×
20.01.2014
216.012.9764

СПОСОБ ПОЛУЧЕНИЯ ЗАГОТОВОК ИЗ ПОРОШКОВЫХ МЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к порошковой металлургии, в частности к получению монолитных заготовок высокой плотности из порошков металлов и сплавов микронной и нанокристаллической дисперсности. Металлический порошок, полученный путем криогенного размола, дегазируют и компактируют в объемную заготовку. Заготовку размещают в контейнере, выполненном из материала с пределом прочности не менее предела прочности монолитного материала порошка. После чего проводят интенсивное пластическое деформирование путем поэтапной всесторонней полузакрытой ковки последовательно по трем осям ортогональной системы координат с реализацией в объеме заготовки схемы напряженно-деформированного состояния простого сдвига. Ковку проводят в несколько циклов до достижения накопленной степени деформации е>3 при температуре, не превышающей температуру рекристаллизации порошкового материала. Обеспечивается повышение плотности и прочностных свойств заготовки. 3 ил., 1 пр.
Основные результаты: Способ получения заготовок из порошковых металлических материалов, включающий криогенный размол металлического порошка для формирования в нем нанокристаллической структуры, дегазацию размолотого нанокристаллического порошка, его компактирование в объемную заготовку, последующее интенсивное пластическое деформирование скомпактированной заготовки при заданной температуре, отличающийся тем, что перед интенсивным пластическим деформированием скомпактированную заготовку размещают в контейнере, выполненном из материала с пределом прочности не менее предела прочности монолитного материала, из которого получен металлический порошок, а деформирование размещенной в контейнере заготовки осуществляют с реализацией в ее объеме схемы напряженно-деформированного состояния простого сдвига путем поэтапной всесторонней полузакрытой ковки последовательно по трем осям ортогональной системы координат, которую проводят в несколько циклов до достижения накопленной степени деформации е>3, причем деформирование проводят при температуре, не превышающей температуру рекристаллизации нанокристаллического порошкового материала.
Реферат Свернуть Развернуть

Изобретение относится к областям обработки металлов давлением и порошковый металлургии, может быть использовано для получения монолитных заготовок высокой плотности и повышенным уровнем механических и эксплуатационных свойств из порошков металлов и сплавов микронной и нанокристаллической дисперсности.

Известен способ получения заготовок из порошкового металлического материала, включающий размещение порошкового металлического материала в контейнер, прессование с одновременным нагревом контейнера и размещенного в нем порошкового металлического материала, последующую герметизацию полости контейнера, а также прямую и винтовую экструзию при температуре 20°С через винтовую матрицу с углом наклона образующей винтовой линии к оси деформации 60° с противодавлением 200 МПа (Я.Е. Бейгельзинер, О.В. Михайлов, А.С. Сынков, М.Б. Штерн. Винтовая экструзия порошковых заготовок. II Эксперимент и обсуждение результатов. Физика и техника высоких давлений., т.18, №3, с.92-96, 2012 г.).

К недостаткам данного способа следует отнести неоднородность деформации в объеме заготовки, характерную для винтовой экструзии, и невысокие, в связи с этим, плотность и прочностные свойства получаемой заготовки.

Наиболее близким к предлагаемому способу по технической сущности и достигаемому результату является способ получения заготовок из порошковых металлических сплавов, включающий криогенный размол металлического порошка, дегазацию размолотого порошка, предварительное компактирование размолотого порошка в объемную заготовку, последующее интенсивное пластическое деформирование скомпактированной заготовки при заданной температуре методом равноканального углового прессования (WO 2006/137911 МПК В22С 15/02, опубл. 28.12.2006 г.).

К недостаткам данного способа следует отнести невысокие значения плотности и прочности, а также анизотропию механических свойств получаемых заготовок в поперечном и продольном направлениях, так как очаг деформации при равноканальном угловом прессовании локализован в плоскости пересечения каналов, т.е. заготовка деформируется по двум осям ортогональной системы координат. В направлении третьей оси ортогональной системы координат - продольной оси симметрии заготовки, деформация равна нулю.

Техническим результатом изобретения является повышение плотности материала заготовки и ее прочностных свойств.

