×
10.01.2014
216.012.95b2

Результат интеллектуальной деятельности: УСТАНОВКА ДЛЯ ИССЛЕДОВАНИЯ ВИХРЕВОГО ЭЛЕКТРИЧЕСКОГО ПОЛЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к учебным приборам и может быть использовано в лабораторном практикуме по курсу физики. Лист электропроводящей бумаги уложен на планшет. Через отверстие в планшете проходит длинный соленоид. Одно из лекал, входящих в набор лекал, через его отверстие насажено на длинный соленоид и уложено на лист электропроводящей бумаги и зафиксировано фиксатором его положения. Общий контакт переключателя на два положения соединен с первым вводом вольтметра с большим входным сопротивлением. Неподвижный контакт закреплен на листе электропроводящей бумаги и соединен со вторым вводом вольтметра с большим входным сопротивлением. Зонд соединен с первым контактом переключателя. Витки индикаторной катушки охватывают длинный соленоид под планшетом. Первый вывод катушки соединен со вторым вводом вольтметра с большим входным сопротивлением, а второй вывод - со вторым контактом переключателя на два положения. Техническим результатом изобретения является моделирование циркуляции вектора вихревого электрического поля в разнообразных замкнутых контурах. 7 ил.
Основные результаты: Установка для исследования вихревого электрического поля, содержащая вольтметр с большим входным сопротивлением, планшет, генератор гармонического напряжения и длинный соленоид, установленный перпендикулярно в центре планшета таким образом, что первая половина его находится над планшетом, а другая половина - под ним, и обмотка которого соединена с выходными клеммами генератора гармонического напряжения, отличающаяся тем, что в нее введены лист электропроводящей бумаги, уложенный на планшете, а через отверстие в нем проходит длинный соленоид, набор разнообразных лекал из диэлектрика с отверстиями и криволинейными кромками, причем, используемое лекало из набора лекал через его отверстие насажено на длинный соленоид и уложено на лист электропроводящей бумаги, фиксатор положения используемого лекала, переключатель на два положения, общий контакт которого соединен с первым вводом вольтметра с большим входным сопротивлением, неподвижный контакт, закрепленный на листе электропроводящей бумаги, и который соединен со вторым вводом вольтметра с большим входным сопротивлением, зонд, соединенный с первым контактом переключателя на два положения, индикаторная катушка, витки которой охватывают длинный соленоид под планшетом, первый вывод ее соединен со вторым вводом вольтметра с большим входным сопротивлением, а второй вывод - со вторым контактом переключателя на два положения.

Изобретение относится к учебным приборам и может быть использовано в лабораторном практикуме в высших и средних учебных заведениях по курсу физики для изучения и углубления знаний физических законов.

Известен учебный прибор для исследования электромагнитного поля (RU патент №2210815, 20.08.2003 Бюл. №23. Автор Ковнацкий В.К.). Он содержит два тороида, между ними создается однородное вихревое электрическое поле. С помощью этого прибора невозможно продемонстрировать плоскопараллельное электрическое поле и снять необходимые его характеристики.

Известен также учебный прибор по физике (RU патент №2133505, 20.07.1999 Бюл. №20. Автор Ковнацкий В.К.). Он содержит регистратор ЭДС и соленоид, подключенный к генератору гармонического напряжения. Этот прибор позволяет создать плоскопараллельное вихревое электрическое поле. Однако на нем невозможно построить сетку электрических и изопотенциальных линий этого поля, продемонстрировать неоднозначность его потенциала. Нельзя также на этом приборе экспериментально проверить теорему о циркуляции вектора напряженности электрического поля в, законы Ома и Джоуля-Ленца в дифференциальной форме в электропроводящей среде, расположенной в вихревом электрическом поле.

