×
10.01.2014
216.012.95d1

Результат интеллектуальной деятельности: СИД С УПРАВЛЯЕМОЙ УГЛОВОЙ НЕРАВНОМЕРНОСТЬЮ

Вид РИД

Изобретение

№ охранного документа
0002504047
Дата охранного документа
10.01.2014
Аннотация: Источник света, в котором используют светоиспускающий диод с элементом, преобразующим длину волны, выполнен с возможностью получения неравномерного углового распределения цвета, которое можно использовать с конкретным оптическим устройством, которое трансформирует угловое распределение цвета в равномерное распределение цвета. Соотношение высоты и ширины элемента, преобразующего длину волны, выбирают для получения желаемого неравномерного углового распределения цвета. Использование управляемой угловой неравномерности цвета в источнике света и его использование в применениях, которые трансформируют неравномерность в равномерное распределение цвета, увеличивает эффективность системы по сравнению со стандартными системами, в которых используют равномерный угловой светоиспускающий диод. 2 н. и 10 з.п. ф-лы, 10 ил.

Область изобретения

Настоящее изобретение относится к светоиспускающим диодам (СИД) с преобразованием длины волны и, в частности, к управлению угловой зависимостью СИД для получения желаемой неравномерности.

Предпосылки

Во многих применениях в осветительной технике все большее распространение получают осветительные устройства, в которых используют светоиспускающие диоды (СИД). Как правило, в СИД используют преобразование первичной эмиссии посредством люминофора для создания белого света, но люминофоры также можно использовать для создания более насыщенных цветов, таких как красный, зеленый и желтый.

Стандартной выявленной в СИД проблемой, связанной с преобразованием в люминофоре, является неуправляемая угловая зависимость и неравномерность цвета получаемого света. Как правило, длина волны света, испускаемого со стороны слоя люминофора, или света с более высокими значениями углов, выходящего из слоев люминофора, имеет более высокое значение, т.е. происходит преобразование большего количества света, по сравнению со светом, испускаемым верхней частью слоя люминофора, поскольку свет, испускаемый верхней частью, является более перпендикулярным и имеет меньше возможностей для преобразования посредством люминофора. В результате цвет испускаемого света имеет угловую зависимость.

Современные подходы к проблеме неравномерного цвета включают уменьшение угловой зависимости. В качестве примера, один подход состоит в нанесении покрытия по бокам материала люминофора для предотвращения бокового испускания света. Другой подход состоит в добавлении рассеивающих частиц в материал люминофора, чтобы смешивать преобразованный и не преобразованный свет так, чтобы цвет света, испускаемого в сторону, и света, испускаемого вверх, был приблизительно одинаковым. Однако такие решения проблемы угловой зависимости снижают эффективность устройств, а также увеличивают стоимость производства. Таким образом, желательно создать другие способы решения проблемы угловой зависимости.

Краткое изложение

Источник света содержит СИД с элементом, преобразующим длину волны, с выбранным соотношением высоты и ширины для получения желаемого неравномерного углового распределения цвета, например, с равномерностью Δu'v'>0,015 в пределах углового распределения от 0° до 90°. Источник света используют в применениях, которые трансформируют неравномерное угловое распределение цвета источника света в равномерное распределение цвета, например, с равномерностью Δu'v'<0,01. Таким образом, увеличивают эффективность системы по отношению к стандартным системам, сконструированным с использованием СИД, которые выполнены с возможностью получения равномерного углового распределения цвета.

Краткое описание чертежей

На фиг.1 представлен вид сбоку источника света, который содержит СИД с элементом, преобразующим длину волны, который обладает управляемым неравномерным угловым распределением цвета.

На фиг.2 представлен сдвиг Δu'v' в зависимости от угла для демонстрации угловой неравномерности цвета источника света на фиг.1.

На фиг.3A и 3B представлен пример источника света, который используют в применении во вспышках.

На фиг.4 представлен вид сбоку источника света с полубоковой конфигурацией эмиттера.