Указанный результат достигается способом получения заготовок из порошковых металлических материалов, включающим криогенный размол металлического порошка для формирования в нем нанокристаллической структуры, дегазацию размолотого нанокристаллического порошка, его компактирование в объемную заготовку, последующее интенсивное пластическое деформирование скомпактированной заготовки при заданной температуре, в котором в отличие от прототипа перед интенсивным пластическим деформированием скомпактированную заготовку размещают в контейнере, выполненном из материала с пределом прочности не менее предела прочности монолитного материала, из которого получен металлический порошок, а деформирование размещенной в контейнере заготовки осуществляют с реализацией в ее объеме схемы напряженно-деформированного состояния простого сдвига путем поэтапной всесторонней полузакрытой ковки последовательно по трем осям ортогональной системы координат, которую проводят в несколько циклов до достижения накопленной степени деформации е>3, причем деформирование проводят при температуре, не выше температуры рекристаллизации нанокристаллического порошкового материала.

Известен способ получения ультрамелкозернистой структуры для улучшения физико-механических свойств материала заготовки при обработке монолитных заготовок методом всесторонней ковки со сменой на каждом этапе направлений деформирования последовательно по трем осям координат, при этом ковку осуществляют в полости штампа по схеме плоскодеформированного состояния, при которой обеспечивают на каждом этапе деформирования уменьшение размера заготовки в направлении первой оси координат, совпадающей с направлением приложения деформирующего усилия, увеличение размера заготовки в направлении второй оси координат - со свободной стороны заготовки и сохранение размера заготовки в направлении третьей оси координат - с заневоленной стороны заготовки (патент РФ №2393936, ИПК B21J 5/06, опубл. 28.12.2006 г.).

Однако известный способ неприменим для заготовок из скомпактированных порошковых материалов из-за их высокой пористости и низкой технологической пластичности.

Технический результат предложенного способа обеспечивается тем, что размещение заготовки из скомпактированного порошкового материала в контейнере позволяет при их совместном деформировании создать в объеме заготовки квазигидростатическое давление и, как следствие, повысить ее плотность и технологическую пластичность для обеспечения возможности дальнейшей деформации.

Описание предлагаемого способа иллюстрируется чертежами, где на фиг.1 представлена схема размещения скомпактированной заготовки в контейнере, на фиг.2 показан полузакрытый штамп с расположенным в нем контейнером с компактированной заготовкой: а) до начала деформирования, б) по окончании деформирования, на фиг.3 показана схема поэтапного деформирования заготовки в контейнере.

Скомпактированную заготовку 1 размещают в контейнере 2, который закрыт пробкой 3 (фиг.1). Контейнер с заготовкой располагают в штампе, который состоит из матрицы 4, пуансона 5 и выталкивателя 6. Деформирование осуществляют поэтапно по трем осям X, Y, Z ортогональной системы координат под воздействием усилия Р (фиг.3).

Предложенный способ осуществляют следующим образом. В качестве исходного материала используют металлический порошок микронной дисперсности, который подвергают криогенному размолу в шаровой мельнице для получения размере зерна ≤100 нм.

Полученный нанопорошок компактируют и получают объемную заготовку 1, которую размещают в контейнере 2, выполненном в виде параллелепипеда. Контейнер закрывают пробкой 3. Контейнер и пробку изготавливают из материала с пределом прочности не менее предела прочности материала, из которого получен металлический порошок.

Изготовление контейнера 2 и пробки 3 из менее прочного материала не обеспечит создание в объеме скомпактированной заготовки 1 квазигидростатического давления и реализацию в ней схемы напряженно-деформированного состояния простого сдвига. Наложение квазигидростатического давления повышает ресурс технологической пластичности скомпактированной заготовки.

Перед деформированием контейнер 2 с скомпактированной заготовкой 1 ориентируют относительно осей ортогональной системы координат (фиг.1), при этом продольная ось симметрии заготовки должна совпадать с направлением приложения деформирующего усилия Р.

Далее контейнер 2 с размещенной в нем скомпактированной заготовкой 1, закрытой пробкой 3, укладывают в матрицу 4 штампа и осуществляют этап 1 всесторонней полузакрытой ковки, прикладывая к пуансону 5 деформирующее усилие Р в направлении оси Y (фиг.2,а). По окончании этапа деформирования (фиг.2б) контейнер 2 с размещенной в ней заготовкой 1 и пробкой 3 извлекают из матрицы 4 штампа выталкивателем 6.

Деформирование заготовки 1 совместно с контейнером 2 проводят поэтапно последовательно в направлении трех осей X, Y, Z ортогональной системы координат (фиг.3), что составляет один цикл обработки. Этапы повторяют циклами до обеспечения накопленной степени деформации е>3, при этом температура нагрева заготовки, контейнера и штампа в процессе деформирования не должна превышать температуру рекристаллизации нанокристаллического порошкового материала. По достижении накопленной степени деформации е>3 заготовку извлекают из контейнера.

Пример реализации способа.

