×
20.01.2014
216.012.9881

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ УРОВНЯ ЖИДКОСТИ В ЕМКОСТИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости. В частности, оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов и др. Предлагается способ измерения уровня жидкости, при котором в сторону поверхности жидкости по нормали к ней излучают электромагнитные волны, принимают отраженные электромагнитные волны и измеряют первую разность фаз излучаемых и принимаемых электромагнитных волн. Согласно данному способу, в момент приема отраженных волн изменяют частоту зондирующих волн до достижения равенства фаз излучаемых и принимаемых волн, фиксируют значение данной частоты, волны этой фиксированной частоты вновь излучают в сторону поверхности жидкости по нормали к ней, принимают отраженные волны и измеряют вторую разность фаз излучаемых и принимаемых волн, вновь изменяют частоту излучаемых волн в сторону увеличения до момента достижения вновь равенства фаз излучаемых и принимаемых волн, вновь фиксируют значение данной частоты, измеряют разность первой и второй частот излучаемых волн, измеряют разность фаз волн, соответствующих этой фиксированной разности частот и ее текущему значению, и по сумме расстояний, соответствующих указанным фиксированной разности первой и второй частот и разности фаз, судят об уровне жидкости в емкости. 1 ил.
Основные результаты: Способ измерения уровня жидкости, при котором в сторону поверхности жидкости по нормали к ней излучают электромагнитные волны, принимают отраженные электромагнитные волны и измеряют первую разность фаз излучаемых и принимаемых электромагнитных волн, отличающийся темчто в момент приема отраженных волн изменяют частоту зондирующих волн до достижения равенства фаз излучаемых и принимаемых волн, фиксируют значение данной частоты, волны этой фиксированной частоты вновь излучают в сторону поверхности жидкости по нормали к ней, принимают отраженные волны и измеряют вторую разность фаз излучаемых и принимаемых волн, вновь изменяют частоту излучаемых волн в сторону увеличения до момента достижения вновь равенства фаз излучаемых и принимаемых волн, вновь фиксируют значение данной частоты, измеряют разность первой и второй частот излучаемых волн, измеряют разность фаз волн, соответствующих этой фиксированной разности частот и ее текущему значению, и по сумме расстояний, соответствующих указанным фиксированной разности первой и второй частот и разности фаз, судят об уровне жидкости в емкости.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости. В частности, оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов и др.

Известны радиоволновые способы измерения, которые используют для бесконтактного измерения уровня жидких сред в емкостях для хранения нефтепродуктов, химически активных, агрессивных и вязких жидкостей (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат, 1989. 208 с.). При этом реализуемые на основе этих способов уровнемеры должны обеспечивать достаточно высокую одинаковую точность (до 5 мм) в диапазоне измерения от 0,5 до 20 метров и при этом быть надежными, удобными в эксплуатации и недорогими устройствами. В задачах, связанных с радиоволновым бесконтактным измерением уровня жидкостей, применяются способы с частотной модуляцией электромагнитных колебаний. К числу их недостатков относится достаточно сложная реализация, вызванная необходимостью применения широкополосных генераторов частотно-модулированных колебаний, а также сложность функциональной обработки информативных сигналов при стремлении обеспечить высокую точность измерения.

Известно также техническое решение - радиоволновый фазовый способ измерения уровня жидкости в емкости, которое по технической сущности наиболее близкое к предлагаемому способу и принятое в качестве прототипа (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат, 1989. 208 с.). Данный способ-прототип заключается в зондировании поверхности жидкости по нормали к ней электромагнитными волнами, приеме отраженных электромагнитных волн и определении фазового сдвига зондирующих и принимаемых электромагнитных волн, по которому судят об уровне жидкости в емкости.

Существенным недостатком этого способа, однако, является неоднозначность в определении расстояний, за счет циклического повторения сигнала с выхода фазового детектора через каждую половину периода излучаемых электромагнитных волн. Известные способы устранения неоднозначности измерений при применении фазового способа измерения расстояний, основанные на использовании измерений на нескольких частотах, используются, в основном, в радиолокаторах доплеровского типа с селекцией движущихся целей (Вишин Г.М. Многочастотная радиолокация. М.: Воениздат, 1973. 92 с.); поэтому они не приспособлены для задач измерения уровня жидкостей.

Техническим результатом настоящего изобретения является повышение точности измерения.