Наиболее близкой к предлагаемой установке является установка для исследования вихревого электрического поля (RU патент №2269823, 10.02.2006. Бюл.№4. Авторы: Белокопытов Р.А., Ковнацкий В.К., прототип фиг.1). Она содержит вольтметр с большим входным сопротивлением 9, планшет 2, генератор гармонического напряжения 3 и длинный соленоид 1, установленный перпендикулярно в центре планшета таким образом, что первая половина его находится над планшетом, а другая половина - под ним, и обмотка которого соединена с выходными клеммами генератора гармонического напряжения 3. Эта установка позволяет создать плоскопараллельное вихревое электрическое поле. На ней можно экспериментально проверить теорему о циркуляции вектора , закон Ома и Джоуля-Ленца в дифференциальной форме только в замкнутом круговом проводнике, расположенном в вихревом электрическом поле. Однако на этой установке невозможно продемонстрировать и построить сетку электрических и изопотенциальных линий этого поля в проводящей среде, например в виде электропроводящей бумаги. На этой установке нельзя определить циркуляцию вектора для произвольного замкнутого контура, охватывающего и не охватывающего длинный соленоид.

Техническим результатом изобретения является возможность моделирования циркуляции вектора вихревого электрического поля в разнообразных замкнутых контурах.

Указанный технический результат достигается тем, что в известную установку для исследования вихревого электрического поля, содержащую вольтметр с большим входным сопротивлением, планшет, генератор гармонического напряжения и длинный соленоид, установленный перпендикулярно в центре планшета таким образом, что первая половина его находится над планшетом, а другая половина - под ним, и обмотка которого соединена с выходными клеммами генератора гармонического напряжения, согласно изобретению, введены лист электропроводящей бумаги, уложенный на планшете, а через отверстие в нем проходит длинный соленоид, набор разнообразных лекал из диэлектрика с отверстиями и криволинейными кромками, причем, используемое лекало из набора лекал через его отверстие насажено на длинный соленоид и уложено на лист электропроводящей бумаги, фиксатор положения используемого лекала, переключатель на два положения, общий контакт которого соединен с первым вводом вольтметра с большим входным сопротивлением, неподвижный контакт, закрепленный на листе электропроводящей бумаги, и который соединен со вторым вводом вольтметра с большим входным сопротивлением, зонд, соединенный с первым контактом переключателя на два положения, индикаторная катушка, витки которой охватывают длинный соленоид под планшетом первый вывод ее соединен со вторым вводом вольтметра с большим входным сопротивлением, а второй вывод - со вторым контактом переключателя на два положения.

На фиг.1 изображен прототип; на фиг.2 - общий вид предлагаемой установки; на фиг.3-7 - чертежи, поясняющие принцип ее работы.

Предлагаемая установка (фиг.2) содержит: 1 - длинный соленоид; 2 - планшет; 3 - генератор гармонического напряжения; 4 - лист электропроводящей бумаги; 5 - набор разнообразных лекал из диэлектрика с отверстиями и криволинейными кромками с разметкой; 6 - используемое из набора лекало; 7 - фиксатор положения используемого лекала; 8 -индикаторная катушка; 9 - вольтметр с большим входным сопротивлением; 10 - зонд; 11 - неподвижный контакт; 12 - переключатель на два положения.

Рассмотрим теоретические положения, которые легли в основу предлагаемой установки. Пусть лист электропроводящей бумаги имеет отверстие, в которое вставлен длинный соленоид, питаемый переменным током. Изменяющееся во времени в длинном соленоиде магнитное поле возбуждает в окружающем пространстве вихревое электрическое поле. На фиг.3 показано плоское вихревое электрическое поле длинного соленоида. Пунктирные линии изображают электрическое поле, а сплошные линии изопотенциальные линии. Под действием вихревого электрического поля в электропроводящей бумаге течет индукционный ток. Таким образом, в вихревом электрическом поле циркуляция вектора к вдоль замкнутой кривой равна электродвижущей силе, возникающей в проводящем контуре , совпадающим с этой кривой:

Из фиг.3 видно, что напряженность вихревого электрического поля одинакова во всех точках замкнутого кругового контура L, а вектор направлен по касательной к окружности с центром в точке 0, и совпадает с вектором . Тогда циркуляция вектора по замкнутому контуру L.

