×
20.01.2014
216.012.9881

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ УРОВНЯ ЖИДКОСТИ В ЕМКОСТИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости. В частности, оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов и др. Предлагается способ измерения уровня жидкости, при котором в сторону поверхности жидкости по нормали к ней излучают электромагнитные волны, принимают отраженные электромагнитные волны и измеряют первую разность фаз излучаемых и принимаемых электромагнитных волн. Согласно данному способу, в момент приема отраженных волн изменяют частоту зондирующих волн до достижения равенства фаз излучаемых и принимаемых волн, фиксируют значение данной частоты, волны этой фиксированной частоты вновь излучают в сторону поверхности жидкости по нормали к ней, принимают отраженные волны и измеряют вторую разность фаз излучаемых и принимаемых волн, вновь изменяют частоту излучаемых волн в сторону увеличения до момента достижения вновь равенства фаз излучаемых и принимаемых волн, вновь фиксируют значение данной частоты, измеряют разность первой и второй частот излучаемых волн, измеряют разность фаз волн, соответствующих этой фиксированной разности частот и ее текущему значению, и по сумме расстояний, соответствующих указанным фиксированной разности первой и второй частот и разности фаз, судят об уровне жидкости в емкости. 1 ил.
Основные результаты: Способ измерения уровня жидкости, при котором в сторону поверхности жидкости по нормали к ней излучают электромагнитные волны, принимают отраженные электромагнитные волны и измеряют первую разность фаз излучаемых и принимаемых электромагнитных волн, отличающийся темчто в момент приема отраженных волн изменяют частоту зондирующих волн до достижения равенства фаз излучаемых и принимаемых волн, фиксируют значение данной частоты, волны этой фиксированной частоты вновь излучают в сторону поверхности жидкости по нормали к ней, принимают отраженные волны и измеряют вторую разность фаз излучаемых и принимаемых волн, вновь изменяют частоту излучаемых волн в сторону увеличения до момента достижения вновь равенства фаз излучаемых и принимаемых волн, вновь фиксируют значение данной частоты, измеряют разность первой и второй частот излучаемых волн, измеряют разность фаз волн, соответствующих этой фиксированной разности частот и ее текущему значению, и по сумме расстояний, соответствующих указанным фиксированной разности первой и второй частот и разности фаз, судят об уровне жидкости в емкости.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости. В частности, оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов и др.

Известны радиоволновые способы измерения, которые используют для бесконтактного измерения уровня жидких сред в емкостях для хранения нефтепродуктов, химически активных, агрессивных и вязких жидкостей (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат, 1989. 208 с.). При этом реализуемые на основе этих способов уровнемеры должны обеспечивать достаточно высокую одинаковую точность (до 5 мм) в диапазоне измерения от 0,5 до 20 метров и при этом быть надежными, удобными в эксплуатации и недорогими устройствами. В задачах, связанных с радиоволновым бесконтактным измерением уровня жидкостей, применяются способы с частотной модуляцией электромагнитных колебаний. К числу их недостатков относится достаточно сложная реализация, вызванная необходимостью применения широкополосных генераторов частотно-модулированных колебаний, а также сложность функциональной обработки информативных сигналов при стремлении обеспечить высокую точность измерения.

Известно также техническое решение - радиоволновый фазовый способ измерения уровня жидкости в емкости, которое по технической сущности наиболее близкое к предлагаемому способу и принятое в качестве прототипа (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат, 1989. 208 с.). Данный способ-прототип заключается в зондировании поверхности жидкости по нормали к ней электромагнитными волнами, приеме отраженных электромагнитных волн и определении фазового сдвига зондирующих и принимаемых электромагнитных волн, по которому судят об уровне жидкости в емкости.

