающих устройств известного типа. Газообразные продукты метаболизма (в основном СО2) в смеси с балластными составляющими воздуха и некоторыми другими газами и парами удаляются через гозоотводной патрубок 9 через дополнительный испаритель 20 теплонасосной установки 21 и аэрирующее устройство 14 площадки для компостирования 13 в атмосферу. При этом на внешней теплообменной поверхности дополнительного испарителя 20 конденсируется основная масса водяных паров (в основном органического происхождения), что обеспечивает частичную рекуперацию энергии, затраченной на проведение процесса.

Непрореагировавший в аэробном биореакторе 4 кислород используется в аэробном процессе компостирования; при прохождении потока от аэрирующего устройства в атмосферу через слой компоста поглощаются дурнопахнующие газы. Аэробно обработанный субстрат через разгрузочный патрубок 8 подается во второй механический сгуститель 10; сгущенный субстрат из осадочной части 11 направляется в механический смеситель 12, на вход которого поступают также различные корректирующие добавки и влагопоглощающие материалы. Образовавшаяся смесь используется для приготовления компоста на площадке для компостирования 13. Жидкая фракция из надосадочных частей 18 и 19 соответственно первого и второго механических сгустителей 1 и 10 совместно с конденсатом из дополнительного испарителя 20 теплонасосоной установки 21 подается насосом 17 на вход анаэробного биореактора 15. Так как обработке подвергается жидкая фракция субстрата с влажностью не менее 98%, становится возможным применение анаэробного процесса с протоком жидкости в непрерывном режиме и с высокой интенсивностью массообменных и биохимических процессов. Высокая степень перехода органического вещества субстрата в жидкую фазу обеспечивается предварительной аэробной обработкой. Снижение концентрации средне-размерных взвешенных частиц в жидкой фазе обеспечивается применением процесса биофлокуляции с использованием в качестве биофлокулянта сгущенную анаэробную биомассу из третьего механического сгустителя 26,осадочная часть 29 которого связана с надосадочной частью первого механического сгустителя 1. Повышенное значение рН обеспечивает устойчивость анаэробного процесса. Анаэробный процесс осуществляется в системе «жидкий субстрат - биопленка». Биопленка формируется на поверхности пористого носителя (иммобилизирующего материала) искусственного (например стекло) или природного (гравий, уголь) происхождения с оптимизированными размером гранул (зерен) и структурой пор.

