×
10.01.2014
216.012.950f

Результат интеллектуальной деятельности: ЭЛЕКТРОНАСОСНЫЙ АГРЕГАТ ГОРИЗОНТАЛЬНОГО ТИПА

Вид РИД

Изобретение

№ охранного документа
0002503853
Дата охранного документа
10.01.2014
Аннотация: Изобретение относится к насосостроению, а именно к пульповым горизонтальным электронасосным агрегатам. Агрегат содержит электродвигатель, несоосно установленный с центробежным насосом. Насос и электродвигатель установлены в двух уровнях. Корпус насоса имеет ходовую и проточную части. Проточная часть включает всасывающий патрубок, проточную полость с рабочим колесом и спиральный отвод, сообщенный с напорным патрубком. Рабочее колесо выполнено с многозаходной системой лопаток с угловой закруткой постоянного или переменного радиуса кривизны. Лопатки разделены диффузорными межлопаточными каналами. Активный объем динамического заполнения совокупности межлопаточных каналов включает возможность выброса на проток за один оборот рабочего колеса (30-600)×10 м/об перекачиваемой жидкой среды. Полость проточной части корпуса насоса содержит тыльную стенку, которая выполнена в виде бронедиска, а боковая стенка полости образует спиральный отвод. Напорный патрубок выполнен диффузорным с превышением площади поперечного сечения на выходе в 1,2÷5,6 раза относительно аналогичной площади на входе в упомянутый патрубок. Изобретение направлено на повышение ресурса, надежности работы электронасосного агрегата и эффективности перекачивания абразивных жидких сред агрегатом. 14 з.п. ф-лы, 5 ил.

Изобретение относится к насосостроению, а именно, к конструкциям пульповых электронасосных агрегатов горизонтального типа, предназначенных для перекачивания различных абразивных жидкостей с твердыми включениями размером до 8 мм.

Известен центробежный насос для перекачивания абразивных жидкостей, содержащий корпус с отводом, имеющим периферийную стенку и сопряженные с ней боковые переднюю и заднюю стенки, перпендикулярные оси рабочего колеса, размещенного в корпусе. Рабочее колесо выполнено с постоянной шириной меридионального сечения, а периферийная стенка отвода выполнена наклонной внутрь отвода в сторону задней стенки (RU 1247582 С, опубл. 27.01.1995).

Известен центробежный горизонтальный насос, содержащий корпус с входным и напорным патрубками, рабочее колесо одностороннего входа, расположенное на валу, опирающемся на подшипники. Насос содержит направляющий аппарат, а рабочее колесо размещено между подшипниками (RU 97452 U1, опубл. 10.09.2012).

Известен центробежный насос, содержащий корпус с всасывающим и напорным отверстиями, рабочее колесо, электропривод. Рабочее колесо выполнено закрытого типа. Верхний и нижний диски рабочего колеса выполнены плоскими и размещены на расстоянии друг от друга. Лопатки рабочего колеса выполнены расширяющими от наружнего края дисков к центру. Поверхности лопаток в горизонтальном сечении представляют собой часть дуги окружности (RU 69586 U1, опубл. 27.12.2007).

Недостатками известных решений являются повышенные сложность конструкции, материалоемкость и относительно невысокая эффективность работы насоса вследствие повышенных энергозатрат, снижающих КПД перекачивания жидкой среды и неоптимальной диффузорности межлопаточных каналов рабочего колеса и отвода.

Задача настоящего изобретения заключается в вариантной разработке электронасосного агрегата с центробежным насосом, наделенным повышенными ресурсом, долговечностью, надежностью и эффективностью перекачивания жидких сред с высоким содержанием твердых частиц.

Поставленная задача решается тем, что электронасосный агрегат горизонтального типа, согласно изобретению, содержит электродвигатель содержит электродвигатель с валом ротора, имеющего консольный конец с возможностью крепления устройства передачи крутящего момента на несоосно установленный с ним центробежный насос, имеющий корпус с валом ротора, снабженным с двух сторон консольными концами, на одном из которых установлено рабочее колесо, а другой предназначен для крепления устройства передачи крутящего момента на рабочее колесо, при этом насос и электродвигатель установлены в двух уровнях, а корпус насоса имеет ходовую и проточную часть, последняя из которых включает расположенные по потоку всасывающий патрубок, проточную полость с размещенным в ней упомянутым рабочим колесом и спиральный отвод, сообщенный с напорным патрубком, причем рабочее колесо выполнено в виде крыльчатки с многозаходной системой лопаток с угловой закруткой, выполненной с постоянным или переменным радиусом кривизны в проекции на плоскость, нормальную к оси вала, лопатки разделены межлопаточными каналами, диффузорно расширяющимися в направлении от оси вала к периферии, причем активный объем динамического заполнения совокупности межлопаточных каналов вариантно включает возможность выброса на проток за один оборот рабочего колеса (30÷600)×10-5 м3/об перекачиваемой жидкой среды, кроме того упомянутая полость проточной части корпуса насоса содержит тыльную стенку, которая выполнена в виде бронедиска, а боковая стенка упомянутой полости образует спиральный отвод, кроме того напорный патрубок выполнен диффузорным с превышением площади поперечного сечения на выходе в 1,2÷5,6 раза относительно аналогичной площади на входе в упомянутый патрубок.