Существенным недостатком этого способа, однако, является неоднозначность в определении расстояний, за счет циклического повторения сигнала с выхода фазового детектора через каждую половину периода излучаемых электромагнитных волн. Известные способы устранения неоднозначности измерений при применении фазового способа измерения расстояний, основанные на использовании измерений на нескольких частотах, используются, в основном, в радиолокаторах доплеровского типа с селекцией движущихся целей (Вишин Г.М. Многочастотная радиолокация. М.: Воениздат, 1973. 92 с.); поэтому они не приспособлены для задач измерения уровня жидкостей.

Техническим результатом настоящего изобретения является повышение точности измерения.

Технический результат в предлагаемом способе измерения уровня жидкости в емкости достигается тем, что в сторону поверхности жидкости по нормали к ней излучают электромагнитные волны, принимают отраженные электромагнитные волны и измеряют первую разность фаз излучаемых и принимаемых электромагнитных волн, при этом в момент приема отраженных волн изменяют частоту зондирующих волн до достижения равенства фаз излучаемых и принимаемых волн, фиксируют значение данной частоты, волны этой фиксированной частоты вновь излучают в сторону поверхности жидкости по нормали к ней, принимают отраженные волны и измеряют вторую разность фаз излучаемых и принимаемых волн, вновь изменяют частоту излучаемых волн в сторону увеличения до момента достижения вновь равенства фаз излучаемых и принимаемых волн, вновь фиксируют значение данной частоты, измеряют разность первой и второй частот излучаемых волн, измеряют разность фаз волн, соответствующих этой фиксированной разности частот и ее текущему значению, и по сумме расстояний, соответствующих указанным фиксированной разности первой и второй частот и разности фаз, судят об уровне жидкости в емкости.

Предлагаемый способ поясняется чертежом на фиг.1, где приведена структурная схема устройства для реализации способа.

На фиг.1 показаны первый приемопередающий блок 1, передающая антенна 2, приемная антенна 3, второй приемопередающий блок 4, передающая антенна 5, приемная антенна 6, функциональный блок 7, поверхность жидкости 8.

Способ реализуется следующим образом.

На 1-м этапе измерений электромагнитные колебания от первого приемопередающего блока 1 поступают на передающую антенну 2. Излучаемые ею электромагнитные волны с частотой ƒ1 направляются в сторону отражающей поверхности жидкости 8. Отраженные от нее волны поступают на приемную антенну 3; далее соответствующий принятым волнам сигнал смешивается с сигналом, соответствующим волнам, излучаемым антенной 2, и результирующий сигнал, соответствующий разности фаз излучаемых и принимаемых волн, поступает на первый вход функционального блока 7. С первого выхода функционального блока 7 на вход первого приемопередающего блока 1 подается сигнал, приводящий к изменению частоты ƒ1 до значения ƒl0 частоты, когда сигнал на первом входе функционального блока 7 становится равным нулю. При этом ƒ110, и управляющее напряжение на входе генератора 1 фиксируется. В этом случае расстояние D0 до поверхности можно выразить формулой

где n=1, 2, 3, …, λ10=с/ƒ10, c - скорость света в воздухе.

На втором этапе измерений управляющее напряжение со второго выхода функционального блока 7 начинает перестраивать частоту второго приемопередающего блока 4 от частоты ƒ2, равной ƒ10, в сторону ее увеличения. Далее сигнал поступает на передающую антенну 5. Электромагнитные волны излучаются ею в направлении контролируемой поверхности жидкости 8, отражаются от нее, принимаются приемной антенной 6 и во втором приемопередающем блоке 4 соответствующий им сигнал смешивается с сигналом, соответствующим волнам, излучаемым передающей антенной 5. Результирующий сигнал с выхода второго приемо-передающего блока 4 поступает на второй вход функционального блока 7. В нем фиксируется значение частоты ƒ2, равное ƒ20, в момент достижения нулевого значения указанного результирующего сигнала. В результате получаем следующее соотношение:

где λ20=c/ƒ20. Из уравнений (1) и (2) следует, что , а расстояние до поверхности жидкости

где Fp2010 и λр - соответственно, разностная частота и соответствующая ей длина волны.

