×
27.01.2014
216.012.9ad6

Результат интеллектуальной деятельности: СПОСОБ ОЧИСТКИ ГАЗОВ ОТ СЕРОВОДОРОДА

Вид РИД

Изобретение

№ охранного документа
0002505344
Дата охранного документа
27.01.2014
Аннотация: Изобретение может быть использовано в нефтяной, газовой, газоперерабатывающей, нефтеперерабатывающей, нефтехимической отраслях промышленности и относится к способам жидкофазной окислительной конверсии сероводорода, содержащегося в газах, с получением элементарной серы. Способ включает подачу очищаемых от сероводорода газов в зону абсорбции при встречном движении их с абсорбентом, а воздуха - в зону регенерации в количестве, обеспечивающем отношение парциальных объемов кислорода воздуха и сероводорода в газах в диапазоне 0,5÷25:1, отбор очищенных газов из верхней части зоны абсорбции, а серы - из нижней зоны регенерации, отличающийся тем, что вместе с очищаемыми газами в зону абсорбции подают воздух в количестве, обеспечивающем соотношение парциальных объемов кислорода воздуха к сероводороду газов 0,05÷0,75:1, причем суммарный объем подаваемого воздуха в зоны абсорбции и регенерации обеспечивает соотношение парциальных объемов кислорода воздуха к сероводороду, не превышающее первоначальное. Предлагаемый способ позволяет увеличить эффективность очистки газов от сероводорода (не менее 99,99%) за счет интенсификации процесса окисления сероводорода до элементарной серы благодаря частичному проведению регенерации абсорбента в зоне абсорбции и, как следствие, снизить материальные затраты на реализацию способа. 3 табл., 2 ил.
Основные результаты: Способ очистки газов от сероводорода, включающий подачу очищаемых от сероводорода газов в зону абсорбции при встречном движении их с абсорбентом, а воздуха - в зону регенерации в количестве, обеспечивающем отношение парциальных объемов кислорода воздуха и сероводорода в газах в диапазоне 0,5÷25:1, отбор очищенных газов из верхней части зоны абсорбции, а серы - из нижней зоны регенерации, отличающийся тем, что вместе с очищаемыми газами в зону абсорбции подают воздух в количестве, обеспечивающем соотношение парциальных объемов кислорода воздуха к сероводороду газов 0,05÷0,75:1, причем суммарный объем подаваемого воздуха в зоны абсорбции и регенерации обеспечивает соотношение парциальных объемов кислорода воздуха к сероводороду, не превышающее первоначальное.

Изобретение может быть использовано в нефтяной, газовой, газоперерабатывающей, нефтеперерабатывающей, нефтехимической отраслях промышленности и относится к способам жидкофазной окислительной конверсии сероводорода, содержащегося в газах, с получением элементарной серы.

Известны различные способы удаления сероводорода из потока газов. Хорошо известен процесс Клауса, используемый для очистки кислых газов от сероводорода (Николаев В.Ю. Техника производства газовой серы на газоперерабатывающих заводах. - М.: ВНИИгазпром, 1980. - Вып.3. - 43 с.). Согласно этому способу сероводород, содержащийся в одной трети потока кислых газов, на термической стадии окисляют кислородом воздуха с образованием диоксида серы. После этого на каталитических стадиях полученным диоксидом серы осуществляется конверсия оставшихся двух третей сероводорода с образованием элементарной серы и воды.

Недостатками способа являются необходимость проведения процесса при высоких температурах и при концентрации сероводорода более 20-30%, сложность регулирования точного соотношения 2:1 между сероводородом и двуокисью серы, а также необходимость дополнительной очистки, так как избыток любого компонента может привести к выбросу его в атмосферу, что требует дополнительных материальных затрат.

