×
20.01.2014
216.012.9733

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ БИОРЕЗОРБИРУЕМОГО ГИБРИДНОГО СОСУДИСТОГО ИМПЛАНТА МАЛОГО ДИАМЕТРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области медицины и тканевой инженерии и может быть использовано в сердечно-сосудистой хирургии при выполнении шунтирующих операций на сосудах малого диаметра. Изготовление сосудистого графта осуществляют методом двухфазного электроспиннинга с поэтапным введением компонентов в состав полимерной композиции. Техническим результатом изобретения является создание биорезорбируемого сосудистого импланта малого диаметра, обладающего повышенными биосовместимыми свойствами, за счет использования полимерной композиции на основе полигидроксибутирата с оксивалериатом (ПГБВ) и эпсилон-поликапролактона с дополнительным введением в ее состав коллагена IV типа, человеческого фибронектина и человеческого фактора роста фибробластов (bFGF). 1 з.п. ф-лы, 1 пр., 3 табл.

Изобретение относится к области медицины и тканевой инженерии, и может быть использовано в сердечно-сосудистой хирургии при выполнении шунтирующих операций на сосудах малого диаметра.

Сердечно-сосудистые заболевания являются основной причиной смертности и инвалидизации населения, при этом ишемические поражения сосудистого русла являются лидирующими в этой области (ишемическая болезнь сердца, синдром Лериша и т.д.). Одним из эффективных способов лечения данной патологии является проведение шунтирующих операций с использованием сосудов самого пациента (аутотрансплантаты) или с использованием графтов на основе синтетических полимеров. В то же время применение аутотрансплантатов ограничено вследствие их недолговечности и сложности подбора интактных сосудов нужного диаметра, пригодных для шунтирования. А использование графтов на основе синтетических полимеров приводит к индуцированным иммунологическим реакциям, способствующим развитию хронического воспаления и тромбообразованию. Указанные недостатки привели к необходимости поиска новых материалов для создания сосудов на основе тканевой инженерии. При этом на сегодняшний день отсутствуют функционально надежные сосудистые протезы малого диаметра (не более 5 мм), которые могли бы применяться при аортокоронарном шунтировании и реконструкции артерий малого диаметра различных сосудистых бассейнов.

Известна полимерная композиция для изготовления биодеградируемых медицинских изделий и покрытий медицинского назначения, в частности сосудистых стентов, где в качестве структурообразующего вещества принят биоразлагаемый полимер, полученный из N-substituted-4-aza-caprolactone (4-aza-caprolactone-based polymeric compositions useful for the manufacture of biodegradable medical devices and as medical device coatings: pat. 8,137,687 USA. №12/064,108; Fil. 09.08.06; Pub. Date 01.03.07.). При этом функциональная подвесная группа, приложенная к кольцевому азоту, обеспечивает его амфифильные свойства, а в состав полимера может быть включено любое лекарственное или биологически активное вещество.

Недостатком известного полимера является использование гидрофобного полимера, что значительно снижает его биологическую совместимость. Адгезия клеток на поверхности материала представляет значительные трудности.

Известен способ создания биодеградируемого сосудистого импланта с буферизованием биорезорбируемого полимера (Biodegradable vascular device with buffering agent: pat. 7,803,182 USA. №10/856,459; Fil. 28.05.2004; Pub. Dat 28.09.2010), заключающийся во включении одного или нескольких структурных компонентов, сделанных из разлагаемых биополимеров. При этом буферизующий агент выделяется в процессе резорбции полимера и позволяет сохранять pH окружающих имплант тканей, что в свою очередь может обеспечить отсутствие реакции неспецифического воспаления, способного повлиять на проходимость конструкции.

Недостатком метода является выделение в окружающие ткани кислых продуктов резорбции полимеров (молочная и гликолевая кислоты), что вызывает закисление окружающих тканей, провоцируя развитие хронического воспаления и тромбообразования сосудистого импланта. Данное обстоятельство требует дополнительного введения в состав конструкции буферизующего агента, что усложняет технологию производства и повышает ее стоимость. Важным недостатком метода является отказ от использования аутологичных клеток для формирования внутренней поверхности сосудистого импланта, что позволило бы избежать реакции неспецифического воспаления и тромбообразования.