На третьем этапе измерений выделенный сигнал разностной частоты Fp с выхода второго приемопередающего блока 4 поступает на второй вход функционального блока 7, где ее значение запоминается. Этот сигнал в дальнейшем используется в качестве опорного сигнала относительно его текущего значения, соответствующего расстоянию D до поверхности жидкости 8 (т.е. уровню жидкости в емкости). При изменении уровня (увеличении или уменьшении расстояния, равном ΔD, относительно D0) разность фаз волн, соответствующих фиксированной разностной частоте ƒ2010, и текущему значению Δφ этой разности фаз, изменяется в пределах Δφ=±π/2. Текущее расстояние D до поверхности жидкости 8 определяется в функциональном блоке 7 в соответствии с соотношением

Так, например, при ƒ10=24 ГГц, D0=4 м, ƒ20=24,0375 ГГц будем иметь Fp=37,5 МГц. Таким образом, в вычислительном блоке 17 получаем сигнал, соответствующий значению уровня жидкости в диапазоне значений Δφ в пределах - π/2<Δφ<π/2 или значений D в пределах D0p/2<D<D0p/2. В том случае, если D выходит за указанные пределы, происходит сбой из-за отключения питания или имеют место иные причины, устройство перезапускается, последовательно повторяя описанные этапы измерений.

Таким образом, данный способ позволяет решить проблему неоднозначности в фазовом методе измерений уровня жидкости. При этом возможно значительно уменьшить стоимость измерительного устройства, поскольку при реализации данного фазового метода нет необходимости использовать широкополосные СВЧ компоненты и устройства, такие как генераторы с большой девиацией частоты. Кроме этого применяемые в данных устройствах антенны, являясь узкополосными, позволяют при тех же габаритах устройств получить значительно лучшие характеристики по направленности излучения, что снижает влияние паразитных переотражений, и, таким образом, погрешность измерений уменьшается.

Способ измерения уровня жидкости, при котором в сторону поверхности жидкости по нормали к ней излучают электромагнитные волны, принимают отраженные электромагнитные волны и измеряют первую разность фаз излучаемых и принимаемых электромагнитных волн, отличающийся темчто в момент приема отраженных волн изменяют частоту зондирующих волн до достижения равенства фаз излучаемых и принимаемых волн, фиксируют значение данной частоты, волны этой фиксированной частоты вновь излучают в сторону поверхности жидкости по нормали к ней, принимают отраженные волны и измеряют вторую разность фаз излучаемых и принимаемых волн, вновь изменяют частоту излучаемых волн в сторону увеличения до момента достижения вновь равенства фаз излучаемых и принимаемых волн, вновь фиксируют значение данной частоты, измеряют разность первой и второй частот излучаемых волн, измеряют разность фаз волн, соответствующих этой фиксированной разности частот и ее текущему значению, и по сумме расстояний, соответствующих указанным фиксированной разности первой и второй частот и разности фаз, судят об уровне жидкости в емкости.
СПОСОБ ИЗМЕРЕНИЯ УРОВНЯ ЖИДКОСТИ В ЕМКОСТИ
Источник поступления информации: Роспатент

Показаны записи 221-230 из 304.
11.06.2018
№218.016.60eb

Способ внутрипластового горения

Изобретение относится к способу извлечения смеси тяжелых углеводородов из подземного пласта путем внутрипластового горения. Способ внутрипластового горения заключается в том, что в нефтяном пласте выполняют ряд вертикальных нагнетательных скважин, достигающих пластового резервуара, выполняют...
Тип: Изобретение
Номер охранного документа: 0002657036
Дата охранного документа: 08.06.2018
20.06.2018
№218.016.64b1