Наиболее близким аналогом заявляемому способу, принятым за прототип, является процесс жидкофазной окислительной конверсии сероводорода (Нефтяное хозяйство, 1997, №5, стр.43-44). Согласно этому способу процесс осуществляется в аппарате, заполненном абсорбентом и разделенном на две зоны: абсорбции и регенерации, в которые подают соответственно сероводородсодержащий газ и воздух. Сероводородсодержащий газ, проходя через слой абсорбента, очищается от сероводорода, далее абсорбент поступает в регенератор, где регенерируется кислородом воздуха. Достоинством данного процесса является то, что ему не требуется насос для циркуляции реагента между абсорбером и регенератором. Циркуляция абсорбента достигается вследствие обеспечения различного газосодержания жидкости, что приводит к различию гидростатических давлений и циркуляции жидкости в указанных зонах. Степень удаления сероводорода составляет не менее 99,94%.

Недостатком данного способа является относительно низкая удельная эффективность единицы объема аппарата, что требует увеличения необходимой высоты слоя абсорбента для достижения требуемой очистки газа от сероводорода, а значит, и увеличения гидравлического сопротивления аппарата, или увеличения площади поперечного сечения аппарата и, как следствие, его габаритов, а также менее эффективное использование кислорода воздуха, подаваемого обычно в зону регенерации со значительным избытком, и связанное с этим общее увеличение расхода воздуха и энергозатрат.

Технической задачей изобретения является увеличение эффективности очистки газов от сероводорода за счет интенсификации процесса окисления сероводорода до элементарной серы благодаря частичному проведению регенерации абсорбента в зоне абсорбции и, как следствие, экономии материальных и эксплуатационных затрат.

Техническая задача решается способом очистки газов от сероводорода, включающим подачу очищаемых от сероводорода газов в зону абсорбции при встречном движении их с абсорбентом, а воздуха - в зону регенерации в количестве, обеспечивающем отношение парциальных объемов кислорода воздуха и сероводорода в газах в диапазоне 0,5÷25:1, отбор очищенных газов из верхней части зоны абсорбции, а серы - из нижней зоны регенерации.

Новым является то, что вместе с очищаемыми газами в зону абсорбции подают воздух в количестве, обеспечивающем соотношение парциальных объемов кислорода воздуха к сероводороду газов 0,05÷0,75:1, причем суммарный объем подаваемого воздуха в зоны абсорбции и регенерации обеспечивает соотношение парциальных объемов кислорода воздуха к сероводороду, не превышающее первоначальное.

На фиг.1 изображен вариант осуществления способа по изобретению, в котором используется аппарат, разделенный на зоны абсорбции и регенерации, циркуляция абсорбента достигается вследствие обеспечения различного газосодержания жидкости в указанных зонах.

На фиг.2 изображен вариант осуществления способа по изобретению, в котором зоны абсорбции и регенерации находятся в отдельных емкостях, циркуляция абсорбента между ними достигается за счет рециркуляционного насоса.

Для реализации способа используется, например, вертикальный цилиндрический аппарат 1 (фиг.1) с коническим днищем 2, разделенный неполной перегородкой 3 на две зоны: абсорбционную 4 и регенерационную 5, сообщающиеся в верхней 6 и нижней 7 частях, а ввод воздуха и сероводородсодержащего газа в абсорбционную зону 4 осуществляется через распределитель 8, обеспечив отношение парциальных объемов кислорода воздуха и сероводорода газов в диапазоне 0,05÷0,75:1, соответственно. Аппарат 1 заполнен абсорбентом сероводорода - обычно щелочным раствором комплекса трехвалентного железа с этилендиаминтетрауксусной кислотой.

Сероводородсодержащий газ, проходя через слой абсорбента в абсорбционной зоне 4, очищается от сероводорода и по трубопроводу 9 отводится из аппарата 1. В процессе абсорбции сероводорода в абсорбционной зоне 4 в результате реакции с абсорбентом образуется сера, которая в виде суспензии в отработанном абсорбенте поступает в коническую отстойную часть - коническое днище 2 аппарата 1, где оседает и выводится из него по трубопроводу 10. Отработанный абсорбент в нижней части 7 аппарата 1 поступает в зону регенерации 5, где с помощью кислорода воздуха, подаваемого через распределитель 11, восстанавливает свои поглотительные свойства и в верхней части 6 аппарата 1 перетекает в зону абсорбции 4 для контакта с сероводородсодержащим газом, далее процесс повторяется. Суммарный объем подаваемого воздуха в зоны абсорбции 4 и регенерации 5 аппарата 1 обеспечивает соотношение парциальных объемов кислорода воздуха к сероводороду в диапазоне 0,5÷25:1, соответственно.

