×
20.01.2014
216.012.9880

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ УРОВНЯ ЖИДКОСТИ В ЕМКОСТИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости. В частности, оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов и др. Предлагаемое устройство определения уровня жидкости содержит первый генератор электромагнитных волн фиксированной частоты, подсоединенный через основной волновод первого направленного ответвителя к первой антенне для излучения электромагнитных волн в сторону поверхности жидкости по нормали, первую антенну для приема отраженных электромагнитных волн, первый смеситель излучаемых и принимаемых электромагнитных волн, к первому и второму входам которого подсоединены, соответственно, первый генератор через вспомогательный волновод первого направленного ответвителя и первая антенна для приема отраженных электромагнитных волн, вычислительное устройство. Устройство содержит также второй генератор электромагнитных волн фиксированной частоты, подсоединенный через основной волновод второго направленного ответвителя ко второй антенне для излучения электромагнитных волн в сторону поверхности жидкости по нормали, вторую антенну для приема отраженных электромагнитных волн, второй смеситель излучаемых и принимаемых электромагнитных волн, к первому и второму входам которого подсоединены, соответственно, второй генератор через вспомогательный волновод второго направленного ответвителя и вторая антенна для приема отраженных электромагнитных волн, управляющее устройство, к первому и второму входам которого через, соответственно, первый и второй фильтры низкой частоты подсоединены выходы первого и второго смесителей, управляемый опорный генератор, первый, второй и третий выходы управляющего устройства подсоединены, соответственно, ко входу первого генератора, второго генератора и к первому входу управляемого опорного генератора, ко второму входу которого через фильтр высокой частоты подключен выход второго смесителя, фазометр, к первому и второму входам которого подключены, соответственно, выход фильтра высокой частоты и первый выход управляемого опорного генератора, к первому и второму входам вычислительного устройства подсоединены, соответственно, выходы управляемого опорного генератора и фазометра. 1 ил.
Основные результаты: Устройство для определения уровня жидкости, содержащее первый генератор электромагнитных волн фиксированной частоты, подсоединенный через основной волновод первого направленного ответвителя к первой антенне для излучения электромагнитных волн в сторону поверхности жидкости по нормали, первую антенну для приема отраженных электромагнитных волн, первый смеситель излучаемых и принимаемых электромагнитных волн, к первому и второму входам которого подсоединены, соответственно, первый генератор через вспомогательный волновод первого направленного ответвителя и первая антенна для приема отраженных электромагнитных волн, вычислительное устройство, отличающееся тем,что оно содержит второй генератор электромагнитных волн фиксированной частоты, подсоединенный через основной волновод второго направленного ответвителя ко второй антенне для излучения электромагнитных волн в сторону поверхности жидкости по нормали, вторую антенну для приема отраженных электромагнитных волн, второй смеситель излучаемых и принимаемых электромагнитных волн, к первому и второму входам которого подсоединены, соответственно, второй генератор через вспомогательный волновод второго направленного ответвителя и вторая антенна для приема отраженных электромагнитных волн, управляющее устройство, к первому и второму входам которого через, соответственно, первый и второй фильтры низкой частоты подсоединены выходы первого и второго смесителей, управляемый опорный генератор, первый, второй и третий выходы управляющего устройства подсоединены, соответственно, ко входу первого генератора, второго генератора и к первому входу управляемого опорного генератора, ко второму входу которого через фильтр высокой частоты подключен выход второго смесителя, фазометр, к первому и второму входам которого подключены, соответственно, выход фильтра высокой частоты и первый выход управляемого опорного генератора, к первому и второму входам вычислительного устройства подсоединены, соответственно, выходы управляемого опорного генератора и фазометра.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости. В частности, оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов и др.