На фиг.5 представлен другой вариант осуществления источника света, который испускает свет с управляемой неравномерной угловой зависимостью цвета.

На фиг.6A и 6B в качестве примера представлен вид сверху и вид сбоку нескольких источников света, которые используют в применении в задней подсветке.

На фиг.7 представлен график кривой поглощения на 1 мм для полимера ПММА, который обычно используют в качестве волновода в применении в задней подсветке.

На фиг.8 представлен график, который иллюстрирует эффект спектрального поглощения волновода.

На фиг.9 представлен график, который иллюстрирует цветовой сдвиг вследствие поглощения ПММА волновода (синий) в зависимости от расстояния.

Подробное описание

На фиг.1 представлен вид сбоку источника света 100, который содержит светоиспускающий диод (СИД) 101 с элементом, преобразующим длину волны 110, который обладает контролируемым неравномерным угловым распределением цвета. Также на фиг.1 представлено устройство 120, используемое с источником света 100, с линзой 122, расположенной для отражения света от источника света 100 в сторону устройства 120. Устройство 120 может представлять собой применение, такое как применение во вспышках или задней подсветке или другие подходящие применения. Угловая неравномерность цвета источника света 100 выполнена с возможностью использования с оптическим устройством 120 так, чтобы комплексная система, т.е. источник света 100 и устройство 120, была более эффективна, чем система, которая содержит стандартный источник света 100 с равномерным угловым СИД.

СИД 101 изображен в виде устройства с перевернутым кристаллом с контактными площадками 102, расположенными на нижней поверхности СИД 101. Контактные площадки 102 соединены с контактными элементами 104 на подложке 106, которую можно выполнить, например, из керамики или кремния. При желании, подложку 106 можно установить на теплоотвод 108. При желании, можно использовать несущие конструкции, отличающиеся от подложки 106 и теплоотвода 108.

В одном из вариантов осуществления СИД 101 может представлять собой синий или ультрафиолетовый (UV) СИД и может представлять собой устройство с высокой энергетической яркостью, например, того типа, который описан в заявке на патент США с серийным № 10/652348, которая озаглавлена «Package for a Semiconductor Light Emitting Device» авторов Frank Wall et al., которая подана 29 августа 2003 года, публикация № 2005/0045901, имеет того же патентообладателя, что и настоящее раскрытие и включена в настоящий документ в качестве ссылки. Диаграмма углового испускания СИД 101 может относиться к ламбертовскому типу (как показано на фиг.1) или к управляемому типу с использованием фотонных кристаллов, таких как решетчатые структуры.

На СИД 101 установлен элемент, преобразующий длину волны 110, который может представлять собой, например, люминофор в связующем материале, встроенный, например, в силикон, и отформованный поверх СИД 101 или в жесткую керамическую пластину, которая иногда упоминается в настоящем документе как «люминесцентная керамика». Как правило, керамические пластины представляют собой самостоятельные слои и могут обладать полупрозрачностью или прозрачностью для конкретных длин волн, которые могут снижать потери от рассеяния, связанные с непрозрачными слоями, преобразующими длину волны, такими как однородные слои. Люминесцентные керамические слои могут быть прочнее, чем тонкая пленка или однородные слои люминофора.