В качестве исходного материала для заготовок использовали порошок титанового сплава ВТ 1-0 микронной дисперсности с размером частиц 40 мкм.

Для получения ультрамелкозернистого порошка был произведен криогенный размол исходного порошка в шаровой мельнице при температуре жидкого азота (-196°С). Средний размер зерна после размола составил 94 нм. Компактирование порошка для получения объемной заготовки производили в прессформе при давлении 1,2 ГПа и температуре 20°С. В результате компактирования были получены объемные заготовки с размерами ⌀ 10×25 мм.

Плотность материала скомпактированных заготовок составила 70% от плотности монолитного сплавав ВТ 1-0.

После этого скомпактированную заготовку, в соответствии со схемой, представленной на фиг.1, поместили в контейнер из титанового сплава ОТ4, имеющего предел прочности на 15-20% выше сплава ВТ 1-0, из которого был получен порошок для компактирования заготовки. Размеры контейнера 42×44×60 мм.

Интенсивное пластическое деформирования скомпактированной заготовки, размещенной в контейнере, проводили методом всесторонней полузакрытой ковки в штампе при температуре 350°С путем последовательного приложения деформирующего усилия по трем осям X, Y, Z ортогональной системы координат.

При этом, в процессе деформирования, на каждом конкретном этапе, например, этапе I (фиг.3), размеры заготовки и контейнера уменьшались в направлении одной оси координат (ось Y), увеличивались в направлении второй оси (ось X) и были неизменны в направлении третьей оси (ось Z), т.е. в объеме скомпактированной заготовки и контейнера реализовывалась схема напряженно-деформированного состояния простого сдвига. В связи с тем, что предел прочности материала контейнера (сплав ОТ4) выше предела прочности материала скомпактированной заготовки, на нее воздействовало квазигидростатическое давление всестороннего объемного сжатия, что повысило технологический ресурс пластичности скомпактированной заготовки и обеспечило возможность дальнейшей деформации.

Всесторонняя полузакрытая ковка была проведена в количестве 8 циклов. Накопленная степень деформации составила е=9. По окончании всесторонней полузакрытой ковки было произведено вскрытие контейнера и извлечение из него заготовки, прошедшей интенсивную пластическую деформацию.

Прочностные свойства обработанной по предложенному способу заготовки оценивали по уровню микротвердости и сравнивали с аналогичным показателем заготовки из монолитного титанового сплава ВТ1-0.

Сплав ВТ 1-0 HV, МПа
(монолитная заготовка) 1600
Сплав ВТ 1-0
(заготовка, полученная по предлагаемому способу) 5100

Из полученных данных видно, что предложенное техническое решение позволяет повысить уровень прочностных свойств сплава ВТ1-0 в 3 раза. Плотность заготовок, полученных по предложенному способу, увеличилась с 70% до 93%.

Таким образом, изобретение обеспечивает повышение плотности материала заготовки и ее прочностных свойств.

Способ получения заготовок из порошковых металлических материалов, включающий криогенный размол металлического порошка для формирования в нем нанокристаллической структуры, дегазацию размолотого нанокристаллического порошка, его компактирование в объемную заготовку, последующее интенсивное пластическое деформирование скомпактированной заготовки при заданной температуре, отличающийся тем, что перед интенсивным пластическим деформированием скомпактированную заготовку размещают в контейнере, выполненном из материала с пределом прочности не менее предела прочности монолитного материала, из которого получен металлический порошок, а деформирование размещенной в контейнере заготовки осуществляют с реализацией в ее объеме схемы напряженно-деформированного состояния простого сдвига путем поэтапной всесторонней полузакрытой ковки последовательно по трем осям ортогональной системы координат, которую проводят в несколько циклов до достижения накопленной степени деформации е>3, причем деформирование проводят при температуре, не превышающей температуру рекристаллизации нанокристаллического порошкового материала.
СПОСОБ ПОЛУЧЕНИЯ ЗАГОТОВОК ИЗ ПОРОШКОВЫХ МЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ
СПОСОБ ПОЛУЧЕНИЯ ЗАГОТОВОК ИЗ ПОРОШКОВЫХ МЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ
СПОСОБ ПОЛУЧЕНИЯ ЗАГОТОВОК ИЗ ПОРОШКОВЫХ МЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 15.
10.01.2013
№216.012.1a80

Линейный шаговый двигатель (варианты)

Изобретение относится к электротехнике, к линейным шаговым двигателям (ЛШД), и может быть использовано преимущественно в устройствах ввода - вывода. Технический результат состоит в расширении функциональных и технологических возможностей ЛШД и упрощении его конструкции за счет применения...
Тип: Изобретение
Номер охранного документа: 0002472276
Дата охранного документа: 10.01.2013
20.02.2013
№216.012.27c4