По мере прохождения жидкого потока (предпочтительно по схеме «снизу вверх») органическое вещество жидкого субстрата усваивается анаэробной биопленкой. Газообразный продукт метаболизма - биогаз и отмирающая биопленка уносятся потоком в сепаратор фаз 22, в котором происходит отделение биогаза от жидкости с последующим его накоплением в газохранилище 23 и расходованием на работу двигателя внутреннего сгорания 24 и, соответственно, получение электрической энергии в первом генераторе 25. Биогаз может использоваться в качестве первичного источника энергии в двигателях внутреннего сгорания активных элементов самого устройства - приводах теплового насоса 21, компрессора 7 и т.п. Жидкий поток из сепаратора фаз 22, представляющий собой очищенную воду, направляется в третий механический сгуститель 26, в котором отделяется основная масса твердой фазы потока. Сгущенная фракция, состоящая в основном из анаэробной биомассы, используется в дальнейшем в качестве биофлокулянта, а также, при рециркуляции на вход второго механического сгустителя 10, и может использоваться для организации рециркуляционного процесса в системе «второй механический сгуститель 10 - анаэробный биореактор 15 - третий механический сгуститель 26». Осветленная вода из надосадочной части 27 третьего механического сгустителя 26 подается на вход основного испарителя 28 теплонасосной установки 21 и охлаждается в нем до температуры 25-30°С, таким образом осуществляется подготовка воды для последующей очистки в аэротенках или других сооружениях биологической очистки, в которых рабочие процессы протекают в указанном диапазоне температур, а также рекуперируется часть энергии, затраченной на обработку субстрата. Явное тепло жидкого потока вызывает кипение рабочего тела (хладагента) в рабочем пространстве основного испарителя 28, которое сжимается компрессором и термическим способом, транспортируется в системе теплонасосной установки 21 к конденсатору 35, в котором в свою очередь, конденсирующееся рабочее тело (хладагент) вступает в теплообмен с рабочим телом (водой) пароконденсатного контура. Замкнутый термодинамический цикл в пароконденсатном контуре реализуется следующим образом. Конденсат - охлажденная и химически подготовленная вода - из теплофикационного блока 33 поступает в охладитель рубашки и масляный охладитель (при его наличии), которые входят в состав парогенерирующего теплоутилизационного блока 34 двигателя внутреннего сгорания 24 привода первого генератора электрической энергии 25. Далее конденсат поступает в конденсатор 35 теплонасосной установки 21, догревается до температуры близкой к температуре кипения при заданном давлении, и поступает в парогенератор парогенерирующего теплоутилизационного блока 34, представляющий собой типовой котел-утилизатор, в котором парогенерация осуществляется за счет высокотемпературного (до 600°С) потока выхлопных газов двигателя внутреннего сгорания 24. Далее пар перегревается в пароперегревателе за счет сжигания части биогаза, причем пароперегреватель может входить в состав котла-утилизатора, и далее поступает в парораспределительный механизм многоцилиндровой паропоршневой машины, которая приводит в действие второй генератор электрической энергии 31. Отработанный пар, сохранивший значительную часть своей энергии, поступает в теплофикационный блок 33, представляющий собой совокупность теплообменных аппаратов для конденсации пара и охлаждения конденсата-бойлера и водоводяного теплообменника типовых конструкций. Охлажденный конденсат накапливается в конденсатном баке и питательным насосом подается в двигатель внутреннего сгорания 24. Далее цикл повторяется. Полученный таким образом горячий теплоноситель посредством теплофикационного контура 36 поставляется потребителям.


УСТРОЙСТВО ДЛЯ УТИЛИЗАЦИИ ОРГАНИЧЕСКИХ СУБСТРАТОВ С ВЛАЖНОСТЬЮ 92-99% С ПОЛУЧЕНИЕМ ОРГАНИЧЕСКИХ УДОБРЕНИЙ И ЭЛЕКТРОЭНЕРГИИ
Источник поступления информации: Роспатент

Показаны записи 11-20 из 26.
10.06.2014
№216.012.ce55

Способ переработки органических субстратов в газообразные энергоносители и удобрения

Изобретение относится к области утилизации органических субстратов, не представляющих ценности в качестве исходного сырья для приготовления товарной продукции, в первую очередь органических удобрений. Для осуществления способа исходный субстрат подвергают последовательно анаэробной обработке с...
Тип: Изобретение
Номер охранного документа: 0002518592
Дата охранного документа: 10.06.2014
20.06.2014
№216.012.d342

Способ утилизации отходов в комплексе безотходного птицеводства и животноводства с собственным производством кормов

Изобретение относится к сельскохозяйственному производству. Способ включает биотехнологическую и термохимическую переработку навоза и помета. При переработке навоза и помета получают электрическую и тепловую энергию, газообразное и жидкое топливо, которые используют как при переработке навоза...
Тип: Изобретение
Номер охранного документа: 0002519853
Дата охранного документа: 20.06.2014
20.11.2014
№216.013.07ee

Способ переработки бесподстилочного навоза в удобрения, электрическую и тепловую энергию и биоэнергетическая установка для его реализации

Изобретения относятся к сельскому хозяйству. Способ переработки бесподстилочного навоза в удобрения, электрическую и тепловую энергию, согласно которому исходный навоз последовательно подвергают предварительной подготовке в аппарате, снабженном средствами перемешивания, анаэробной переработке в...
Тип: Изобретение
Номер охранного документа: 0002533431
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.0960

Устройство для анаэробной и аэробной обработки концентрированных органических жидкостей