Примеры люминофоров, которые можно использовать в связующем материале, отформованном поверх СИД 101 или в люминесцентной керамике, включают алюминиевые темно-красные люминофоры с общей формулой (Lu1-x-y-a-b YxGdy)3(Al1-zGaz)5O12:CeaPrb, где 0<x<1, 0<y<1, 0<z≤0,1, 0<a≤0,2 и 0<b≤0,1, такие как Lu3Al5O12:Ce3+ и Y3Al5O12:Ce3+, которые испускают свет в желто-зеленом диапазоне; и (Sr1-x-yBaxCay)2-zSi5-aAlaN8-aOa:Euz2+, где 0<a<5, 0<x≤1, 0<y<1 и 0<z<1, такие как Sr2Si5N8:Eu2+, который излучает свет в красном диапазоне. Подходящие керамические пластины, содержащие Y3Al5O12:Ce3+, можно приобрести в компании Baikowski International Corporation of Charlotte, N.C. Также можно использовать другие зеленые, желтые и красные испускающие люминофоры, включая (Sr1-a+bCabBac)SixNyOz:Eua2+ (a=0,002-0,2, b=0,0-0,25, c=0,0-0,25, x=1,5-2,5, y=1,5-2,5, z=1,5-2,5), включая, например, SrSi2N2O2:Eu2+; (Sr1-u-v-xMguCavBax)(Ga2-y-zAlyInzS4):Eu2+, включая, например, SrGa2S4:Eu2+; Sr1-xBaxSiO4:Eu2+; и (Ca1-xSrx)S:Eu2+, где 0<x<1, включая, например, CaS:Eu2+ и SrS:Eu2+. Соответствующими стрелками 114 и 115 показан источник света 100, который испускает свет как вверх, так и в сторону, где испускаемый вверх свет 114 имеет синевато-белый цвет, а испускаемый в сторону свет 115 имеет желтоватый цвет. Управляя высотой H элемента, преобразующего длину волны, 110 или, более конкретно, соотношением высота/ширина (H/W), можно управлять угловой зависимостью света для получения желаемого количества синевато-белого света 114 и желтоватого света 115, которое подходит для устройства 120. В качестве примера, для получения не столь синего цвета используют элемент, преобразующий длину волны, 110 с увеличенным значением высоты H, тогда как для получения более синего света используют элемент, преобразующий длину волны, 110 с меньшим значением высоты H.

На фиг.2A представлен сдвиг Δu'v' в зависимости от угла, который показывает один из вариантов осуществления угловой неравномерности цвета источника света 100. Сдвиг Δu'v' в зависимости от угла представляет собой меру цветового сдвига относительно исходной точки. Как можно видеть на фиг.2A, источник света 100 создает сдвиг Δu'v'>0,015 между 0° и 90° относительно исходной точки 0°. Это является максимальным изменением цвета в зависимости от угла в пределах данного углового диапазона. На фиг.2B представлен пример Δu'v' для другого источника света 100 с синим СИД и красным/зеленым люминофорами, который выполнен с возможностью получения Δu'v'>0,05 в зависимости от угла. Меняя, например, соотношение H/W, можно получить различные максимальные значения Δu'v' в зависимости от угла, например, максимальное значение Δu'v' в зависимости от угла может быть более 0,015, 0,03, 0,045 или 0,06 в зависимости от желаемого применения, например, устройства 120, в котором используют источник света 100. Затем устройство 120, в котором используют источник света 100, в соответствии с одним из вариантов осуществления создает пространственную равномерность цвета Δu'v' менее 0,015, например, менее чем 0,01 или 0,005.

Таким образом, вместо того, чтобы пытаться устранить угловую зависимость цвета света, источник света 100 сконструирован для получения управляемой угловой неравномерности цвета, которую оптимизируют для конкретного устройства 120, в котором используют источник света 100. Таким образом, как описано выше, например, источник света 100 выполнен с возможностью получения управляемой угловой неравномерности цвета со сдвигом Δu'v'>0,015 в зависимости от угла, но при использовании в устройстве 120, устройство 120 создает пространственную равномерность цвета Δu'v'<0,015. В зависимости от требований применения возможны различные пространственные равномерности цвета, такие как от Δu'v'<0,05 до Δu'v'<0,015. Например, медицинские мониторы или другие применения, которые требуют высокоточного представления цвета, можно создавать с задней подсветкой в соответствии с одним из вариантов осуществления, который имеет Δu'v'<0,05, тогда как потребительские мониторы можно создавать с подсветкой, которая имеет Δu'v'<0,01, а такие применения, как вспышка камеры, могут иметь Δu'v'<0,015. При управляемой угловой неравномерности цвета можно увеличить эффективность источника света 100, поскольку отсутствует необходимость блокировать испускание света из источника света 100. Таким образом, суммарные рабочие характеристики системы, содержащей устройство 120 и источник света 100, улучшены по сравнению с системами, в которых используют равномерные угловые СИД.