Известны радиоволновые способы и устройства, которые используют для бесконтактного измерения уровня жидких сред в емкостях для хранения нефтепродуктов, химически активных, агрессивных и вязких жидкостей (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат, 1989. 208 с.). При этом реализуемые уровнемеры должны обеспечивать достаточно высокую одинаковую точность (до 5 мм) в диапазоне измерения от 0,5 до 20 метров и при этом быть надежными, удобными в эксплуатации и недорогими устройствами. В задачах, связанных с радиоволновым бесконтактным измерением уровня жидкостей, применяются устройства с частотной модуляцией электромагнитных колебаний. К числу их недостатков относится достаточно сложная реализация, вызванная необходимостью применения широкополосных генераторов частотно-модулированных колебаний, а также сложность функциональной обработки информативных сигналов при стремлении обеспечить высокую точность измерения.

Известно также техническое решение - радиоволновое устройство для измерения уровня жидкости в емкости, которое по технической сущности наиболее близко к предлагаемому устройству и принято в качестве прототипа (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат, 1989. 208 с.). Данное устройство-прототип содержит генератор электромагнитных волн фиксированной частоты, подсоединенный через основной волновод направленного ответвителя к антенне для излучения электромагнитных волн в сторону поверхности жидкости по нормали, антенну для приема отраженных электромагнитных волн, смеситель излучаемых и принимаемых электромагнитных волн, к первому и второму входам которого подсоединены, соответственно, первый генератор через вспомогательный волновод первого направленного ответвителя и первая антенна для приема отраженных электромагнитных волн, выход смесителя подсоединен ко входу вычислительного устройства, являющегося выходным блоком устройства.

Однако существенным недостатком этого устройства, реализующего фазовый способ измерения, является неоднозначность в определении расстояний за счет циклического повторения сигнала с выхода смесителя через каждую половину периода излучаемых электромагнитных волн. Известные способы устранения неоднозначности измерений при применении фазового метода, основанные на использовании измерений на нескольких частотах, используются, в основном, в радиолокаторах доплеровского типа с селекцией движущихся целей (Вишин Г.М. Многочастотная радиолокация. М.: Воениздат, 1973. 92 с.), поэтому они не приспособлены для задач измерения уровня жидкостей.

Техническим результатом настоящего изобретения является повышение точности измерения.

Технический результат в предлагаемом устройстве для измерения уровня жидкости в емкости достигается тем, что оно содержит первый генератор электромагнитных волн фиксированной частоты, подсоединенный через основной волновод первого направленного ответвителя к первой антенне для излучения электромагнитных волн в сторону поверхности жидкости по нормали, первую антенну для приема отраженных электромагнитных волн, первый смеситель излучаемых и принимаемых электромагнитных волн, к первому и второму входам которого подсоединены, соответственно, первый генератор через вспомогательный волновод первого направленного ответвителя и первая антенна для приема отраженных электромагнитных волн, вычислительное устройство, при этом оно содержит второй генератор электромагнитных волн фиксированной частоты, подсоединенный через основной волновод второго направленного ответвителя к второй антенне для излучения электромагнитных волн в сторону поверхности жидкости по нормали, вторую антенну для приема отраженных электромагнитных волн, второй смеситель излучаемых и принимаемых электромагнитных волн, к первому и второму входам которого подсоединены, соответственно, второй генератор через вспомогательный волновод второго направленного ответвителя и вторая антенна для приема отраженных электромагнитных волн, управляющее устройство, к первому и второму входам которого через, соответственно, первый и второй фильтры низкой частоты подсоединены выходы первого и второго смесителей, управляемый опорный генератор, первый, второй и третий выходы управляющего устройства подсоединены, соответственно, к входу первого генератора, второго генератора и к первому входу управляемого опорного генератора, к второму входу которого через фильтр высокой частоты подключен выход второго смесителя, фазометр, к первому и второму входам которого подключены, соответственно, выход фильтра высокой частоты и первый выход управляемого опорного генератора, к первому и второму входам вычислительного устройства подсоединены, соответственно, выходы управляемого опорного генератора и фазометра.

Предлагаемое устройство поясняется чертежом на фиг.1, где приведена его структурная схема.