Сопоставляя выражения (1) и (2) получим, что напряженность электрического поля на расстоянии R от оси соленоида 0 определяется по следующему выражению:

Зная величину Е в электропроводящей бумаге, можно вычислить плотность тока j, определяемую законом Ома в дифференциальной форме, j=σE, а также удельную мощность тока Pуд, определяемую законом Джоуля-Ленца в дифференциальной форме: Pуд=σЕ2, где σ - удельная электрическая проводимость электропроводящей бумаги.

Для изменяющегося по гармоническому закону электрического поля с частотой ν можно определить плотность тока смещения в электропроводящей бумаге jсм=2πνε0E, где ε0 - электрическая постоянная.

Если использовать два одинарных зонда (фиг.3), один из которых установлен в произвольно выбранной «нулевой» точке (НТ), то можно построить несколько изопотенциальных линий (сплошные линии). Перемещая другой зонд (З) вокруг длинного соленоида по листу электропроводящей бумаги в одном направлении, будем наблюдать только увеличение потенциала и, обойдя вокруг длинного соленоида, обнаружим, что потенциал нулевой точки отличен от нуля. Так как в этом случае оба зонда касаются друг друга и соединительные провода образуют замкнутый виток, сцепленный с длинным соленоидом, то очевидно (фиг.4), что найденный потенциал будет равен циркуляции вектора по контуру, окружающему отверстие в листе: φ=ε. При дальнейшем перемещении зонда в том же направлении характер изменения потенциала сохраняется, причем, соединительный провод навивается на длинный соленоид. Сделав два полных оборота, обнаружим в нулевой точке потенциал 2ε. Соединительные провода в этом случае образуют вторичную обмотку из двух витков и т.д. Обнаруживается неоднозначность потенциала.

Для устранения этой неоднозначности потенциала нужно провести условную перегородку в виде меридиональной линии ОА, жирной линии, берущей начало на оси длинного соленоида и уходящей в бесконечность (фиг.3), то его плоское вихревое электрическое поле можно описать с помощью однозначного потенциала. Приняв за ноль значение потенциала на одной стороне условной перегородки (φ=0, фиг.3) будем иметь на другой ее стороне максимальный потенциал, φmax=ε. Промежуточные значения потенциала φ определяется углом θ между соответствующей меридиональной линией и «нулевой» стороной условной перегородки: φ=εθ/2π. Изопотенциальные линии, проведенные с постоянным интервалом потенциала, образуют при пересечении с силовыми линями сетку потенциального поля.

На предлагаемой установке циркуляция вектора определяем численным методом для разнообразных контуров обхода и сравниваем с циркуляцией вектора , полученной по точной формуле (1). Получим приближенную формулу для определения циркуляции вектора . В точке А (фиг.5) контура обхода L вектор направлен по касательной к силовой линии (пунктирная линия). Вектор контура направлен из точки А по направлению обхода контура L, тогда циркуляция вектора :

где El=Ecosα - проекция вектора на направление вектора α - угол между векторами и Проекция вектора на направление определяется по следующей формуле:

Перемещаясь в электрическом поле по замкнутому контуру L на одной части контура угол α≤90º, тогда проекция El будет положительной, а на другой части контура L при угле α>90º, проекция El будет отрицательной. Поэтому в формуле (5) знак минус можно опустить. Подставляя формулу (5) в выражение (4), получим:

Для определения циркуляции вектора численным методом заменим точную формулу (6) ее приближением:

где ∆φi - разность потенциалов между соседними точками: i=1, 2, …, N.

Таким образом, для определения циркуляции вектора численным методом необходимо измерить в N точках произвольного контура L потенциалы φi. Затем вычислить разности потенциалов между соседними точками и подставить их в формулу (7).