На фиг.3A и 3B представлен пример источника света 100, который можно использовать в устройстве 120 типа вспышки, например, для камеры. На фиг.3B представлен источник света 100 с дополнительным управляющим элементом 112, таким как дихроичный фильтр, расположенный поверх элемента, преобразующего длину волны 110. Дихроичный фильтр 112 по-разному пропускает свет в зависимости от угла, что дополнительно содействует управлению угловой зависимостью. Альтернативно, рассеивающий элемент можно использовать для соответствующего снижения или управления угловой зависимостью. Как показано на фиг.2B, источник света 100 создает синевато-белый свет 114 и желтоватый свет 115, который отражается отражателем 122 и смешивается на изображаемой мишени 124.

При желании, источник света 100 может представлять собой эмиттер в боковой (или полубоковой) конфигурации, в котором происходит небольшая эмиссия вверх и значительная эмиссия в стороны. На фиг.4 представлен источник света 100 в полубоковой конфигурации эмиттера, в котором отсутствует необходимость в верхнем отражателе на верхней поверхности 110top элемента, преобразующего длину волны, 110. Как показано на фиг.4, диаграмма углового испускания по сторонам 110side источника света 100 относится к ламбертовскому типу. При замене верхнего отражателя на увеличенную высоту H элемента, преобразующего длину волны, 110 по отношению к ширине W элемента, преобразующего длину волны, 110 (которая в этом варианте осуществления равна ширине СИД 101), уменьшается число отражений света в сторону СИД 101. Отражения в сторону СИД 101 являются не эффективными и, следовательно, снижая отражения в сторону СИД 101, снижают потери в системе. Кроме того, увеличивая высоту H, увеличивают площадь сторон 110side элемента, преобразующего длину волны, 110, что обеспечивает увеличенное извлечение света сторонами 110side элемента, преобразующего длину волны 110. Увеличивая высоту H элемента, преобразующего длину волны, 110 по отношению к ширине W, источник света 100 оптимизируют для применений, которые требуют извлечения света, в противоположность накоплению света. Например, в таких применениях, как оптическая конструкция вспышки, желательно использовать маленький спроектированный источник с тем, чтобы можно было сохранить малые размеры оптики, при этом накапливая наибольшее количество света и направляя свет в сторону мишени 1,05×0,8 метра на расстоянии в 1 метр. Увеличивая высоту элемента, преобразующего длину волны 110, увеличивают количество извлеченного света. Концентрацию Cc в элементе, преобразующем длину волны, можно задать, чтобы получить желаемую цветовую точку для конкретного применения. Дополнительно, в элемент, преобразующий длину волны, можно добавить рассеивающие частицы, чтобы содействовать извлечению света в воздух.

На фиг.5 представлен другой вариант осуществления источника света 100, который испускает свет с управляемой угловой зависимостью цвета. Источник света 100 содержит тонкий слоистый элемент 116, находящийся в оптическом соединении с верхней поверхностью элемента, преобразующего длину волны, 110, который может представлять собой, например, дихроический слой, рассеивающий слой или слой красного люминофора. При желании, элемент 116 можно разместить между элементом, преобразующим длину волны, 110 и СИД 101, в частности, когда элемент 116 представляет собой слой красного люминофора, элемент, преобразующий длину волны, 110 представляет собой зеленоватую люминофорную пластину, такую как LUAG, а СИД 101 представляет собой синий СИД. Дополнительно источник света 100 может содержать переформованную куполообразную линзу 118, которая может представлять собой оксид кремния, эпоксидную смолу или другой подходящий материал, который также может способствовать управлению угловой неравномерностью цвета. При желании, не обязательно использовать переформованную куполообразную линзу 118. Испускаемый вверх свет, обозначенный стрелкой 114, имеет синевато-белый цвет и ламбертовский профиль испускания. Испускаемый в сторону свет, обозначенный стрелкой 115, имеет желтоватый цвет и изотропный профиль испускания, обусловленный высотой H элемента, преобразующего длину волны, а также рассеиванием. Испускание источника света 100 с угловой зависимостью можно трансформировать в равномерное пространственное цветовое распределение в желаемом применении, таком как задняя подсветка.