При этом насос и электродвигатель могут быть установлены в двух уровнях с параллельным расположением осей, а устройство для передачи крутящего момента выполнено, предпочтительно, клино-ременным.

Электродвигатель может быть установлен над насосом.

Насос и электродвигатель могут быть установлены с однонаправленной ориентацией соединяемых консольных концов валов роторов, а устройство для передачи крутящего момента выполнено, предпочтительно, клино-ременным.

Вал ротора насоса может содержать объединяющую консольные концы ходовую часть, выполненную с участками с уступообразно дифференцированными диаметрами, при этом участок с наибольшим диаметром выполнен длиной, превышающей длину каждого из других участков, причем к уступообразным кольцевым границам указанного участка примыкают образующие упорный подшипниковый комплекс заключенные каждый в свой корпус, преимущественно, радиально-упорные подшипники, которыми упомянутый вал с возможностью вращения без осевых смещений подвижно прикреплен к ходовой части корпуса насоса, кроме того вал ротора насоса со стороны, примыкающей к проточной части, снабжен гидравлически непрозрачным, предпочтительно, сальниковым уплотнением

Рабочее колесо может быть выполнено в виде крыльчатки закрытого типа и содержит жестко установленные на валу основной и покрывной диски, между которыми расположены объединяющие их лопатки в количестве от 3 до 8.

Покрывной диск рабочего колеса может быть выполнен с заходной горловиной с радиусом, частично перекрывающим в проекции на упомянутую условную плоскость, нормальную к оси вала, заходные оконечности лопаток.

Покрывной и основной диски рабочего колеса могут быть снабжены с внешней стороны гидродинамическим уплотнением в виде импеллера.

Рабочее колесо может быть выполнено в виде крыльчатки открытого типа и содержит жестко установленный на валу диск с лопатками, количество которых принято от 3 до 8.

Напорный патрубок может быть выполнен с переменной конфигурацией по длине с переходом от упомянутой призматической на входе, в коническую с превышением площади поперечного сечения на выходе относительно площади, обеспечивающем при номинальных мощности электродвигателя 18÷60 кВт и числе оборотов рабочего колеса 1200÷1500 об/мин скорость потока на входе в упомянутый диффузор 1,5÷14,5 м/с и снижение скорости нагнетаемого потока на выходе из его канала в 1,2÷3,1 раза.

Проточная часть насоса может быть оснащена с заходной стороны всасывающим патрубком, преимущественно, с горизонтально ориентированной осью, имеющим устье, минимальная площадь проходного сечения которого принята не менее соответствующей площади заходной горловины покрывного диска рабочего колеса.

Конфигурация угловой закрутки каждой из лопаток рабочего колеса в проекции на условную плоскость, нормальную к оси вращения указанного колеса, может быть определена градиентом угловой закрутки медиальной оси лопатки, а, при необходимости, любой из граней лопатки, причем указанный градиент выражен отношением величины угла α между радиусом, проведенным через точку касания к вершине заходного конца лопатки, и касательной к любой точке на оси или соответственно боковой грани лопатки, отнесенной к разнице радиальных расстояний рассматриваемых точек от оси рабочего колеса, при этом среднее значение градиента угловой закрутки лопаток указанного рабочего колеса составляет 5÷50 рад/м.

Изменение площади проходного сечения по длине межлопаточного канала рабочего колеса от заходного до выходного сечения канала может быть определено градиентом диффузорного расширения межлопаточного канала рабочего колеса, который выражен отношением разности площадей заходного и текущего поперечных сечений в соответствующих точках медиальной оси канала к величине взаимного удаления по упомянутой оси текущего от заходного сечения и в варианте четырехлопастного рабочего колеса среднее значение градиента диффузорного расширения межлопаточного канала указанного рабочего колеса составляет 0,026÷0,7 м2/м.