Наиболее близким к заявляемому является способ формирования трехмерных тканеинженерных конструкций на основе биосовместимых и биодеградируемых полимеров с введением в сополимерный каркас биологически активных веществ (факторов роста и хемоаттрактантов) (Engineering of strong, pliable tissues: pat. RE 42,575 USA. №11/529,691; Fil. 28.08.2006; Pub. Date 26.07.11.). Изготовленный полимерный каркас предварительно имплантируют в подкожную клетчатку для формирования клеточных слоев будущего импланта, после чего графт имплантируют в сердечно-сосудистую сеть. Синтетическая пористая матрица, содержащая факторы роста и хемоаттрактанты, в процессе распада способствует привлечению и организации аутоклеток различного происхождения. Именно данный способ мы принимаем в качестве прототипа.

Недостатком способа является необходимость проведения двухстадийной имплантации, включающей в себя на первом этапе подкожную имплантацию биодеградируемой конструкции, а на втором этапе - установку заселенного аутоклетками импланта в окончательную локацию. В результате требуется проведение пациенту дополнительных хирургических вмешательств, повышающих риски осложнений и развития неблагоприятных исходов. Недостатком предлагаемого способа является необходимость длительной (от 3 до 6 месяцев) подкожной имплантации для полноценного заселения полимерной матрицы аутоклетками.

Техническим результатом изобретения является создание биорезорбируемого сосудистого импланта малого диаметра, обладающего повышенными биосовместимыми свойствами, за счет использования полимерной композиции на основе полигидроксибутирата с оксивалериатом (ПГБВ) и эпсилон-поликапролактона с дополнительным введением в ее состав коллагена IV типа, человеческого фибронектина и человеческого фактора роста фибробластов (bFGF).

Струтурообразующим полимером при изготовлении предложенного импланта выступает эпсилон-поликапролактон (PCL), который является продуктом нефтяной промышленности и представляет собой циклический мономер, обладающий высокой прочностью и эластичностью. Кроме того, PCL способен биорезорбироваться в организме животного или человека со средним сроком биодеградации до 3 лет.

Полигидроксибутират с оксивалериатом (ПГБВ), вводимый в состав полимерной композиции, относится к бактериальным полимерам класса полигидроксиалканоатов (ПГА) и обладает высокой биосовместимостью к тканям организма, способен к биодеградации с образованием нетоксичных продуктов распада. Известно, что включение в состав полимерной композиции сополимера микробного происхождения ПГБВ с уровнем оксивалериата от 8,5% до 37% позволяет решить проблему цитотоксичности при создании гибридного сосудистого импланта на основе чистого поликапролактона. Полимерная композиция на основе ПГБВ и PCL резорбируется в организме с образованием безопасных компонентов - гидроксимасляной кислоты, воды и углекислого газа, что позволяет использовать их в различных соотношениях при создании биорезорбируемых конструкций медицинского назначения.

Кроме того, введение в состав композиции ПГБВ позволяет улучшить адгезивные свойства импланта, что является критичным фактором при изготовлении сосудистых графтов с использованием клеточных технологий.

Основная задача при выборе соотношения данных полимеров в композиции - сохранение скорости биорезорбции в организме, достаточной для завершения воссоздания собственного нового сосуда на месте резорбируемого импланта, и учет особенностей метода изготовления трубчатой структуры будущего сосудистого импланта малого диаметра.

Исследования физико-механических характеристик, цитотоксичности in vitro и биодеградации биорезорбируемых полимерных конструкций in vivo проведены на базе Отдела экспериментальной и клинической кардиологии ФГБУ «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний» СО РАМН.

Выявлено, что оптимальными являются следующие соотношения полимеров в растворителе: 3%-8% ПГБВ и 10%-14% PCL. В долевом соотношении ПГБВ:PCL в растворе по сухой массе полимеров относительно друг друга будут выглядеть следующим образом: от 23,1:76,9 (это если конечная концентрация в растворе 3% ПГБВ и 10% PCL) до 36,4:63,6 (если конечная концентрация в растворе 8% ПГБВ и 14% PCL) с промежуточными вариациями. Полученные нетоксичные биосовместимые биодеградируемые сополимерные композиции разного состава, обладают адекватной скоростью биорезорбции и физико-механическими свойствами для создания сосудистых протезов малого диаметра, пригодных выступить в роли, как бесклеточного протеза, так и в роли матрикса для создания гибридного сосудистого графта с привлечением методов клеточных технологий и тканевой инженерии.