На фиг.6A и 6B в качестве примера представлены вид сверху и вид сбоку нескольких источников света 100, которые использованы в устройстве задней подсветки 120. Задняя подсветка 120 извлекает цвет, например, синий против зеленого/красного, из одного источника света 100 в различных местах внутри задней подсветки. Таким образом, используя несколько источников света 100 и управляя угловым распределением цвета испускаемого света, можно получить равномерное пространственное распределение цвет в применении в задней подсветке.

На фиг.7 представлен график кривой поглощения на 1 мм полимера ПММА, который обычно используют в качестве волновода в применении в задней подсветке. По оси X отложена длина волны, тогда как по оси Y отложен процент поглощения. На фиг.8 представлен график, который иллюстрирует эффект спектрального поглощения волновода, иллюстрирующий изменение спектра от края (показано кривой 202) и центра (показано кривой 204) 72” волновода из ПММА. ПО оси X отложена длина волны, тогда как по оси Y отложено относительное спектральное распределение. Как видно на фиг.8, центр 204 спектра в центре волновода содержит не столь синий свет, как край 202 волновода. На фиг.9 представлен график, иллюстрирующий теоретический цветовой сдвиг вследствие поглощения волновода из ПММА (синий) в двусторонней задней подсветке в зависимости от расстояния для стандартного источника света, который обладает равномерным угловым и пространственным вводом. По оси X отложено положение на диагонали задней подсветки в дюймах, тогда как на оси Y отложено изменение в Δu'v' от центра к краю. Как показано, стандартный волновод при использовании стандартного равномерного углового источника света имеет Δu'v' больше 0,01 и в действительности доходит до 0,02.

Таким образом, как можно видеть из графиков фиг.7, 8 и 9, более синий свет поглощается в зависимости от расстояния волноводом из ПММА, в результате чего такой волновод имеет не столь синий свет в центре волновода, как по краям волновода. Кроме того, как показано на фиг.9, сдвиг Δu'v' изменяется приблизительно линейно в зависимости от расстояния. Используя контролируемое неравномерное угловое распределение цвета источника света 100, более синий свет можно испускать непосредственно в направлении центра волновода, чтобы компенсировать синее поглощение материала ПММА для получения более равномерного распределения цвета в применении в задней подсветке. В качестве примера, на фиг.10 представлено теоретическое поглощение волновода из ПММА, похожее на представленное на фиг.9, но с использованием источника света, обладающего управляемой угловой неравномерностью цвета со сдвигом Δu'v'>0,01 в зависимости от угла. Как показано на фиг.10, полученная пространственная равномерность цвета имеет Δu'v' менее 0,01.

Несмотря на то, что настоящее изобретение с целью разъяснения проиллюстрировано в связи с конкретными вариантами осуществления, настоящее изобретение не ограничено ими. Различные доработки и модификации можно выполнить, не отклоняясь от объема изобретения. Следовательно, сущность и объем прилагаемой формулы изобретения не ограничены предыдущим описанием.