На фиг.1 показаны генератор 1, направленный ответвитель 2, передающая антенна 3, приемная антенна 4, смеситель 5, фильтр низкой частоты 6, приемная антенна 7, передающая антенна 8, направленный ответвитель 9, смеситель 10, генератор 11, фильтр низкой частоты 12, управляющее устройство 13, фильтр высокой частоты 14, управляемый опорный генератор 15, фазометр 16, вычислительное устройство 17, поверхность жидкости 18.

Устройство работает следующим образом. На 1-м этапе измерений электромагнитные колебания от генератора 1 поступают через основной волновод направленного ответвителя 2 на передающую антенну 3. Излучаемые ею электромагнитные волны с частотой f1 направляются в сторону отражающей поверхности жидкости 18. Отраженные от нее волны поступают на приемную антенну 4, далее соответствующий сигнал поступает на смеситель 5, где его мощность смешивается с частью мощности сигнала от генератора 1, приходящего на смеситель 5 через вспомогательный волновод направленный ответвитель 2. Сигнал с выхода смесителя 5 через фильтр низкой частоты 6, предназначенный для устранения высокочастотной составляющей сигнала разностной частоты, поступает на вход управляющего блока 13. С первого выхода блока 13 на вход генератора 1 подается сигнал, приводящий к изменению частоты f1 до значения f10 частоты, когда сигнал на выходе смесителя 5 становится равным нулю. При этом f1=f10, и управляющее напряжение на входе генератора 1 фиксируется. В этом случае расстояние D0 до поверхности равно целому числу N полуволн, соответствующих частоте f10.

На следующем этапе измерений управляющее напряжение со второго выхода блока 13 начинает перестраивать генератор 11 от частоты f2, равной f10, в сторону ее увеличения. Далее сигнал от генератора 11 через направленный ответвитель 9 поступает на антенну 6. Электромагнитные волны излучаются ею в направлении контролируемой поверхности жидкости 18, отражаются от нее, принимаются антенной 7, поступают в смеситель 10, где мощность соответствующего сигнала смешивается с частью мощности сигнала от генератора 11, поступающего в смеситель 10 через вспомогательный волновод направленного ответвителя 9. Сигнал с выхода смесителя 10 через фильтр низкой частоты 12, предназначенный для устранения высокочастотной составляющей сигнала разностной частоты, поступает на второй вход управляющего блока 13. В нем фиксируется значение частоты f2, равное f20, в момент достижения нуля на выходе смесителя 10. В этом случае расстояние D0 равно целому числу N+1 полуволн, соответствующих частоте f20.

На 3-м этапе измерений разностная частота f20-f10 с выхода смесителя 10 поступает через фильтр высокой частоты 14, предназначенный для устранения постоянной составляющей сигнала, на вход управляемого опорного генератора 15, где по сигналу с третьего выхода управляющего блока 13 ее значение запоминается. Этот сигнал в дальнейшем используется в качестве опорного сигнала и подается на один из входов фазометра 16. На его другой вход поступает текущий сигнал разностной частоты с выхода смесителя 10 через фильтр высокой частоты 14. При изменении уровня (увеличении или уменьшении расстояния, равном ΔD, относительно D0) на выходе фазометра сигнал - фазовый сдвиг Δφ - изменяется в пределах Δφ=±π/2. Текущее расстояние D до поверхности жидкости 18 определяется в вычислительном блоке 17 в соответствии с соотношением

Так, например, при f10=24, ГГц, D0=4 м, f20=24,0375 ГГц будем иметь f20-f10=37,5 МГц. Таким образом, в вычислительном блоке 17 получаем сигнал, соответствующий значению уровня жидкости в диапазоне значений Δφ в пределах -π/2<Δφ<π/2 или значений D в пределах D0p/2<D<D0p/2. В том случае если D выходит за указанные пределы, происходит сбой из-за отключения питания или имеют место иные причины, устройство перезапускается, последовательно повторяя описанные этапы измерений.