Способ измерения шероховатости поверхности в процессе электролитно-плазменной обработки

Изобретение относится к контрольно-измерительной технике и может быть использовано в машиностроении для контроля шероховатости поверхности электропроводных изделий, например, из нержавеющей стали в процессе электролитно-плазменной обработки. Сущность: прикладывают высоковольтное напряжение...
Тип: Изобретение
Номер охранного документа: 0002475700
Дата охранного документа: 20.02.2013
27.02.2013
№216.012.2b5e

Электролитический способ нанесения покрытий

Изобретение относится к области металлургии и может быть использовано при разработке и изготовлении износостойких покрытий. Способ включает осаждение покрытия из электролита, содержащего ионы осаждаемого металла и упрочняющие добавки во взвешенном состоянии, при этом упрочняющие добавки вводят...
Тип: Изобретение
Номер охранного документа: 0002476629
Дата охранного документа: 27.02.2013
27.03.2013
№216.012.3130

Бета-титановый сплав и способ его термомеханической обработки

Изобретение относится к области металлургии и может быть использовано для изготовления полуфабрикатов и изделий из бета-титановых сплавов путем термомеханической обработки, сопровождающейся изменением свойств материала. Заявлены бета-титановый сплав с ультрамелкозернистой структурой и способ...
Тип: Изобретение
Номер охранного документа: 0002478130
Дата охранного документа: 27.03.2013
10.04.2013
№216.012.345b

Способ ультразвукового контроля сварных соединений лопаток с диском

Использование: для ультразвукового контроля сварных соединений лопаток с диском. Сущность заключается в том, что наклонный преобразователь с фазированной решеткой перемещают по плоской поверхности лопатки, при этом для позиционирования преобразователя с фазированной решеткой при контроле...
Тип: Изобретение
Номер охранного документа: 0002478946
Дата охранного документа: 10.04.2013
10.06.2013
№216.012.48a3

Ультрамелкозернистый медный сплав системы cu-cr и способ его получения

Изобретение относится к области ультрамелкозернистых (УМЗ) материалов с повышенной прочностью и электропроводностью, предназначенных для использования в электротехнической промышленности для изготовления деталей, проводников и электрических контактов, работающих в условиях повышенных температур...
Тип: Изобретение
Номер охранного документа: 0002484175
Дата охранного документа: 10.06.2013
27.06.2013
№216.012.51f4

Вихревой регулятор давления

Изобретение относится к газовой промышленности и может использоваться в системах транспортировки газа для редуцирования давления природного газа. Регулятор содержит подводящий трубопровод, соединенный каналом через узел регулирования потока газа с устройством температурного разделения,...
Тип: Изобретение
Номер охранного документа: 0002486573
Дата охранного документа: 27.06.2013
27.07.2013
№216.012.595d

Аэродинамическое транспортное средство и способ его управления

Изобретение относится к области транспортной техники, в частности к транспортным средствам, работающим на энергии сжатого воздуха. Аэродинамическое транспортное средство содержит компрессор, соединенный с пневмотрубой, грузовую или пассажирскую платформу, электродвигатели, установленные в...
Тип: Изобретение
Номер охранного документа: 0002488498
Дата охранного документа: 27.07.2013
20.08.2013
№216.012.6094

Ультрамелкозернистый двухфазный альфа-бета титановый сплав с повышенным уровнем механических свойств и способ его получения

Изобретение относится к области наноструктурных материалов с ультрамелкозернистой структурой, в частности, двухфазных альфа-бета титановых сплавов, которые могут быть использованы для изготовления полуфабрикатов и изделий в различных отраслях техники, машиностроения, медицины. Предложенный...
Тип: Изобретение
Номер охранного документа: 0002490356
Дата охранного документа: 20.08.2013
10.01.2014
№216.012.9497

Наноструктурный сплав титан-никель с эффектом памяти формы и способ получения прутка из него

Изобретение относится к деформационно-термической обработке сплавов с эффектом памяти формы, в частности сплавов на основе TiNi. Наноструктурный сплав титан-никель с эффектом памяти формы характеризуется структурой из наноскристаллических аустенитных зерен В2 фазы, в которой объемная доля зерен...
Тип: Изобретение
Номер охранного документа: 0002503733
Дата охранного документа: 10.01.2014
Показаны записи 1-10 из 20.
10.01.2013
№216.012.1a80

Линейный шаговый двигатель (варианты)