Основные характеристики полимерных конструкций поясняются данными исследований, где в таблице 1 представлены темпы биодеградации полимерных конструкций при подкожной имплантации крысам линии Wistar в течение 8 месяцев.

Таблица 1
Полимерные конструкции 1 мес. 2 мес. 3 мес. 4 мес. 5 мес. 6 мес. 7 мес. 8 мес.
5% ПГБВ + 10% PCL - - ± + + + + +
7,5% ПГБВ + 10% PCL ± + + + + + + ++

Необходимо отметить, что до 8 месяца наблюдения биорезорбция указанных полимерных конструкций определялась только микроскопически.

Анализ цитотоксичности полученных матриц на основе разного состава полимерной композиции проводили на основании состояния посаженных на матриксы мультипотентных мезенхимальных стромальных клеток (ММСК), культивированных на матриксах в течение 7 суток. При этом оценивали относительное число клеток в состоянии раннего апоптоза, позднего апоптоза и некроза.

Таблица 2
Относительное число ММСК жизнеспособных, в апоптозе и некрозе
№ серии испытания Матрицы Живые ММСК, % Ранний апоптоз ММСК, % Поздний апоптоз ММСК, % Некроз ММСК, %
1 5% ПГБВ + 10% PCL 73,5 25,1 1,3 0,2
2 7,5% ПГБВ + 10% PCL 72,8 24,9 1,7 0,5
3 10% PCL (образец для сравнения) 43,7 54,4 1,3 0,5

Таким образом, проведенные исследования демонстрируют пригодность биорезорбируемых трубчатых полимерных конструкций на основе ПГБВ и PCL для создания сосудистого импланта малого диаметра и подтверждают перспективность их использования в сердечно-сосудистой хирургии.

Дополнительно в состав полимерной композиции вводят белковые компоненты, оптимизирующие клеточную адгезию и способствующие воссозданию неоинтимы сосудистого импланта на основе аутологичных клеток, что позволит избежать иммунологического конфликта, повысить гемосовместимость и долгосрочную проходимость сосудистых имплантов малого диаметра. Коллаген IV типа и фибронектин, вводимые в состав композиции, образуют аналог базальной мембраны при формировании внутренней поверхности трубчатой конструкции, а ростовой фактор bFGF призван активировать хемотаксис собственных фибробластоподобных клеток организма в стенку импланта, для формирования стенок сосуда.

Изготовление биорезорбируемого трубчатого полимерного импланта малого диаметра осуществляют методом двухфазного электроспиннинга, что позволяет создавать максимально пористую трубчатую конструкцию за счет хаотичного распределения полимерных нитей на намоточном коллекторе диаметром 2-6 мм. Наиболее оптимальным для заселения импланта клетками является размер пор 30-150 мкм как при использовании клеточных технологий in vitro, так и через естественный кровоток in vivo.

Образование нитей из полимерной композиции с введенными белковыми субстратами происходит в сильном электрическом поле, возникающем между двумя электродами противоположной зарядности. При выходе раствора полимеров из шприца через иглу полимер застывает и образует волокно, которое наматывается на штифтовой коллектор выбранного диаметра, располагаясь при этом хаотично и формируя пористость.

Преимуществом данного метода выполнения трубчатого каркаса помимо формирования пористости является низкий температурный режим, позволяющий объединять полимеры с теплочувствительными белковыми компонентами с сохранением биоактивности последних. Запаивание белковых субстратов в полимерное волокно обеспечивает сохранность их функций как при стерилизации трубчатой полимерной конструкции, так и в процессе длительного срока биорезорбции после имплантации в организм.

Процесс электроспиннинга разделен на 2 фазы, что обусловлено необходимостью введения в раствор полимеров трех биологически активных веществ разнонаправленного действия с последующей их локализацией во внутреннем и наружном слоях трубчатой полимерной конструкции.