Таким образом, данное устройство позволяет решить проблему неоднозначности при фазовых измерениях уровня жидкости. При этом возможно значительно уменьшить стоимость измерительного устройства, поскольку при реализации данного фазового метода нет необходимости использовать широкополосные СВЧ компоненты и устройства, такие как генераторы с большой девиацией частоты. Кроме этого применяемые в данных устройствах антенны, являясь узкополосными, позволяют при тех же габаритах устройств получить значительно лучшие характеристики по направленности излучения, что снижает влияние паразитных переотражений, и таким образом погрешность измерений уменьшается.

Устройство для определения уровня жидкости, содержащее первый генератор электромагнитных волн фиксированной частоты, подсоединенный через основной волновод первого направленного ответвителя к первой антенне для излучения электромагнитных волн в сторону поверхности жидкости по нормали, первую антенну для приема отраженных электромагнитных волн, первый смеситель излучаемых и принимаемых электромагнитных волн, к первому и второму входам которого подсоединены, соответственно, первый генератор через вспомогательный волновод первого направленного ответвителя и первая антенна для приема отраженных электромагнитных волн, вычислительное устройство, отличающееся тем,что оно содержит второй генератор электромагнитных волн фиксированной частоты, подсоединенный через основной волновод второго направленного ответвителя ко второй антенне для излучения электромагнитных волн в сторону поверхности жидкости по нормали, вторую антенну для приема отраженных электромагнитных волн, второй смеситель излучаемых и принимаемых электромагнитных волн, к первому и второму входам которого подсоединены, соответственно, второй генератор через вспомогательный волновод второго направленного ответвителя и вторая антенна для приема отраженных электромагнитных волн, управляющее устройство, к первому и второму входам которого через, соответственно, первый и второй фильтры низкой частоты подсоединены выходы первого и второго смесителей, управляемый опорный генератор, первый, второй и третий выходы управляющего устройства подсоединены, соответственно, ко входу первого генератора, второго генератора и к первому входу управляемого опорного генератора, ко второму входу которого через фильтр высокой частоты подключен выход второго смесителя, фазометр, к первому и второму входам которого подключены, соответственно, выход фильтра высокой частоты и первый выход управляемого опорного генератора, к первому и второму входам вычислительного устройства подсоединены, соответственно, выходы управляемого опорного генератора и фазометра.
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ УРОВНЯ ЖИДКОСТИ В ЕМКОСТИ
Источник поступления информации: Роспатент

Показаны записи 281-290 из 304.
08.02.2020
№220.018.006c

Автономный необитаемый подводный аппарат-амфибия

Изобретение относится к области подводной робототехники, в частности к автономным необитаемым подводным аппаратам (АНПА), и может быть применено в разного рода операциях и исследованиях под водой, на водной поверхности и на суше. Автономный необитаемый подводный аппарат-амфибия содержит корпус...
Тип: Изобретение
Номер охранного документа: 0002713494
Дата охранного документа: 06.02.2020
02.03.2020
№220.018.07b7

Способ непрерывной высотной телекоммутационной связи

Изобретение относится к области передачи информации с помощью высотной телекоммутационной связи. Технический результат состоит в обеспечении непрерывной высотной телекоммутационной связи без ограничения высоты подъема воздушной высотной платформы. Для этого способ формирования беспроводных...
Тип: Изобретение
Номер охранного документа: 0002715420
Дата охранного документа: 28.02.2020
02.03.2020
№220.018.07d1

Свч - мостовой измеритель температуры

Изобретение относится к устройствам для измерения температуры и может применяться в различных областях техники. Заявлен СВЧ - мостовой измеритель температуры, содержащий термопреобразователь, усилитель и первый источник питания, введены первый СВЧ-генератор с варакторной перестройкой частоты,...
Тип: Изобретение
Номер охранного документа: 0002715496
Дата охранного документа: 28.02.2020
02.03.2020
№220.018.0827