Расход сероводородсодержащего газа, воздуха и площади сечения абсорбционной 4 и регенерационной 5 зон подбираются так, чтобы обеспечивалось различное газосодержание жидкости в них. Это приводит к различию гидростатических давлений в указанных зонах и циркуляции жидкости внутри аппарата 1. Циркуляция также может быть достигнута установкой распределителей в абсорбционной 4 и регенерационной 5 зонах аппарата 1 на различных уровнях. При этом поддерживается стабильная циркуляция даже при условиях значительных колебаний расхода газа. Вариант, с помощью которого будет достигаться циркуляция, не является критичным при условии, что абсорбент будет циркулировать в противотоке с сероводородсодержащим газом для обеспечения высокой степени его очистки.

Для реализации способа может быть использован аппарат 1 (фиг.2) с двумя емкостями 12 и 13, в которых соответственно располагаются зоны абсорбции 4 и регенерации 5. Емкости 12 и 13 заполнены абсорбентом сероводорода - обычно щелочным раствором комплекса трехвалентного железа с этилендиаминтетрауксусной кислотой. Циркуляция абсорбента между зоной абсорбции 4 и регенерации 5 обеспечивается насосом 14. Ввод воздуха и сероводородсодержащего газа в зону абсорбции 4 осуществляется через распределитель 8, обеспечивая отношение парциальных объемов кислорода воздуха и сероводорода газов в диапазоне 0,05÷0,75:1, соответственно. Сероводородсодержащий газ, проходя через слой абсорбента, очищается от сероводорода и по трубопроводу 9 отводится из зоны абсорбции 4. В процессе абсорбции сероводорода в результате реакции с абсорбентом образуется сера, которая вместе с отработанным абсорбентом из зоны абсорбции 4 поступает в зону регенерации 5 по трубопроводу 15, где с помощью кислорода воздуха, подаваемого через распределитель 11, восстанавливает свои поглотительные свойства и откачивается насосом 14 в зону абсорбции для контакта с сероводородсодержащим газом, далее процесс повторяется. Отработанный воздух из зоны регенерации 5 отводится по трубопроводу 9'. Сера в виде суспензии в абсорбенте поступает в коническую отстойную часть - коническое днище 2 емкости 13, где оседает и выводится из него по трубопроводу 10. Суммарный объем подаваемого воздуха в зоны абсорбции 4 и регенерации 5 обеспечивает соотношение парциальных объемов кислорода воздуха к сероводороду в диапазоне 0,5÷25:1, соответственно.

Заявляемый способ отличается от прототипа тем, что часть воздуха, подаваемого для регенерации, перенаправляется в зону абсорбции 4 и подается туда с очищаемыми газами. При этом для увеличения эффективности окисления сероводорода количество воздуха, подаваемого в абсорбционную зону 4, должно обеспечивать соотношение парциальных объемов кислорода воздуха и сероводорода газов не менее 0,05:1. Для минимизации окисления сероводорода до тиосульфатов, что приводит к их постепенному накоплению в абсорбенте и способствует снижению его щелочности и ускоренной замене, количество воздуха, подаваемого в абсорбционную зону 4, должно обеспечивать соотношение парциальных объемов кислорода воздуха и сероводорода газов не более 0,75:1. Интенсификация процесса очистки сероводородсодержащих газов достигается за счет комбинации процессов абсорбции и частичной регенерации в абсорбционной зоне 4. За счет подачи воздуха в абсорбционную зону 4 абсорбент после взаимодействия с сероводородом частично регенерируется кислородом воздуха (до 25%) и снова принимает участие в процессе окисления сероводорода. Вследствие непосредственной близости в объеме абсорбента кислорода и сероводорода и связанного с этим снижения диффузионных барьеров происходит интенсификация процесса окисления сероводорода.