Способ осуществляют следующим образом. Полимерную композицию изготавливают путем смешивания сухого вещества эпсилон-поликапролактона (поликапролактон, PCL) молекулярной массой 80000 Кда и полигидроксибутирата с оксивалератом (ПГБВ) молекулярной массой 2307 Кда с включением оксивалерата от 8,5% до 37%. в долевом соотношение ПГБВ:PCL в растворе сухой массы - 23,1-36,4:76,9-63,6. В качестве растворителя полимеров выступает хлороформ, количество которого будет зависеть от требуемого конечного объема раствора (например, от 10 мл до 100 мл). Смешивание полимеров в растворителе проводят при комнатной температуре на магнитной мешалке до полного растворения полимеров.

Для создания биорезорбируемой трубчатой полимерной конструкции используют следующие режимы: напряжение - 10-50 кВ, скорость подачи раствора полимеров - 1-10 мл/час, расстояние между иглой и коллектором - 1-20 см, скорость вращения коллектора - 10-300 об/мин.

Первый этап электроспиннига заключается в том, что к готовому раствору полимеров добавляют коллаген IV типа в концентрации 100 мкг на 1 мл раствора полимеров и человеческий фибронектин в концентрации 10 мкг на 1 мл композиции. Нити полимерной композиции, содержащие фидерные компоненты, наматывают на коллектор выбранного диаметра в течение 10-15 минут до образования толщины стенки импланта 75-125 мкм, таким образом, формируя его внутреннюю поверхность.

Формирование наружной стенки биорезорбируемого импланта осуществляют на втором этапе электроспиннинга, для чего в раствор полимеров вводят человеческий фактор роста фибробластов (bFGF) в концентрации 0,01 мкг на 1 мл раствора полимеров и продолжают намотку нитей в заданном режиме электроспиннера до формирования стенки трубчатой конструкции 300-500 мкм.

Ниже представлены результаты физико-механических испытаний полученных образцов, изготовленных из полимерной композиции на основе ПГБВ и PCL с введенными в состав композиции белковых компонентов, оптимизирующие клеточную адгезию.

Таблица 3.
№ серии испытания Время синтеза матриц (ПГБВ+PCL) Диаметр матрицы, мм σ, МПа □, % Емод, Н/мм2
1 5% ПГБВ + 10% PCL 30 мин 2,0 2,0±0,28 284,7±11,53 4,62±0,81
2 7,5% ПГБВ + 10% PCL 30 мин 3,0 1,75±0,09 369,1±51,43 4,18±0,42
3 5% ПГБВ + 10% PCL 60 мин 4,0 1,4±0,05 287,9±21,45 2,31±0,23
Примечание: σ - разрушающее напряжение при растяжении; □ - относительное удлинение; Емод - модуль упругости.

Ниже приведен пример осуществления способа.

Пример 1. Изготовление полимерного каркаса сосудистого импланта диаметром 4 мм на основе 3% ПГБВ и 10% PCL. Для чего выполняют навеску сухих полимеров из расчета 0,3 г ПГБВ (с включением оксивалериата 37%) и 1,0 г PCL, в качестве растворителя вводят 10 мл хлороформа. Перемешивание ингредиентов выполняют на магнитной мешалке до полного растворения полимеров. Процесс электроспиннинга осуществляют при следующих параметрах: напряжение - 25 кВ, скорость подачи раствора полимеров - 1 мл/час, расстояние между иглой и коллектором - 15 см, скорость вращения коллектора - 150 об/мин.

Для осуществления первой фазы электроспиннинга к 2,5 мл раствора полимеров (¼ от общего объема раствора полимеров) добавляют раствор коллагена IV типа в концентрации 100 мкг/мл, и раствор человеческого фибронектина в концентрации 10 мкг/мл. Готовой композицией заполняем первый стерильный шприц и запускаем процесс изготовления полимерной матрицы методом двухфазного электроспиннинга. Формируемые нанонити в течение 7,5 минут хаотично наматываются на штифт диаметром 4 мм до полного опустошения шприца, после чего подающее устройство отключают и вынимают шприц.

Второй этап электроспиннинга осуществляют с использованием состава, приготовленного из оставшихся 7,5 мл полимерной композиции (¾ от общего объема раствора полимеров) и дополнительно введенного раствора человеческого ростового фактора bFGF в концентрации 0,01 мкг/мл. Полученным составом заполняют второй стерильный шприц и, не изменяя параметры электроспиннинга, продолжают формировать нанонити, которые в течение 22,5 минут хаотично намываются на первый (внутренний) слой стенки импланта до полного опустошения второго шприца.