Изобретение относится к области природоохранной техники, в часности к сооружениям для подготовки к утилизации бесподстилочного навоза, помета на фермах, животноводческих, птицеводческих комплексах и к сооружениям для обработки осадков и других отходов механобиологической очистки...
Тип: Изобретение
Номер охранного документа: 0002533801
Дата охранного документа: 20.11.2014
20.02.2015
№216.013.299a

Устройство для экологически безопасной переработки органических субстратов в биогаз и удобрения

Изобретение относится к сельскому хозяйству. Устройство для экологически безопасной переработки органических субстратов в биогаз и удобрения, состоящее из гидравлически связанных с линией подачи исходного субстрата первого аппарата механического разделения, анаэробного биореактора с...
Тип: Изобретение
Номер охранного документа: 0002542107
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.299b

Способ переработки органических субстратов в биогаз, жидкие и твердые удобрения и техническую воду, устройство и аппарат для его реализации

Группа изобретений относится к сельскому хозяйству. Способ переработки органических субстратов в биогаз, жидкие и твердые удобрения и техническую воду, согласно которому исходный субстрат последовательно подвергается усреднению, анаэробной обработке, механическому сгущению с получением твердой...
Тип: Изобретение
Номер охранного документа: 0002542108
Дата охранного документа: 20.02.2015
10.08.2015
№216.013.6e77

Радиолокационная станция с положительной обратной связью

Изобретение относится к радиотехнике, а именно к радиолокации, и может быть использовано при построении радиолокационной станции с многоканальной положительной обратной связью. Достигаемый технический результат - увеличение вероятности правильного обнаружения цели и уменьшение вероятности...
Тип: Изобретение
Номер охранного документа: 0002559837
Дата охранного документа: 10.08.2015
27.02.2016
№216.014.be33

Способ получения биопродуктов и энергии из бесподстилочного куриного помета и устройство для его осуществления

Изобретения относятся к сельскому хозяйству. Способ получения биопродуктов и биогаза из бесподстилочного куриного помета, согласно которому исходный помет подвергают последовательно мезофильной анаэробной обработке в температурном диапазоне 32-37°С продолжительностью не более суток,...
Тип: Изобретение
Номер охранного документа: 0002576208
Дата охранного документа: 27.02.2016
10.03.2016
№216.014.ca25

Способ получения биогаза и удобрений из бесподстилочного навоза и других органических субстратов

Изобретение относится к сельскому хозяйству, в частности к способам получения искусственных газов и аммиачного азота из бесподстилочного навоза. Исходный навоз подвергают аэробной переработке с получением биогаза и аммонизированного эффлюента. Эффлюент подвергают механическому разделению на...
Тип: Изобретение
Номер охранного документа: 0002577168
Дата охранного документа: 10.03.2016
10.03.2016
№216.014.ca69

Линия утилизации навоза с получением биогаза и удобрений

Линия утилизации навоза с получением биогаза и удобрений состоит из гидравлически связанных навозоприемника, первого анаэробного биореактора с теплообменником-конденсатором теплового насоса, второго анаэробного биореактора с теплообменником, отстойника-накопителя удобрений с...
Тип: Изобретение
Номер охранного документа: 0002577166
Дата охранного документа: 10.03.2016
Показаны записи 11-20 из 61.
20.12.2013
№216.012.8ac0

Способ обеззараживания зерна и продуктов его переработки

Способ включает увлажнение зерна, отлежку увлажненного зерна и последующую его обработку полем СВЧ. Дополнительно введен продув зерна нагретым воздухом, температура которого не превышает 55°С. При этом СВЧ-поле включают периодически для нагрева зерна до предельной максимальной температуры....
Тип: Изобретение
Номер охранного документа: 0002501203
Дата охранного документа: 20.12.2013
20.12.2013
№216.012.8ac4

Способ получения растениеводческой продукции в культивационных сооружениях и метана с использованием биоэнергетического потенциала бесподстилочного навоза

Изобретение относится к сельскому хозяйству. Согласно предложенному способу бесподстилочный навоз подвергают анаэробной переработке в метантенке с получением биошлама и биогаза. Биошлам разделяют на твердую и жидкую фракции, твердую фракцию подвергают термохимической переработке с получением...
Тип: Изобретение
Номер охранного документа: 0002501207
Дата охранного документа: 20.12.2013
20.12.2013
№216.012.8ca1