Результатом является уменьшение необходимой высоты слоя абсорбента для достижения требуемой очистки газа от сероводорода, а значит, и уменьшение гидравлического сопротивления, или уменьшение площади поперечного сечения аппарата и, как следствие, его габаритов, более эффективное использование кислорода воздуха, подаваемого обычно в зону регенерации со значительным избытком, связанное с этим общее снижение расхода воздуха и энергозатрат.

Результаты, полученные при испытаниях известной и предлагаемой установки по очистке газа от сероводорода, приведены в таблицах 1-3.

Результаты испытаний по удалению сероводорода из кислых газов с установки аминовой очистки с исходной концентрацией сероводорода 85,9 г/м3 представлены в таблицах 1 (прототип) и 2 (предлагаемый). Из результатов, представленных в таблицах 1 и 2, видно, что предлагаемый способ обеспечивает большую степень очистки газов от сероводорода.

Для удаления 99,5% сероводорода из очищаемого газа с исходной концентрацией 85,9 г/м3 по прототипу требуется поддержание отношения парциальных объемов кислорода воздуха, подаваемого в аппарат, и сероводорода в очищаемом газе 3,2:1, в тоже время по предлагаемому способу - 2,5:1. Это позволяет уменьшить расход электроэнергии, затрачиваемой на подачу воздуха в аппарат, примерно на 25% при одинаковой степени очистки газов от сероводорода.

Таблица 1
Содержание сероводоро-да в очищаемом газе, г/м3 Отношение парциальных объемов кислорода воздуха, подаваемого в аппарат, и сероводорода в очищаемом газе Отношение парциальных объемов кислорода воздуха, подаваемого в зону абсорбции, и сероводорода в очищаемом газе Степень очистки газа от сероводорода, % Расход э/э, затрачиваемой на подачу воздуха в аппарат, для очистки 1 м3 сероводородсодержащего газа, кВт
0,5:1 95,00 1,23*10-2
2,5:1 98,50 6,04*10-2
85,9 3,2:1 0 99,50 8,07*10-2
3,5:1 99,94 8,60*10-2
25:1 99,99 0,61
0,09 25:1 0 93,30 1,27*10-6

Таблица 2
Содержание сероводорода в очищаемом газе, г/м3 Отношение парциальных объемов кислорода воздуха, подаваемого в аппарат, и сероводорода в очищаемом газе Отношение парциальных объемов кислорода воздуха, подаваемого в зону абсорбции, и сероводорода в очищаемом газе Степень очистки газа от сероводорода, % Расход э/э, затрачиваемой на подачу воздуха в аппарат, для очистки 1 м3 сероводородсодержащего газа, кВт
85,9 0,5:1 0,02:1 95,00 1,23*10-2
0,05:1 95,20
0,10:1 95,10
0,20:1 94,50
2,5:1 0,02:1 98,50 6,04*10-2
0,05:1 98,80
0,21:1 99,50
0,30:1 99,50
0,50:1 99,30
0,75:1 99,10
85,9 3,2:1 0,05:1 99,60 8,07*10-2
0,10:1 99,80
0,24:1 99,90
0,50:1 99,90
0,75:1 99,90
3,5:1 0,05:1 99,94 8,6*10-2
0,10:1 99,90
0,25:1 99,99
0,50:1 99,99
0,75:1 99,99
25:1 0,05:1 99,99 0,61
0,75:1 99,99

При очистке газов с низкой концентрацией сероводорода предлагаемым способом отношение парциальных объемов кислорода воздуха (см. Таблица 3), подаваемого в аппарат, и сероводорода в очищаемом газе находится в диапазоне 10-25:1. Результаты испытаний по удалению сероводорода из газов с исходной концентрацией 0,09 г/м3 представлены в таблице 1 и 3. Видно, что предлагаемый способ обеспечивает большую степень очистки газов от сероводорода. При отношении парциальных объемов кислорода воздуха, подаваемого в аппарат и зону абсорбции, равному 25:1 и 0,75:1 соответственно, достигается максимальная эффективность очистки, равная 99,99%.