Таким образом, внутренний диаметр полученного сосудистого графта составляет 4 мм, а его пористая стенка состоит из двух слоев (внутреннего и наружного), каждый из которых содержит соответствующие компоненты, необходимые для формирования собственного сосуда в месте имплантации.

Источник поступления информации: Роспатент

Показаны записи 31-36 из 36.
19.01.2018
№218.016.0ddf

Способ предимплантационного хранения биологических протезов для сердечно-сосудистой хирургии

Изобретение относится к медицине, а именно к сердечно-сосудистой хирургии, и предназначено для хранения биологических протезов для сердечно-сосудистой хирургии до момента имплантации. Способ включает отмывку предварительно консервированного биологического протеза в растворе стерильного 0,9%...
Тип: Изобретение
Номер охранного документа: 0002633062
Дата охранного документа: 11.10.2017
20.01.2018
№218.016.12d7

Способ коррекции острых психических расстройств у пациентов после трансплантации сердца

Изобретение относится к области медицины, в частности к анестезиологии-реаниматологии, психиатрии и психотерапии, и может быть использовано у пациентов с когнитивными расстройствами в раннем послеоперационном периоде трансплантации сердца. В предтрансплантационный период за 1-2 суток проводят...
Тип: Изобретение
Номер охранного документа: 0002634377
Дата охранного документа: 26.10.2017
13.02.2018
№218.016.1eba

Способ прогнозирования риска развития синдрома полиорганной недостаточности у пациентов после коронарного шунтирования

Изобретение относится к области медицины, в частности к медицинской генетике и сердечно-сосудистой хирургии. Предложен способ прогнозирования риска развития синдрома полиорганной недостаточности у пациентов после коронарного шунтирования. Проводят анализ клинико-анамнестических показателей и...
Тип: Изобретение
Номер охранного документа: 0002641033
Дата охранного документа: 15.01.2018
13.02.2018
№218.016.224f

Способ прогнозирования риска развития осложнений в раннем госпитальном периоде у пациентов после коронарного шунтирования в условиях искусственного кровообращения

Изобретение относится к медицине, а именно к кардиологии, и касается прогнозирования риска развития осложнений в раннем госпитальном периоде после коронарного шунтирования в условиях искусственного кровообращения. Для этого определяют значения маркеров почечного повреждения, таких как цистатин...
Тип: Изобретение
Номер охранного документа: 0002642238
Дата охранного документа: 24.01.2018
13.02.2018
№218.016.22c4

Тканеинженерный биодеградируемый сосудистый имплант

Изобретение относится к области медицины, в частности к тканевой инженерии, и раскрывает тканеинженерный биодеградируемый сосудистый имплант. Указанный имплант характеризуется тем, что изготовлен из биодеградируемых полимеров методом электроспиннинга с послойным введением в стенку сосуда...
Тип: Изобретение
Номер охранного документа: 0002642259
Дата охранного документа: 24.01.2018
11.03.2019
№219.016.da73

Опорное кольцо для анулопластики сердечных клапанов

Изобретение относится к области медицины, а именно к сердечно-сосудистой хирургии, и может быть использовано при лечении пороков клапанов сердца, в частности при анулопластике трикуспидального и митрального клапанов. Кольцо для анулопластики, содержащие каркас в виде разомкнутого кольца с...
Тип: Изобретение
Номер охранного документа: 0002300348
Дата охранного документа: 10.06.2007
Показаны записи 41-50 из 60.
11.03.2019
№219.016.d96e

Биологический протез клапана сердца и способ его изготовления

Изобретение относится к области медицины, а именно к сердечно-сосудистой хирургии. Биологический протез клапана сердца, содержит гибкий опорный каркас, образованный тремя осесимметричными дугами, соединяющими вершины стоек. Вершины комиссуры формируются створками, которые соединяют швами и...
Тип: Изобретение
Номер охранного документа: 0002355361
Дата охранного документа: 20.05.2009
11.03.2019
№219.016.d9b7

Способ антикальциевой обработки биологических протезов клапанов сердца

Изобретение относится к области медицины, а именно к сердечно-сосудистой хирургии, и может быть использовано при изготовлении биопротезов, предназначенных для протезирования клапанов сердца. Сущность изобретения заключается в том, что после консервации эпоксидным соединением, таким как 2-5%...
Тип: Изобретение
Номер охранного документа: 0002374843
Дата охранного документа: 10.12.2009
11.03.2019
№219.016.da73