Для определения циркуляции вектора Е вихревого электрического поля численным методом по приближенной формуле (7) применяем заранее изготовленный, набор разнообразных лекал 5 из диэлектрика (например, из картона) с отверстием равным радиусу r длинного соленоида и криволинейными кромками, имитирующими разнообразные замкнутые контуры обхода L (фиг.2). Замкнутый контур лекал может либо охватывать длинный соленоид 1, либо не охватывать его.

Рассмотрим, как изготавливаются лекала для первого случая, когда контур L охватывает длинный соленоид. Пусть необходимо сделать N точек на контуре обхода L (фиг.6), тогда окружность вокруг отверстия в лекале делим на N равных углов θ. От центра отверстия проводим N радиальных линий до пересечения с контуром L и делаем цифровую разметку. Далее тонкую пластину из диэлектрика обрезаем по контуру обхода L или в полученных точках делаем отверстия для того, чтобы зондом 10 можно было касаться листа электропроводящей бумаги 4. Разность потенциалов ∆φi между соседними точками определяем по следующим формулам: ∆φ11; ∆φiii-1; i=2, 3, …, N. Затем подставляем их в формулу (7).

Если контур обхода L не охватывает длинный соленоид, то лекала изготовляются следующим образом. Пусть необходимо сделать N точек на контуре обхода L (фиг.7), тогда изображаем угол θB, под которым виден контур обхода L с центра отверстия в лекале. Делим угол θB на N/2 равных углов θ. От центра отверстия проводим (N/2+1) радиальных линий до пересечения с контуром L и делаем цифровую разметку. Разности потенциалов ∆φi между соседними точками определяем в этом случае по следующим формулам: ∆φ11N; ∆φiii-1; i=2, 3, …, N. Затем подставляем их в формулу (7).

Рассмотрим работу предлагаемой установки для исследования вихревого электрического поля (фиг.2). Она содержит длинный соленоид 1, установленный перпендикулярно в центре планшета 2 таким образом, что первая половина его находится над планшетом, а другая половина - под ним. Обмотка длинного соленоида 1 соединена с выходными клеммами генератора гармонического напряжения 3. По гармоническому закону будет изменяться магнитное поле в длинном соленоиде 1, которое, в свою очередь, возбуждает в окружающем пространстве вихревое электрическое поле. Индикатором этого поля является лист электропроводящей бумаги 4, уложенный на планшете 2, а через отверстие в нем проходит длинный соленоид 1.

В состав предлагаемой установки входит набор разнообразных лекал из диэлектрика с отверстиями и криволинейными кромками с разметкой 5. Эти лекала моделируют различные замкнутые контуры L на листе электропроводящей бумаги 4.

Используемое из набора лекало 6 может быть насажено через его отверстие на длинный соленоид 1 и уложено на лист электропроводящей бумаги 4. Замкнутый контур используемого из набора лекала 6 может либо охватывать длинный соленоид 1, либо не охватывать его. Для того чтобы используемое из набора лекало 6 не смещалось во время эксперимента, применяем фиксатор положения используемого лекала 7.

Индикатором вихревого электрического поля на предлагаемой установке является также индикаторная катушка 8. Она расположена под планшетом 1, а витки ее охватывают длинный соленоид 1. Циркуляция вектора вихревого электрического поля по замкнутому контуру L равна ЭДС электромагнитной индукции, наведенной в одном витке, и определяется по точной формуле (1). Несколько витков в индикаторной катушке позволяет получить усредненное, более точное значение ЭДС в одном витке. Измерение ЭДС, наведенной в индикаторной катушке 8, осуществляем с помощью вольтметра с большим входным сопротивлением 9.

При эксперименте используем численный метод определения циркуляции вектора по приближенной формуле (7). Для этого в окрестности точек на используемом из набора лекале 6 с помощью зонда 10 и вольтметра с большим входным сопротивлением 9 определяем на листе электропроводящей бумаги 4 потенциалы φi; i=1, 2, …, N. Замкнутая цепь, в которую включен вольтметр 9, обеспечивается неподвижным контактом 11. Он закреплен на листе электропроводящей бумаги 4, соединен с первым выводом индикаторной катушки 8 и вторым вводом вольтметра с большим входным сопротивлением 9.