Технический результат в предлагаемом способе измерения уровня жидкости в емкости достигается тем, что в сторону поверхности жидкости по нормали к ней излучают электромагнитные волны, принимают отраженные электромагнитные волны и измеряют первую разность фаз излучаемых и принимаемых электромагнитных волн, при этом в момент приема отраженных волн изменяют частоту зондирующих волн до достижения равенства фаз излучаемых и принимаемых волн, фиксируют значение данной частоты, волны этой фиксированной частоты вновь излучают в сторону поверхности жидкости по нормали к ней, принимают отраженные волны и измеряют вторую разность фаз излучаемых и принимаемых волн, вновь изменяют частоту излучаемых волн в сторону увеличения до момента достижения вновь равенства фаз излучаемых и принимаемых волн, вновь фиксируют значение данной частоты, измеряют разность первой и второй частот излучаемых волн, измеряют разность фаз волн, соответствующих этой фиксированной разности частот и ее текущему значению, и по сумме расстояний, соответствующих указанным фиксированной разности первой и второй частот и разности фаз, судят об уровне жидкости в емкости.

Предлагаемый способ поясняется чертежом на фиг.1, где приведена структурная схема устройства для реализации способа.

На фиг.1 показаны первый приемопередающий блок 1, передающая антенна 2, приемная антенна 3, второй приемопередающий блок 4, передающая антенна 5, приемная антенна 6, функциональный блок 7, поверхность жидкости 8.

Способ реализуется следующим образом.

На 1-м этапе измерений электромагнитные колебания от первого приемопередающего блока 1 поступают на передающую антенну 2. Излучаемые ею электромагнитные волны с частотой ƒ1 направляются в сторону отражающей поверхности жидкости 8. Отраженные от нее волны поступают на приемную антенну 3; далее соответствующий принятым волнам сигнал смешивается с сигналом, соответствующим волнам, излучаемым антенной 2, и результирующий сигнал, соответствующий разности фаз излучаемых и принимаемых волн, поступает на первый вход функционального блока 7. С первого выхода функционального блока 7 на вход первого приемопередающего блока 1 подается сигнал, приводящий к изменению частоты ƒ1 до значения ƒl0 частоты, когда сигнал на первом входе функционального блока 7 становится равным нулю. При этом ƒ110, и управляющее напряжение на входе генератора 1 фиксируется. В этом случае расстояние D0 до поверхности можно выразить формулой

где n=1, 2, 3, …, λ10=с/ƒ10, c - скорость света в воздухе.

На втором этапе измерений управляющее напряжение со второго выхода функционального блока 7 начинает перестраивать частоту второго приемопередающего блока 4 от частоты ƒ2, равной ƒ10, в сторону ее увеличения. Далее сигнал поступает на передающую антенну 5. Электромагнитные волны излучаются ею в направлении контролируемой поверхности жидкости 8, отражаются от нее, принимаются приемной антенной 6 и во втором приемопередающем блоке 4 соответствующий им сигнал смешивается с сигналом, соответствующим волнам, излучаемым передающей антенной 5. Результирующий сигнал с выхода второго приемо-передающего блока 4 поступает на второй вход функционального блока 7. В нем фиксируется значение частоты ƒ2, равное ƒ20, в момент достижения нулевого значения указанного результирующего сигнала. В результате получаем следующее соотношение:

где λ20=c/ƒ20. Из уравнений (1) и (2) следует, что , а расстояние до поверхности жидкости

где Fp2010 и λр - соответственно, разностная частота и соответствующая ей длина волны.

На третьем этапе измерений выделенный сигнал разностной частоты Fp с выхода второго приемопередающего блока 4 поступает на второй вход функционального блока 7, где ее значение запоминается. Этот сигнал в дальнейшем используется в качестве опорного сигнала относительно его текущего значения, соответствующего расстоянию D до поверхности жидкости 8 (т.е. уровню жидкости в емкости). При изменении уровня (увеличении или уменьшении расстояния, равном ΔD, относительно D0) разность фаз волн, соответствующих фиксированной разностной частоте ƒ2010, и текущему значению Δφ этой разности фаз, изменяется в пределах Δφ=±π/2. Текущее расстояние D до поверхности жидкости 8 определяется в функциональном блоке 7 в соответствии с соотношением

Так, например, при ƒ10=24 ГГц, D0=4 м, ƒ20=24,0375 ГГц будем иметь Fp=37,5 МГц. Таким образом, в вычислительном блоке 17 получаем сигнал, соответствующий значению уровня жидкости в диапазоне значений Δφ в пределах - π/2<Δφ<π/2 или значений D в пределах D0p/2<D<D0p/2. В том случае, если D выходит за указанные пределы, происходит сбой из-за отключения питания или имеют место иные причины, устройство перезапускается, последовательно повторяя описанные этапы измерений.