Опорное кольцо для анулопластики сердечных клапанов

Изобретение относится к области медицины, а именно к сердечно-сосудистой хирургии, и может быть использовано при лечении пороков клапанов сердца, в частности при анулопластике трикуспидального и митрального клапанов. Кольцо для анулопластики, содержащие каркас в виде разомкнутого кольца с...
Тип: Изобретение
Номер охранного документа: 0002300348
Дата охранного документа: 10.06.2007
13.03.2019
№219.016.dea6

Способ определения оптимальной стратегии реваскуляризации у пациентов с симультанным атеросклеротическим поражением брахиоцефальных и коронарных артерий

Изобретение относится к медицине, а именно к сердечно-сосудистой хирургии, и может быть использовано для определения оптимальной стратегии реваскуляризации у пациентов с симультанным атеросклеротическим поражением брахиоцефальных и коронарных артерий. Для каждой хирургической тактики производят...
Тип: Изобретение
Номер охранного документа: 0002681581
Дата охранного документа: 11.03.2019
19.04.2019
№219.017.2f46

Биологический атриовентрикулярный клапан сердца и способ его изготовления

Изобретение относится к медицине, а именно к сердечно-сосудистой хирургии. Клапан содержит каркас с опорным кольцом, соответствующим естественной форме фиброзного кольца клапана человека, стойки и запирательный элемент со створками, прикрепленный к каркасу. Опорное кольцо каркаса разделено по...
Тип: Изобретение
Номер охранного документа: 0002355360
Дата охранного документа: 20.05.2009
24.05.2019
№219.017.5fd0

Способ консервации и стерилизации биологических протезов для сердечно-сосудистой хирургии

Изобретение относится к области медицины, а именно к сердечно-сосудистой хирургии, и может быть использовано при консервации и стерилизации биоматериала, в частности, при изготовлении протезов клапанов сердца, сосудов. Способ консервации и стерилизации биологических протезов осуществляют в...
Тип: Изобретение
Номер охранного документа: 0002350075
Дата охранного документа: 27.03.2009
09.10.2019
№219.017.d38f

Технология изготовления функционально активных биодеградируемых сосудистых протезов малого диаметра с лекарственным покрытием

Изобретение относится к области медицины, а именно к технологии изготовления функционального биодеградируемого сосудистого протеза малого диаметра с лекарственным покрытием из смеси биосовместимых полимеров ε-поликапролактона и полигидроксибутирата/валерата, с введенными в структуру...
Тип: Изобретение
Номер охранного документа: 0002702239
Дата охранного документа: 07.10.2019
06.12.2019
№219.017.ea04

Функционально активная биодеградируемая сосудистая заплата для артериальной реконструкции

Изобретение относится к области медицины, а именно сердечно-сосудистой хирургии. Функционально активная заплата для проведения хирургической реконструкции стенки кровеносных сосудов, изготовленная на основе биосовместимых биодеградируемых полимеров, ε-поликапролактона и...
Тип: Изобретение
Номер охранного документа: 0002707964
Дата охранного документа: 03.12.2019
13.03.2020
№220.018.0b69

Способ преабилитации пациентов с ишемической болезнью сердца перед коронарным шунтированием в условиях искусственного кровообращения

Изобретение относится к медицине, а именно медицинской реабилитации, кардиологии, и представляет собой немедикаментозный способ кардиопротекции у пациентов с ишемической болезнью сердца в предоперационном периоде коронарного шунтирования с использованием искусственного кровообращения. Для этого...
Тип: Изобретение
Номер охранного документа: 0002716369
Дата охранного документа: 11.03.2020
27.03.2020
№220.018.1081

Способ прогнозирования приверженности к физической реабилитации пациентов после коронарного шунтирования

Изобретение относится к медицине, а именно к кардиологии, и представляет собой способ оценки приверженности пациентов к физической реабилитации в восстановительном периоде после коронарного шунтирования и может быть использован при прогнозирования долговременной приверженности к физической...
Тип: Изобретение
Номер охранного документа: 0002717640
Дата охранного документа: 24.03.2020
+ добавить свой РИД