Переключение вольтметра с большим входным сопротивлением 9 с индикаторной катушки 8 на зонд 10 осуществляем переключателем на два положения 12, общий контакт которого соединен с первым вводом вольтметра с большим входным сопротивлением 9. Первый контакт переключателя 12 соединен с зондом 10, а второй контакт переключателя - со вторым выводом индикаторной катушки 8.

Выберем из набора разнообразных лекал 5 лекало с контуром L в виде окружности. Установим переключатель 12 в первое положение (зонд-«3»), тогда вольтметр с большим входным сопротивлением 9 подключается к неподвижному контакту 11 и зонду 10. Прикасаясь зондом 10 в окрестности обозначенных точек кругового контура, измеряем потенциалы φi; i=1, 2, …, N и строим на документальном листе бумаги эквипотенциальные линии (сплошные линии). Перемещая зонд 10 по всем точкам кругового контура, убеждаемся в возрастании потенциала. В положении зонда 10, как показано на фиг.4, измеряем вольтметром с большим сопротивлением 9 величину ЭДС, наводимую в одном витке. Это и есть циркуляция вектора , определяемая по точной формуле (1). По формуле (3) определяем напряженность электрического поля и строим на том же документальном листе бумаги силовые линии (пунктирные линии).

В первом положении переключателя на два положения 12 (зонд-«3») определяем численным методом по формуле (7) циркуляцию вектора Е по различным контурам охватывающим и не охватывающим длинный соленоид.

Во втором положении переключателя на два положения 12 (индикаторная катушка - «ИК») вольтметр с большим входным сопротивлением 9 подключается к индикаторной катушке 8, на которой определяется значение ЭДС, индуцируемая в со витках. Результат разделим на со витков получим усредненное, более точное значение циркуляции вектора вдоль произвольного контура L, охватываемому длинный соленоид. Сравним результаты циркуляции вектора , полученные по приближенной и точной формулам.

Технико-экономическая эффективность предлагаемой установки заключается в том, что она обеспечивает повышение качества усвоения обучающими основных законов и явлений физики.

Предлагаемая установка реализована на кафедре физики ВКА им. А.Ф. Можайского и используется в учебном процессе на лабораторных работах по электричеству.

Установка для исследования вихревого электрического поля, содержащая вольтметр с большим входным сопротивлением, планшет, генератор гармонического напряжения и длинный соленоид, установленный перпендикулярно в центре планшета таким образом, что первая половина его находится над планшетом, а другая половина - под ним, и обмотка которого соединена с выходными клеммами генератора гармонического напряжения, отличающаяся тем, что в нее введены лист электропроводящей бумаги, уложенный на планшете, а через отверстие в нем проходит длинный соленоид, набор разнообразных лекал из диэлектрика с отверстиями и криволинейными кромками, причем, используемое лекало из набора лекал через его отверстие насажено на длинный соленоид и уложено на лист электропроводящей бумаги, фиксатор положения используемого лекала, переключатель на два положения, общий контакт которого соединен с первым вводом вольтметра с большим входным сопротивлением, неподвижный контакт, закрепленный на листе электропроводящей бумаги, и который соединен со вторым вводом вольтметра с большим входным сопротивлением, зонд, соединенный с первым контактом переключателя на два положения, индикаторная катушка, витки которой охватывают длинный соленоид под планшетом, первый вывод ее соединен со вторым вводом вольтметра с большим входным сопротивлением, а второй вывод - со вторым контактом переключателя на два положения.
УСТАНОВКА ДЛЯ ИССЛЕДОВАНИЯ ВИХРЕВОГО ЭЛЕКТРИЧЕСКОГО ПОЛЯ
УСТАНОВКА ДЛЯ ИССЛЕДОВАНИЯ ВИХРЕВОГО ЭЛЕКТРИЧЕСКОГО ПОЛЯ
УСТАНОВКА ДЛЯ ИССЛЕДОВАНИЯ ВИХРЕВОГО ЭЛЕКТРИЧЕСКОГО ПОЛЯ
УСТАНОВКА ДЛЯ ИССЛЕДОВАНИЯ ВИХРЕВОГО ЭЛЕКТРИЧЕСКОГО ПОЛЯ
УСТАНОВКА ДЛЯ ИССЛЕДОВАНИЯ ВИХРЕВОГО ЭЛЕКТРИЧЕСКОГО ПОЛЯ
УСТАНОВКА ДЛЯ ИССЛЕДОВАНИЯ ВИХРЕВОГО ЭЛЕКТРИЧЕСКОГО ПОЛЯ
УСТАНОВКА ДЛЯ ИССЛЕДОВАНИЯ ВИХРЕВОГО ЭЛЕКТРИЧЕСКОГО ПОЛЯ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 10.
20.04.2013
№216.012.37eb