Таким образом, данный способ позволяет решить проблему неоднозначности в фазовом методе измерений уровня жидкости. При этом возможно значительно уменьшить стоимость измерительного устройства, поскольку при реализации данного фазового метода нет необходимости использовать широкополосные СВЧ компоненты и устройства, такие как генераторы с большой девиацией частоты. Кроме этого применяемые в данных устройствах антенны, являясь узкополосными, позволяют при тех же габаритах устройств получить значительно лучшие характеристики по направленности излучения, что снижает влияние паразитных переотражений, и, таким образом, погрешность измерений уменьшается.

Способ измерения уровня жидкости, при котором в сторону поверхности жидкости по нормали к ней излучают электромагнитные волны, принимают отраженные электромагнитные волны и измеряют первую разность фаз излучаемых и принимаемых электромагнитных волн, отличающийся темчто в момент приема отраженных волн изменяют частоту зондирующих волн до достижения равенства фаз излучаемых и принимаемых волн, фиксируют значение данной частоты, волны этой фиксированной частоты вновь излучают в сторону поверхности жидкости по нормали к ней, принимают отраженные волны и измеряют вторую разность фаз излучаемых и принимаемых волн, вновь изменяют частоту излучаемых волн в сторону увеличения до момента достижения вновь равенства фаз излучаемых и принимаемых волн, вновь фиксируют значение данной частоты, измеряют разность первой и второй частот излучаемых волн, измеряют разность фаз волн, соответствующих этой фиксированной разности частот и ее текущему значению, и по сумме расстояний, соответствующих указанным фиксированной разности первой и второй частот и разности фаз, судят об уровне жидкости в емкости.
СПОСОБ ИЗМЕРЕНИЯ УРОВНЯ ЖИДКОСТИ В ЕМКОСТИ
Источник поступления информации: Роспатент

Показаны записи 301-304 из 304.
03.06.2023
№223.018.76af

Способ измерения массового расхода газообразного вещества, протекающего по трубопроводу

Изобретение относится к области приборостроения, в частности к способам измерения расхода потоков веществ. Способ измерения массового расхода газообразного вещества, протекающего по трубопроводу, заключается в том, что поток контролируемой среды нагревают микроволновым излучением. Сначала...
Тип: Изобретение
Номер охранного документа: 0002748325
Дата охранного документа: 24.05.2021
05.06.2023
№223.018.76c3

Способ измерения физической величины

Изобретение относится к области электротехники, а именно к волноводному резонатору для измерения диэлектрической проницаемости жидкости. Повышение точности измерений является техническим результатом, который достигается за счет того, что предварительно определяют номинальное значение...
Тип: Изобретение
Номер охранного документа: 0002786526
Дата охранного документа: 21.12.2022
05.06.2023
№223.018.7730

Устройство для молниеотвода от привязного коптера

Изобретение относится к средствам защиты объектов различного назначения при прямом или близком воздействии молниевых разрядов, электромагнитных импульсов (ЭМИ), коротких замыканий и коммутаций энергооборудования, в частности к средствам молниезащиты, беспилотных летательных аппаратов....
Тип: Изобретение
Номер охранного документа: 0002767515
Дата охранного документа: 17.03.2022
05.06.2023
№223.018.77c5

Способ и система управления связями компьютеров в многоуровневом составном компьютерном кластере

Изобретение относится к вычислительной технике. Технический результат заключается в расширении арсенала средств того же назначения. Способ управления связями компьютеров в многоуровневом составном компьютерном кластере, содержащем контроллеры компьютеров - объекты O и модули связи MS,...
Тип: Изобретение
Номер охранного документа: 0002744591
Дата охранного документа: 11.03.2021
Показаны записи 241-242 из 242.
29.05.2023
№223.018.7271

Способ определения длины металлической трубы

Изобретение относится к измерительной технике и может быть использовано для бесконтактного определения длины металлических труб как готовых изделий, так и при их производстве на металлургических, машиностроительных предприятиях. Технический результат – повышение точности определения длины...
Тип: Изобретение
Номер охранного документа: 0002796388
Дата охранного документа: 22.05.2023
05.06.2023
№223.018.76c3

Способ измерения физической величины

Изобретение относится к области электротехники, а именно к волноводному резонатору для измерения диэлектрической проницаемости жидкости. Повышение точности измерений является техническим результатом, который достигается за счет того, что предварительно определяют номинальное значение...
Тип: Изобретение
Номер охранного документа: 0002786526
Дата охранного документа: 21.12.2022
+ добавить свой РИД