Способ измерения параметров движения объекта и система для его осуществления

Изобретение относится к области приборостроения инерциальных навигационных систем и может использоваться для определения текущих угловых и линейных ускорений объекта. Способ измерений параметров движения объекта с инерциальной измерительной системой, характеризующийся расположением 9...
Тип: Изобретение
Номер охранного документа: 0002658124
Дата охранного документа: 19.06.2018
04.07.2018
№218.016.6a73

Способ измерения влагосодержания диэлектрической жидкости

Изобретение относится к области электротехники и может быть использовано для высокоточного определения влагосодержания различных диэлектрических жидкостей, находящихся в емкостях (технологических емкостях, измерительных ячейках и т.п.) или перемещаемых по трубопроводам. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002659569
Дата охранного документа: 03.07.2018
05.07.2018
№218.016.6b7e

Многопозиционный пневматический модуль линейных перемещений

Изобретение относится к области машиностроения. Техническим результатом является упрощение конструкции. Многопозиционный пневматический модуль линейных перемещений содержит рабочий цилиндр с поршнем, выходной элемент, узел фиксации, фиксатор и углубления, с которыми взаимодействует фиксатор,...
Тип: Изобретение
Номер охранного документа: 0002659851
Дата охранного документа: 04.07.2018
05.07.2018
№218.016.6c1d

Измеритель путевой скорости и угла сноса летательного аппарата

Изобретение относится к измерительной технике, в частности к устройствам измерения путевой скорости и угла сноса летательного аппарата в автономных навигационных системах с использованием электромагнитных волн. Достигаемый технический результат - увеличение точности измерения. Указанный...
Тип: Изобретение
Номер охранного документа: 0002659821
Дата охранного документа: 04.07.2018
08.07.2018
№218.016.6ea2

Система управления движением судна с дублированием каналов курса и резервным управлением по курсу

Система управления движением судна (СУД) с дублированием каналов курса и резервным управлением движения содержит датчик руля, датчик дифференцирования, блок логики, три задатчика угла курса и три датчика угла курса, два сумматора, блок среднего заданного угла курса, блок оценки возмущающего...
Тип: Изобретение
Номер охранного документа: 0002660193
Дата охранного документа: 05.07.2018
18.07.2018
№218.016.7182

Способ определения влагосодержания диэлектрической жидкости

Изобретение относится к области электротехники и может быть использовано для высокоточного определения влагосодержания различных диэлектрических жидкостей, находящихся в емкостях (технологических емкостях, измерительных ячейках и т.п.) или перемещаемых по трубопроводам. Расширение...
Тип: Изобретение
Номер охранного документа: 0002661349
Дата охранного документа: 16.07.2018
02.08.2018
№218.016.778c

Способ измерения путевой скорости и угла сноса летательного аппарата

Изобретение относится к измерительной технике, в частности к способам измерения путевой скорости и угла сноса летательного аппарата в автономных навигационных системах с использованием электромагнитных волн. Достигаемый технический результат - увеличение точности измерения. Указанный результат...
Тип: Изобретение
Номер охранного документа: 0002662803
Дата охранного документа: 31.07.2018
09.08.2018
№218.016.7922

Радиоволновый способ измерения путевой скорости

Изобретение относится к измерительной технике, в частности к радиоволновым способам измерения путевой скорости транспортных средств с использованием эффекта Доплера для электромагнитных волн. Технический результат - повышение точности измерения. Указанный результат достигается тем, что...
Тип: Изобретение
Номер охранного документа: 0002663215
Дата охранного документа: 02.08.2018
09.08.2018
№218.016.7a52

Способ измерения давления

Изобретение относится к промышленной метрологии и может быть использовано для высокоточного измерения статического и динамического давления. Способ измерения давления, при котором в объемном резонаторе в виде отрезка волновода с одной из торцевых стенок в виде металлической мембраны,...
Тип: Изобретение
Номер охранного документа: 0002663552
Дата охранного документа: 07.08.2018
Показаны записи 221-230 из 242.
30.03.2019
№219.016.f979