Установка для исследования стационарного электрического поля

Изобретение относится к учебным приборам и может быть использовано в лабораторном практикуме по курсу физики для получения и углубления знаний физических законов и явлений. В установку входит: переключатель на два положения для подключения к вольтметру с большим входным сопротивлением или...
Тип: Изобретение
Номер охранного документа: 0002479868
Дата охранного документа: 20.04.2013
27.08.2013
№216.012.659d

Установка для исследования электромагнитного поля электрических колец гельмгольца

Предложена установка для исследования электромагнитного поля электрических колец Гельмгольца. Установка содержит электрические кольца Гельмгольца, выводы обмоток которых соединены с выходными клеммами генератора звуковой частоты. Кольца установлены на подставке, на которой расположена шкала с...
Тип: Изобретение
Номер охранного документа: 0002491650
Дата охранного документа: 27.08.2013
10.01.2014
№216.012.95b3

Установка для исследования электростатического поля

Изобретение относится к учебным приборам и может быть использовано в лабораторном практикуме по курсу физики для получения и углубления знаний физических законов и явлений. Установка содержит зонд, потенциометр, соединенный двумя концевыми контактами с источником постоянного тока. Два электрода...
Тип: Изобретение
Номер охранного документа: 0002504017
Дата охранного документа: 10.01.2014
20.02.2014
№216.012.a393

Установка для исследования электростатического поля методом моделирования

Изобретение относится к учебным приборам и может быть использовано в лабораторном практикуме по физике. На противоположных сторонах прямоугольного листа электропроводящей бумаги (ЭПБ) установлены два электрода прямоугольной формы. Первый электрод соединен с движком потенциометра, а второй - с...
Тип: Изобретение
Номер охранного документа: 0002507590
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a394

Установка для исследования пассивных элементов электрических цепей

Изобретение относится к учебным приборам по физике. Малые листы электропроводящей бумаги создают сопротивления R/2, R, 2R и уложены на планшете. Пары электродов прямоугольного сечения для каждого малого листа электропроводящей бумаги установлены на противоположных сторонах этих листов....
Тип: Изобретение
Номер охранного документа: 0002507591
Дата охранного документа: 20.02.2014
25.08.2017
№217.015.9f4f

Установка для моделирования движения жидкости или газа на электропроводящей бумаге

Изобретение относится к учебным приборам и может быть использовано в лабораторном практикуме по курсу физики. Съемный прямоугольный лист электропроводящей бумаги без выреза или произвольный лист из набора съемных прямоугольных листов электропроводящей бумаги с вырезами по форме поперечного...
Тип: Изобретение
Номер охранного документа: 0002606335
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.bec4

Установка для моделирования электростатического поля на границе раздела двух диэлектриков