Способ и устройство скоростного передвижения пассажирского поезда по однопутной железной дороге

Изобретение относится к транспортным системам. Способ скоростного передвижения пассажирского поезда по однопутной железной дороге заключается в том, что передвижение поезда осуществляют по однопутевому полотну, размещенному на опорах. Давление на несущие опоры и полотно определяют от 5-ти до...
Тип: Изобретение
Номер охранного документа: 0002501684
Дата охранного документа: 20.12.2013
20.12.2013
№216.012.8dcc

Вибрационный насос

Изобретение относится к вибрационным насосам. Может найти применение в быту и сельском хозяйстве для подъема жидкостей из скважин, колодцев и других водоемов. Вибрационный насос содержит корпус с крышками с отверстиями для всасывания воды, три штока, три якоря с эластичной подвеской, три...
Тип: Изобретение
Номер охранного документа: 0002501983
Дата охранного документа: 20.12.2013
20.12.2013
№216.012.8df5

Солнечный модуль с концентратором

Изобретение относится к гелиотехнике, в частности к солнечным энергетическим модулям с концентраторами для получения электричества и/или тепла. Солнечный модуль с концентратором состоит из приемника солнечного излучения и цилиндрического солнечного концентратора, отражающая поверхность которого...
Тип: Изобретение
Номер охранного документа: 0002502024
Дата охранного документа: 20.12.2013
20.12.2013
№216.012.8df8

Способ сушки зерна

Изобретение относится к способу сушки зерна и семян различных культур и может быть использовано в сельском хозяйстве, пищевой промышленности, в системе хлебопродуктов и хранения зерна и смежных отраслях промышленности. Способ сушки зерна заключается в пропускании сквозь зерновой слой...
Тип: Изобретение
Номер охранного документа: 0002502027
Дата охранного документа: 20.12.2013
10.01.2014
№216.012.9539

Солнечный модуль с концентратором и способ его изготовления (варианты)

Изобретение относится к гелиотехнике, в частности к солнечным модулям с концентраторами для получения электрической и тепловой энергии. В солнечном модуле с концентратором, содержащем прозрачную фокусирующую призму с углом полного внутреннего отражения где n - коэффициент преломления материала...
Тип: Изобретение
Номер охранного документа: 0002503895
Дата охранного документа: 10.01.2014
20.01.2014
№216.012.97a5

Способ биологической обработки концентрированных органических субстратов с получением удобрений, газообразного энергоносителя и технической воды и устройство для его реализации

(57) Изобретение относится к области утилизации концентрированных органических субстратов. Источниками таких субстратов могут быть предприятия агропромышленного комплекса - животноводческие и птицеводческие комплексы (бесподстилочный навоз, помет), перерабатывающие предприятия. Субстратами...
Тип: Изобретение
Номер охранного документа: 0002504520
Дата охранного документа: 20.01.2014
27.01.2014
№216.012.9b3c

Устройство перемещения транспортного средства

Устройство перемещения транспортного средства содержит эластичный цилиндрический герметизированный тороид, заполненный воздухом, замкнутый бесконечный элемент, связанный с тяговым приводом и размещенный в центральной части тороида, и двойную гусеницу, закрепленную на рабочей поверхности...
Тип: Изобретение
Номер охранного документа: 0002505446
Дата охранного документа: 27.01.2014
27.01.2014
№216.012.9b66

Аппарат для биохимической переработки жидких и полужидких органических субстратов

Изобретение относится к области переработки органических субстратов влажностью 95-97% с концентрацией органического вещества не менее 20 г/л. Такими субстратами являются полужидкий и жидкий навоз, образующийся при самосплавном навозоудалении, первичный осадок и сгущенный активный ил из...
Тип: Изобретение
Номер охранного документа: 0002505488
Дата охранного документа: 27.01.2014
+ добавить свой РИД