Изобретение относится к электротехнике, к линейным шаговым двигателям (ЛШД), и может быть использовано преимущественно в устройствах ввода - вывода. Технический результат состоит в расширении функциональных и технологических возможностей ЛШД и упрощении его конструкции за счет применения...
Тип: Изобретение
Номер охранного документа: 0002472276
Дата охранного документа: 10.01.2013
20.02.2013
№216.012.27c4

Способ измерения шероховатости поверхности в процессе электролитно-плазменной обработки

Изобретение относится к контрольно-измерительной технике и может быть использовано в машиностроении для контроля шероховатости поверхности электропроводных изделий, например, из нержавеющей стали в процессе электролитно-плазменной обработки. Сущность: прикладывают высоковольтное напряжение...
Тип: Изобретение
Номер охранного документа: 0002475700
Дата охранного документа: 20.02.2013
27.02.2013
№216.012.2b5e

Электролитический способ нанесения покрытий

Изобретение относится к области металлургии и может быть использовано при разработке и изготовлении износостойких покрытий. Способ включает осаждение покрытия из электролита, содержащего ионы осаждаемого металла и упрочняющие добавки во взвешенном состоянии, при этом упрочняющие добавки вводят...
Тип: Изобретение
Номер охранного документа: 0002476629
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2b92

Охлаждаемая лопатка турбомашины петлевой схемы охлаждения

Охлаждаемая лопатка турбомашины петлевой схемы охлаждения содержит перфорированную оболочку с радиальными перегородками, образующими радиальные каналы, и выступы-генераторы пристенной турбулентности на внутренней ее поверхности, расположенные с наклоном к поперечному направлению оси канала, а...
Тип: Изобретение
Номер охранного документа: 0002476681
Дата охранного документа: 27.02.2013
27.03.2013
№216.012.3130

Бета-титановый сплав и способ его термомеханической обработки

Изобретение относится к области металлургии и может быть использовано для изготовления полуфабрикатов и изделий из бета-титановых сплавов путем термомеханической обработки, сопровождающейся изменением свойств материала. Заявлены бета-титановый сплав с ультрамелкозернистой структурой и способ...
Тип: Изобретение
Номер охранного документа: 0002478130
Дата охранного документа: 27.03.2013
10.04.2013
№216.012.345b

Способ ультразвукового контроля сварных соединений лопаток с диском

Использование: для ультразвукового контроля сварных соединений лопаток с диском. Сущность заключается в том, что наклонный преобразователь с фазированной решеткой перемещают по плоской поверхности лопатки, при этом для позиционирования преобразователя с фазированной решеткой при контроле...
Тип: Изобретение
Номер охранного документа: 0002478946
Дата охранного документа: 10.04.2013
20.04.2013
№216.012.381a

Трехфазный инвертор со звеном постоянного тока и способ управления им

Изобретение относится к устройствам преобразовательной техники и может быть использовано для питания с частотой 400 Гц бортовых систем летательных аппаратов (ЛА), а также для питания высокочастотного инструмента частотой 400 Гц или 200 Гц. Технический результат заключается в упрощении...
Тип: Изобретение
Номер охранного документа: 0002479915
Дата охранного документа: 20.04.2013
27.05.2013
№216.012.43c2

Вихревой аппарат с применением ультразвуковых колебаний

Изобретение относится к устройствам для очистки газов от механических и газообразных примесей и может быть использовано в химической, нефтяной и других отраслях промышленности. Вихревой аппарат для очистки газа содержит корпус, состоящий из винтового закручивающего устройства и трех камер:...
Тип: Изобретение
Номер охранного документа: 0002482923
Дата охранного документа: 27.05.2013
10.06.2013
№216.012.48a3

Ультрамелкозернистый медный сплав системы cu-cr и способ его получения

Изобретение относится к области ультрамелкозернистых (УМЗ) материалов с повышенной прочностью и электропроводностью, предназначенных для использования в электротехнической промышленности для изготовления деталей, проводников и электрических контактов, работающих в условиях повышенных температур...
Тип: Изобретение
Номер охранного документа: 0002484175
Дата охранного документа: 10.06.2013
27.06.2013
№216.012.51f4

Вихревой регулятор давления

Изобретение относится к газовой промышленности и может использоваться в системах транспортировки газа для редуцирования давления природного газа. Регулятор содержит подводящий трубопровод, соединенный каналом через узел регулирования потока газа с устройством температурного разделения,...
Тип: Изобретение
Номер охранного документа: 0002486573
Дата охранного документа: 27.06.2013
+ добавить свой РИД