Таблица 3
Содержание сероводорода в очищаемом газе, г/м3 Отношение парциальных объемов кислорода воздуха, подаваемого в аппарат, и сероводорода в очищаемом газе Отношение парциальных объемов кислорода воздуха, подаваемого в зону абсорбции, и сероводорода в очищаемом газе Степень очистки газа от сероводорода, % Расход э/э, затрачиваемой на подачу воздуха в аппарат, для очистки 1 м3 сероводородсодержащего газа, кВт
0,09 25:1 0,02:1 93,30 1,27*10-6
0,05:1 93,30
0,10:1 93,4.0
0,20:1 96,50
0,50:1 99,95
0,75:1 99,99

Предлагаемый способ позволяет увеличить эффективность очистки газов от сероводорода за счет интенсификации процесса окисления сероводорода до элементарной серы благодаря частичному проведению регенерации абсорбента в зоне абсорбции и, как следствие, снизить материальные затраты на реализацию способа.

Способ очистки газов от сероводорода, включающий подачу очищаемых от сероводорода газов в зону абсорбции при встречном движении их с абсорбентом, а воздуха - в зону регенерации в количестве, обеспечивающем отношение парциальных объемов кислорода воздуха и сероводорода в газах в диапазоне 0,5÷25:1, отбор очищенных газов из верхней части зоны абсорбции, а серы - из нижней зоны регенерации, отличающийся тем, что вместе с очищаемыми газами в зону абсорбции подают воздух в количестве, обеспечивающем соотношение парциальных объемов кислорода воздуха к сероводороду газов 0,05÷0,75:1, причем суммарный объем подаваемого воздуха в зоны абсорбции и регенерации обеспечивает соотношение парциальных объемов кислорода воздуха к сероводороду, не превышающее первоначальное.
СПОСОБ ОЧИСТКИ ГАЗОВ ОТ СЕРОВОДОРОДА
СПОСОБ ОЧИСТКИ ГАЗОВ ОТ СЕРОВОДОРОДА
Источник поступления информации: Роспатент

Показаны записи 211-220 из 510.
10.07.2014
№216.012.dd0f

Способ разработки залежи высоковязкой нефти и/или битума с водонефтяными зонами

Изобретение относится к нефтедобывающей промышленности и, в частности, к термическим способам добычи высоковязкой нефти и/или битума при наличии водонефтяных зон или водонефтяного контакта. Обеспечивает сокращение сроков высокообводненного периода эксплуатации добывающей скважины, снижение...
Тип: Изобретение
Номер охранного документа: 0002522369
Дата охранного документа: 10.07.2014
20.07.2014
№216.012.de6f

Привод скважинного штангового насоса

Изобретение относится к техническим средствам для подъема жидкости из скважин и может быть использовано в нефтедобывающей промышленности для добычи нефти скважинными штанговыми насосами. Привод скважинного штангового насоса содержит установленные на основании на раме с корпусом двигатель,...
Тип: Изобретение
Номер охранного документа: 0002522729
Дата охранного документа: 20.07.2014
27.07.2014
№216.012.e5a4

Устройство для предпусковой очистки скважины

Изобретение относится к нефтедобывающей промышленности и может быть использовано для предпусковой очистки скважины от тяжелой скважинной жидкости. Устройство содержит электроцентробежный насос на колонне насосно-компрессорных труб, образующей со стволом скважины кольцевое пространство, пусковую...
Тип: Изобретение
Номер охранного документа: 0002524578
Дата охранного документа: 27.07.2014
27.07.2014
№216.012.e5a5