Способ измерения путевой скорости

Изобретение относится к измерительной технике, в частности к радиоволновым способам измерения путевой скорости транспортных средств с использованием эффекта Доплера для электромагнитных волн. Технический результат - повышение точности измерения путевой скорости транспортного средства -...
Тип: Изобретение
Номер охранного документа: 0002683578
Дата охранного документа: 29.03.2019
10.04.2019
№219.017.07bf

Устройство для измерения давления

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения статического и динамического давления. Техническим результатом изобретения является расширение границ области применения датчика давления и повышение его чувствительности. Устройство для...
Тип: Изобретение
Номер охранного документа: 0002408856
Дата охранного документа: 10.01.2011
29.04.2019
№219.017.4377

Устройство для определения содержания спирта и сахара в вине

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения концентрации различных водосодержащих растворов, в частности концентрации спирта и сахара в вине. Предлагается устройство, содержащее первый и второй чувствительные элементы в виде,...
Тип: Изобретение
Номер охранного документа: 0002413218
Дата охранного документа: 27.02.2011
02.05.2019
№219.017.4863

Бесконтактный способ измерения пройденного пути

Изобретение относится к измерительной технике, в частности к радиоволновым способам измерения путевой скорости транспортных средств с использованием эффекта Доплера для электромагнитных волн. Технический результат - повышение точности измерения пройденного пути транспортного средства. Указанный...
Тип: Изобретение
Номер охранного документа: 0002686674
Дата охранного документа: 30.04.2019
02.05.2019
№219.017.489c

Способ измерения вектора перемещения транспортного средства

Изобретение относится к измерительной технике, в частности к радиоволновым способам измерения путевой скорости транспортных средств с использованием эффекта Доплера. Достигаемый технический результат – повышение точности измерения вектора перемещения транспортного средства. Технический...
Тип: Изобретение
Номер охранного документа: 0002686676
Дата охранного документа: 30.04.2019
09.05.2019
№219.017.50ab

Способ определения влагосодержания вещества

Изобретение относится к измерительной технике и может быть использовано для измерения влагосодержания, а также других физических свойств (концентрации смеси, плотности) различных материалов и веществ, перемещаемых по ленточным конвейерам, транспортерам. В частности, оно может быть применено при...
Тип: Изобретение
Номер охранного документа: 0002468358
Дата охранного документа: 27.11.2012
08.06.2019
№219.017.757e

Бесконтактный измеритель пройденного пути

Изобретение относится к измерительной технике, в частности к устройствам измерения пройденного расстояния наземным транспортным средством с использованием эффекта Доплера. Достигаемый технический результат – повышение точности измерения пути, пройденного наземным транспортным средством....
Тип: Изобретение
Номер охранного документа: 0002690842
Дата охранного документа: 06.06.2019
09.06.2019
№219.017.7628

Датчик давления

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения избыточного давления высокотемпературных сред в широком диапазоне его изменения. Датчик давления выполнен в виде совокупности первого коаксиального резонатора, содержащего цилиндрический корпус,...
Тип: Изобретение
Номер охранного документа: 0002690971
Дата охранного документа: 07.06.2019
13.06.2019
№219.017.809e

Устройство для измерения давления

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения статического и динамического давления. Устройство содержит металлическую полость в виде предельного волновода, для которого частота возбуждаемых в нем электромагнитных волн выбрана ниже...
Тип: Изобретение
Номер охранного документа: 0002691283
Дата охранного документа: 11.06.2019
13.06.2019
№219.017.80a0

Способ измерения внутреннего диаметра металлической трубы

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения внутреннего диаметра металлических труб как готовых изделий, так и при их производстве. Сущность заявленного решения заключается в том, что в предлагаемом способе измерения внутреннего диаметра...
Тип: Изобретение
Номер охранного документа: 0002691288
Дата охранного документа: 11.06.2019
+ добавить свой РИД