СИД С УПРАВЛЯЕМОЙ УГЛОВОЙ НЕРАВНОМЕРНОСТЬЮ
СИД С УПРАВЛЯЕМОЙ УГЛОВОЙ НЕРАВНОМЕРНОСТЬЮ
СИД С УПРАВЛЯЕМОЙ УГЛОВОЙ НЕРАВНОМЕРНОСТЬЮ
СИД С УПРАВЛЯЕМОЙ УГЛОВОЙ НЕРАВНОМЕРНОСТЬЮ
СИД С УПРАВЛЯЕМОЙ УГЛОВОЙ НЕРАВНОМЕРНОСТЬЮ
СИД С УПРАВЛЯЕМОЙ УГЛОВОЙ НЕРАВНОМЕРНОСТЬЮ
СИД С УПРАВЛЯЕМОЙ УГЛОВОЙ НЕРАВНОМЕРНОСТЬЮ
СИД С УПРАВЛЯЕМОЙ УГЛОВОЙ НЕРАВНОМЕРНОСТЬЮ
СИД С УПРАВЛЯЕМОЙ УГЛОВОЙ НЕРАВНОМЕРНОСТЬЮ
СИД С УПРАВЛЯЕМОЙ УГЛОВОЙ НЕРАВНОМЕРНОСТЬЮ
СИД С УПРАВЛЯЕМОЙ УГЛОВОЙ НЕРАВНОМЕРНОСТЬЮ
СИД С УПРАВЛЯЕМОЙ УГЛОВОЙ НЕРАВНОМЕРНОСТЬЮ
СИД С УПРАВЛЯЕМОЙ УГЛОВОЙ НЕРАВНОМЕРНОСТЬЮ
Источник поступления информации: Роспатент

Показаны записи 1-4 из 4.
10.04.2013
№216.012.34d9

Светоизлучающий прибор, включающий в себя фотонный кристалл и люминесцентную керамику

Светоизлучающее устройство включает полупроводниковую структуру, содержащую светоизлучающий слой, расположенный между областью n-типа и областью р-типа, и фотонный кристалл, сформированный внутри или на поверхности полупроводниковой структуры, керамический слой, который расположен на пути...
Тип: Изобретение
Номер охранного документа: 0002479072
Дата охранного документа: 10.04.2013
27.05.2013
№216.012.4561

Тонкая подсветка с использованием низкопрофильных светоизлучающих диодов бокового излучения

Изобретение относится к подсветке с использованием светоизлучающих диодов бокового излучения. Подсветка содержит твердотельный прозрачный световод (42) со множеством отверстий в нижней поверхности световода, при этом каждое отверстие содержит светоизлучающий диод (10) бокового излучения. Призмы...
Тип: Изобретение
Номер охранного документа: 0002483338
Дата охранного документа: 27.05.2013
10.02.2014
№216.012.9fcd

Сиды с компенсированной белой точкой для жк-дисплеев

Устройство задней подсветки для цветного ЖК-дисплея включает в себя светодиоды (СИДы) белого света, образованные с использованием синего СИДа со слоем красного и зеленого люминофоров над ним. Для обеспечения равномерности компоненты синего света по поверхности экрана ЖК-дисплея, а также для...
Тип: Изобретение
Номер охранного документа: 0002506617
Дата охранного документа: 10.02.2014
10.04.2014
№216.012.b532

Светодиод с прессованной двунаправленной оптикой

Использование: для применений, связанных с освещением, отличным от подсветок, где вертикальная диаграмма направленности (диаграмма коллимирования) и диаграмма направленности бокового излучения света могут определяться независимо. Сущность изобретения заключается в том, что двойная прессованная...
Тип: Изобретение
Номер охранного документа: 0002512110
Дата охранного документа: 10.04.2014
Показаны записи 311-320 из 1 331.
27.05.2014
№216.012.ca69

Способ и устройство анализа баллистокардиографических сигналов

Группа изобретений относится к медицине, а именно к кардиологии. Определяют оценочное начальное временное значение для первого сокращения сердца в баллистокардиографическом сигнале. Итерационно вычисляют оценочные значения для последующих сокращений сердца в баллистокардиографическом сигнале,...
Тип: Изобретение
Номер охранного документа: 0002517583
Дата охранного документа: 27.05.2014
27.05.2014
№216.012.ca6c