Инвертирующий масштабный усилитель с регулируемой степенью

Изобретение относится к области электронных устройств для усиления непрерывных сигналов с заданным масштабным коэффициентом. Технический результат заключается в повышении точности масштабирования инвертирующего усилителя на операционных усилителях с ограниченными частотными свойствами за счет...
Тип: Изобретение
Номер охранного документа: 0002715471
Дата охранного документа: 28.02.2020
04.03.2020
№220.018.085f

Устройство для внутрипластового горения

Изобретение относится к устройствам для извлечения смеси углеводородов, в частности смеси тяжелых углеводородов, из подземного пласта путем внутрипластового горения. Устройство для внутрипластового горения содержит измельчитель алюминиевой стружки, сепаратор и датчик температуры, размещенный в...
Тип: Изобретение
Номер охранного документа: 0002715572
Дата охранного документа: 02.03.2020
14.05.2020
№220.018.1c54

Способ организации системной сети в виде отказоустойчивого неблокируемого трехмерного разреженного р-ичного гиперкуба

Изобретение относится к способу организации системной сети в виде отказоустойчивого неблокируемого трехмерного разреженного p-ичного гиперкуба для многопроцессорных систем с сотнями абонентов-процессоров. Техническим результатом изобретения является повышение отказоустойчивости системной сети,...
Тип: Изобретение
Номер охранного документа: 0002720553
Дата охранного документа: 12.05.2020
15.07.2020
№220.018.3249

Способ определения покомпонентного расхода газожидкостной среды

Изобретение относится к измерительной технике и может использоваться для контроля расхода и определения массы компонента газожидкостной среды (ГЖС), извлекаемой, например, из буровой скважины. Способ определения покомпонентного расхода газожидкостной среды характеризуется тем, что периодически...
Тип: Изобретение
Номер охранного документа: 0002726304
Дата охранного документа: 13.07.2020
15.07.2020
№220.018.3295

Устройство для диагностики состояния высоковольтных изоляторов

Изобретение относится к области электроизмерительной техники и может быть использовано для дистанционного контроля рабочего состояния высоковольтных изоляторов. Технический результат: упрощение процесса диагностики. Сущность: устройство для диагностики состояния высоковольтных изоляторов...
Тип: Изобретение
Номер охранного документа: 0002726305
Дата охранного документа: 13.07.2020
12.04.2023
№223.018.4a44

Устройство для энергоснабжения привязного беспилотного летательного аппарата

Устройство для энергоснабжения привязного беспилотного летательного аппарата содержит наземный источник питания, силовой кабель, два бортовых понижающих преобразователя, управляющий ШИМ-контроллер, два формирователя сигнала ошибки. Обеспечивается повышение эффективности энергоснабжения...
Тип: Изобретение
Номер охранного документа: 0002793830
Дата охранного документа: 06.04.2023
20.04.2023
№223.018.4ac8

Способ и система автономного децентрализованного коллективного определения положения движущихся на трассе объектов автотранспорта

Изобретение относится к области вычислительной техники и направлено на разработку способа и системы определения местоположения движущихся объектов автономно, без привлечения внешних средств, и децентрализованно, без выделения в системе центра управления. Способ автономного децентрализованного...
Тип: Изобретение
Номер охранного документа: 0002778861
Дата охранного документа: 26.08.2022
Показаны записи 241-242 из 242.
29.05.2023
№223.018.7271

Способ определения длины металлической трубы

Изобретение относится к измерительной технике и может быть использовано для бесконтактного определения длины металлических труб как готовых изделий, так и при их производстве на металлургических, машиностроительных предприятиях. Технический результат – повышение точности определения длины...
Тип: Изобретение
Номер охранного документа: 0002796388
Дата охранного документа: 22.05.2023
05.06.2023
№223.018.76c3

Способ измерения физической величины

Изобретение относится к области электротехники, а именно к волноводному резонатору для измерения диэлектрической проницаемости жидкости. Повышение точности измерений является техническим результатом, который достигается за счет того, что предварительно определяют номинальное значение...
Тип: Изобретение
Номер охранного документа: 0002786526
Дата охранного документа: 21.12.2022
+ добавить свой РИД