Устройство для подачи реагента в скважину

Изобретение относится к устройствам для подачи химических реагентов в скважинную жидкость.Устройство содержит соединенные по торцам с помощью муфт цилиндрические контейнеры с реагентом, камеры смешения и фильтры-дозаторы, расположенные в муфтах, имеющих, по крайней мере, по одному ряду входных...
Тип: Изобретение
Номер охранного документа: 0002524579
Дата охранного документа: 27.07.2014
10.08.2014
№216.012.e621

Устройство для обработки пластов в скважине

Изобретение относится к нефтегазодобывающей промышленности, а именно к устройствам для разобщения пластов в скважине при раздельной закачке в них различных реагентов. Устройство для обработки пластов в скважине содержит проходной пакер и разобщитель, включающий ствол, золотник, расположенный...
Тип: Изобретение
Номер охранного документа: 0002524706
Дата охранного документа: 10.08.2014
10.08.2014
№216.012.e63f

Способ разработки нефтяных залежей сообщаемыми через продуктивный пласт скважинами

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для разработки нефтяных залежей сообщаемыми через продуктивный пласт скважинами. Обеспечивает повышение продуктивности скважин и увеличение нефтеизвлечения за счет возможности применения...
Тип: Изобретение
Номер охранного документа: 0002524736
Дата охранного документа: 10.08.2014
10.08.2014
№216.012.e67f

Способ разработки неоднородного месторождения наклонными и горизонтальными скважинами

Изобретение относится к нефтяной промышленности и может найти применение при разработке многопластовой залежи в поздней стадии с неустойчивыми породами и неоднородным коллектором. Обеспечивает повышение нефтеотдачи залежи за счет ввода в разработку остаточных запасов нефти и увеличения...
Тип: Изобретение
Номер охранного документа: 0002524800
Дата охранного документа: 10.08.2014
10.08.2014
№216.012.e728

Скважинная внутренняя труболовка

Изобретение относится к ловильным устройствам, применяемым для ликвидации аварий с трубами в скважинах для их захвата за внутреннюю часть. Устройство содержит оправку с верхним переводником, нижним направляющим наконечником, продольным каналом и конусной поверхностью, расширяющейся сверху...
Тип: Изобретение
Номер охранного документа: 0002524969
Дата охранного документа: 10.08.2014
10.08.2014
№216.012.e796

Способ ограничения водопритока в скважину

Изобретение относится к нефтедобывающей промышленности, в частности к способам ограничения водопритока в скважину с использованием жидкого стекла (силиката натрия), и может быть использовано при проведении водоизоляционных работ в скважине. Способ ограничения водопритока в скважину включает...
Тип: Изобретение
Номер охранного документа: 0002525079
Дата охранного документа: 10.08.2014
20.08.2014
№216.012.eab3

Устройство для разработки залежи сверхвязкой нефти

Изобретение относится к области разработки месторождений углеводородов двухустьевыми скважинами и может быть использовано для отбора сверхвязкой нефти. Обеспечивает увеличение коэффициента вытеснения нефти из залежи, повышение надежности работы устройства, а также исключение преждевременного...
Тип: Изобретение
Номер охранного документа: 0002525891
Дата охранного документа: 20.08.2014
Показаны записи 211-220 из 478.
10.07.2014
№216.012.dd0c

Способ гидравлического разрыва пласта в скважине

Изобретение относится к нефтегазодобывающей промышленности и может быть применено для гидравлического разрыва пласта. Способ включает перфорацию в интервале пласта, спуск колонны труб с пакером, посадку пакера, закачку в подпакерную зону гелированной жидкости разрыва, заполнение колонны...
Тип: Изобретение
Номер охранного документа: 0002522366
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.dd0f