Обратное реконструирование данных для оптимальной временной выработки импульсов счета в радиологической физиологической визуализации в режиме списка

Группа изобретений относится к медицине. Устройство диагностической визуализации содержит детекторную матрицу для приема событий от визуализируемой области, триггерный процессор для присвоения отметки времени принятым событиям, реконструирующий процессор, анализатор и управляемый анализатором...
Тип: Изобретение
Номер охранного документа: 0002517586
Дата охранного документа: 27.05.2014
27.05.2014
№216.012.cadb

Способ для обмена данными

Изобретение относится к области обмена данными между по меньшей мере двумя серверами с использованием шлюза. Техническим результатом является повышение эффективности обмена данными с сохранением конфиденциальности. Каждый сервер имеет уникальный федеративный идентификатор, такой идентификатор...
Тип: Изобретение
Номер охранного документа: 0002517697
Дата охранного документа: 27.05.2014
10.06.2014
№216.012.cc54

Способ направления пользователя от исходного положения к месту назначения в зоне общественного пользования

Изобретение относится к области приборостроения и может быть использовано в системах программного позиционирования и ориентации подвижных объектов. Технический результат - расширение функциональных возможностей. Для этого направляют пользователя от исходного положения к месту назначения,...
Тип: Изобретение
Номер охранного документа: 0002518079
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.ccb5

Указание ресурсов е-dch для e-rach

Изобретение относится к системам связи. Технический результат заключается в повышении надежности связи. В UMTS WCDMA обсуждается новая восходящая линия связи, основанная на RACH. Запрос на ресурс передачи восходящей линии связи осуществляется с использованием механизма на основе традиционного...
Тип: Изобретение
Номер охранного документа: 0002518176
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.ccbd

Светоизлучающее устройство переменного цвета

Изобретение относится к области светотехники, а именно к светоизлучающему устройству переменного цвета (100; 200; 300; 400. Техническим результатом является возможность управления изменением цвета. Светоизлучающее устройство содержит, по меньшей мере, один источник света (101; 201; 303; 401) и,...
Тип: Изобретение
Номер охранного документа: 0002518184
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.cccb

Светоизлучающее устройство

Изобретение относится к светоизлучающему устройству (1), содержащему печатную плату (PCB), имеющую, по меньшей мере, один электропроводящий и теплопроводящий участок, светодиод (LED), термически соединенный с, по меньшей мере, одним электропроводящим и теплопроводящим участком посредством, по...
Тип: Изобретение
Номер охранного документа: 0002518198
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.cd30

Коррекция ослабления мр катушек в гибридной системе пэт/мр

Изобретение относится к медицинским системам визуализации. Система, генерирующая шаблон (70) карты коррекции ослабления (КО) для коррекции ослабления в радионуклидном изображении (34), вызванного деталями (72) оборудования в поле наблюдения радионуклидного сканера (14) во время радионуклидного...
Тип: Изобретение
Номер охранного документа: 0002518299
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.cd9d

Способ и система для кодирования сигнала видео данных, кодированный сигнал видео данных, способ и система для декодирования сигнала видео данных

Изобретение относится к области видео кодирования и декодирования, в частности 3D или стереоизображения. Техническим результатом является создание улучшенного устройства кодирования для кодирования сигнала видео данных. Указанный технический результат достигается тем, что сигналы видео данных...
Тип: Изобретение
Номер охранного документа: 0002518408
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.cdf4

Адаптивный охлаждающий блок мощного полупроводникового устройства

Группа изобретений относится к охлаждающему блоку мощного полупроводникового устройства (100). Блок содержит теплоотвод с активным охлаждением (102) и контроллер (208; 300), контроллер (208; 300) выполнен с возможностью регулирования эффективности охлаждения теплоотвода (102) в зависимости от...
Тип: Изобретение
Номер охранного документа: 0002518495
Дата охранного документа: 10.06.2014
+ добавить свой РИД