Изобретение относится к учебным приборам и может быть использовано в лабораторном практикуме по курсу физики. На прямоугольном планшете уложены два прямоугольных листа и два фигурных листа электропроводящей бумаги (ЭПБ) с прямолинейной границей между двумя областями с различными удельными...
Тип: Изобретение
Номер охранного документа: 0002616915
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.d337

Установка для исследования электроёмкости проводников на модели из электропроводящей бумаги

Изобретение относится к учебным приборам и может быть использовано в лабораторном практикуме по физике. На прямоугольном планшете уложен лист электропроводящей бумаги (ЭПБ), снабженный прямоугольной системой координат в виде взаимно перпендикулярных линеек. На краю левой стороны листа ЭПБ...
Тип: Изобретение
Номер охранного документа: 0002621599
Дата охранного документа: 06.06.2017
13.02.2018
№218.016.2671

Установка для решения четвёртого уравнения максвелла

Изобретение относится к учебным приборам и может быть использовано в лабораторном практикуме по курсу физики. Установка содержит измеритель разности фаз, планшет, на котором установлена неподвижная катушка индуктивности, подключенная к генератору переменного тока, и подвижная катушка...
Тип: Изобретение
Номер охранного документа: 0002644099
Дата охранного документа: 07.02.2018
13.02.2018
№218.016.2699

Установка для решения третьего уравнения максвелла

Изобретение относится к учебным приборам и может быть использовано в лабораторном практикуме по курсу физики. Установка содержит: первый зонд; потенциометр, соединенный двумя концевыми контактами с источником постоянного тока; прямоугольный планшет; съемный проводник круглого сечения; два...
Тип: Изобретение
Номер охранного документа: 0002644098
Дата охранного документа: 07.02.2018
Показаны записи 1-5 из 5.
20.04.2013
№216.012.37eb

Установка для исследования стационарного электрического поля

Изобретение относится к учебным приборам и может быть использовано в лабораторном практикуме по курсу физики для получения и углубления знаний физических законов и явлений. В установку входит: переключатель на два положения для подключения к вольтметру с большим входным сопротивлением или...
Тип: Изобретение
Номер охранного документа: 0002479868
Дата охранного документа: 20.04.2013
27.08.2013
№216.012.659d

Установка для исследования электромагнитного поля электрических колец гельмгольца

Предложена установка для исследования электромагнитного поля электрических колец Гельмгольца. Установка содержит электрические кольца Гельмгольца, выводы обмоток которых соединены с выходными клеммами генератора звуковой частоты. Кольца установлены на подставке, на которой расположена шкала с...
Тип: Изобретение
Номер охранного документа: 0002491650
Дата охранного документа: 27.08.2013
10.01.2014
№216.012.95b3

Установка для исследования электростатического поля

Изобретение относится к учебным приборам и может быть использовано в лабораторном практикуме по курсу физики для получения и углубления знаний физических законов и явлений. Установка содержит зонд, потенциометр, соединенный двумя концевыми контактами с источником постоянного тока. Два электрода...
Тип: Изобретение
Номер охранного документа: 0002504017
Дата охранного документа: 10.01.2014
20.02.2014
№216.012.a393

Установка для исследования электростатического поля методом моделирования

Изобретение относится к учебным приборам и может быть использовано в лабораторном практикуме по физике. На противоположных сторонах прямоугольного листа электропроводящей бумаги (ЭПБ) установлены два электрода прямоугольной формы. Первый электрод соединен с движком потенциометра, а второй - с...
Тип: Изобретение
Номер охранного документа: 0002507590
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a394

Установка для исследования пассивных элементов электрических цепей

Изобретение относится к учебным приборам по физике. Малые листы электропроводящей бумаги создают сопротивления R/2, R, 2R и уложены на планшете. Пары электродов прямоугольного сечения для каждого малого листа электропроводящей бумаги установлены на противоположных сторонах этих листов....
Тип: Изобретение
Номер охранного документа: 0002507591
Дата охранного документа: 20.02.2014
+ добавить свой РИД