Способ разработки залежи высоковязкой нефти и/или битума с водонефтяными зонами

Изобретение относится к нефтедобывающей промышленности и, в частности, к термическим способам добычи высоковязкой нефти и/или битума при наличии водонефтяных зон или водонефтяного контакта. Обеспечивает сокращение сроков высокообводненного периода эксплуатации добывающей скважины, снижение...
Тип: Изобретение
Номер охранного документа: 0002522369
Дата охранного документа: 10.07.2014
20.07.2014
№216.012.de6f

Привод скважинного штангового насоса

Изобретение относится к техническим средствам для подъема жидкости из скважин и может быть использовано в нефтедобывающей промышленности для добычи нефти скважинными штанговыми насосами. Привод скважинного штангового насоса содержит установленные на основании на раме с корпусом двигатель,...
Тип: Изобретение
Номер охранного документа: 0002522729
Дата охранного документа: 20.07.2014
27.07.2014
№216.012.e5a4

Устройство для предпусковой очистки скважины

Изобретение относится к нефтедобывающей промышленности и может быть использовано для предпусковой очистки скважины от тяжелой скважинной жидкости. Устройство содержит электроцентробежный насос на колонне насосно-компрессорных труб, образующей со стволом скважины кольцевое пространство, пусковую...
Тип: Изобретение
Номер охранного документа: 0002524578
Дата охранного документа: 27.07.2014
27.07.2014
№216.012.e5a5

Устройство для подачи реагента в скважину

Изобретение относится к устройствам для подачи химических реагентов в скважинную жидкость.Устройство содержит соединенные по торцам с помощью муфт цилиндрические контейнеры с реагентом, камеры смешения и фильтры-дозаторы, расположенные в муфтах, имеющих, по крайней мере, по одному ряду входных...
Тип: Изобретение
Номер охранного документа: 0002524579
Дата охранного документа: 27.07.2014
10.08.2014
№216.012.e621

Устройство для обработки пластов в скважине

Изобретение относится к нефтегазодобывающей промышленности, а именно к устройствам для разобщения пластов в скважине при раздельной закачке в них различных реагентов. Устройство для обработки пластов в скважине содержит проходной пакер и разобщитель, включающий ствол, золотник, расположенный...
Тип: Изобретение
Номер охранного документа: 0002524706
Дата охранного документа: 10.08.2014
10.08.2014
№216.012.e63f

Способ разработки нефтяных залежей сообщаемыми через продуктивный пласт скважинами

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для разработки нефтяных залежей сообщаемыми через продуктивный пласт скважинами. Обеспечивает повышение продуктивности скважин и увеличение нефтеизвлечения за счет возможности применения...
Тип: Изобретение
Номер охранного документа: 0002524736
Дата охранного документа: 10.08.2014
10.08.2014
№216.012.e67f

Способ разработки неоднородного месторождения наклонными и горизонтальными скважинами

Изобретение относится к нефтяной промышленности и может найти применение при разработке многопластовой залежи в поздней стадии с неустойчивыми породами и неоднородным коллектором. Обеспечивает повышение нефтеотдачи залежи за счет ввода в разработку остаточных запасов нефти и увеличения...
Тип: Изобретение
Номер охранного документа: 0002524800
Дата охранного документа: 10.08.2014
10.08.2014
№216.012.e728

Скважинная внутренняя труболовка

Изобретение относится к ловильным устройствам, применяемым для ликвидации аварий с трубами в скважинах для их захвата за внутреннюю часть. Устройство содержит оправку с верхним переводником, нижним направляющим наконечником, продольным каналом и конусной поверхностью, расширяющейся сверху...
Тип: Изобретение
Номер охранного документа: 0002524969
Дата охранного документа: 10.08.2014
10.08.2014
№216.012.e796

Способ ограничения водопритока в скважину

Изобретение относится к нефтедобывающей промышленности, в частности к способам ограничения водопритока в скважину с использованием жидкого стекла (силиката натрия), и может быть использовано при проведении водоизоляционных работ в скважине. Способ ограничения водопритока в скважину включает...
Тип: Изобретение
Номер охранного документа: 0002525079
Дата охранного документа: 10.08.2014
+ добавить свой РИД