Электронасосный агрегат может быть предназначен для перекачивания абразивных жидкостей от гидросмесей с включениями твердых абразивных частиц до пластовой воды и промышленных стоков - суспензий руд, пульпы, загрязненной технической воды, сырой нефти, нефте-, газоконденсатосодержащих гидросмесей с песком с плотностью до 2200 кг/м, с температурой от 3 до 80°С, водородным показателем до 10 рН и твердыми включениями в виде дискретных абразивных частиц до 8 мм, с микротвердостью до 9 ГПа и объемной концентрацией микрочастиц до 50% включительно.

Центробежный насос и комплектующий электродвигатель могут быть выполнены с возможностью подачи от 25 до 170 м3/ч с напором от 25 до 50 м, при этом электродвигатель принят асинхронным мощностью от 15 до 70 кВт, с обеспечением частоты вращения вала, передаваемой рабочему колесу, до 1500 об/мин.

Технический результат, достигаемый приведенной совокупностью признаков, состоит в вариантной разработке электронасосного агрегата с центробежным насосом, наделенным повышенными ресурсом, компактностью исполнения, надежностью и эффективностью перекачивания абразивных жидких сред с высоким процентным содержанием твердых частиц и динамическим воздействием последних на конструкции и материалы проточной части центробежного насоса.

Это достигают совокупностью разработанных в изобретении конструктивных решений и технологических параметров основных агрегатов, а именно, системы лопаток и межлопаточных каналов рабочего колеса, в том числе вариантно выполненного в виде крыльчатки закрытого или открытого типа с найденными в изобретении возможным количеством лопаток, конструктивного решения и формы спирального отвода и напорного патрубка, обеспечивающих в совокупности принятые в изобретении повышающие производительность и КПД насоса - эффективную диффузорность межлопаточных каналов и спирального отвода. Технический результат также достигаются предпочтительным расположением электродвигателя над насосом с передачей крутящего момента, преимущественно, устройством типа клино-ременной передачи. Технический результат выражается кроме того в повышенной износостойкости наиболее изнашиваемых частей проточной части предлагаемой конструкции насоса, в частности, за счет выполнения тыльной стенки корпуса проточной части в виде бронедиска разработанной в изобретении полифункциональной конструкции, обеспечивающей силовое сопряжение примыкающих к нему конструктивных частей корпуса насоса.

Сущность изобретения поясняется чертежами, где:

на фиг.1 изображен электронасосный агрегат, вид спереди;

на фиг.2 - электронасосный агрегат, вид сбоку;

на фиг.3 - конструктивная схема центробежного насоса, продольный разрез;

на фиг.4 - рабочее колесо центробежного насоса, в сборе;

на фиг.5 - конструкция рабочего колеса, поперечный разрез.

Электронасосный агрегат горизонтального типа содержит электродвигатель 1 с валом 2 ротора, имеющего консольный конец с возможностью крепления устройства 3 передачи крутящего момента на несоосно установленный с ним центробежный насос 4.

Центробежный насос 4 имеет корпус 5 с валом 6 ротора, снабженным с двух сторон консольными концами 7 и 8. На консольном конце 7 установлено рабочее колесо 9, а консольный конец 8 вала 6 ротора предназначен для крепления устройства 3 передачи крутящего момента на рабочее колесо 9. Насос 4 и электродвигатель 1 установлены в двух уровнях.

Корпус 5 насоса 4 имеет ходовую и проточную часть 10 и 11 соответственно. Проточная часть 11 включает расположенные по потоку всасывающий патрубок 12, проточную полость 13 с размещенным в ней рабочим колесом 9 и спиральный отвод 14, сообщенный с напорным патрубком 15.

Рабочее колесо 9 выполнено в виде крыльчатки и содержит многозаходную систему лопаток 16 с угловой закруткой, выполненной с постоянным или переменным радиусом кривизны в проекции на плоскость, нормальную к оси вала 6. Лопатки 16 разделены межлопаточными каналами 17, диффузорно расширяющимися в направлении от оси вала 6 к периферии. Активный объем динамического заполнения совокупности межлопаточных каналов 17 вариантно включает возможность выброса на проток за один оборот рабочего колеса (30÷600)×10-5 м3/об перекачиваемой жидкой среды.

Проточная полость 13 проточной части 11 корпуса 5 насоса 4 содержит тыльную стенку 18, которая выполнена в виде бронедиска. Боковая стенка 19 полости 11 образует спиральный отвод 14. Напорный патрубок 15 выполнен диффузорным с превышением площади поперечного сечения на выходе в 1,2÷5,6 раза относительно аналогичной площади на входе в упомянутый патрубок 15.

Насос 4 и электродвигатель 1 установлены в двух уровнях с параллельным расположением осей, а устройство 3 для передачи крутящего момента выполнено, предпочтительно, клино-ременным. Электродвигатель 1 установлен над насосом 4.

Насос 4 и электродвигатель 1 установлены с однонаправленной ориентацией соединяемых консольных концов валов 2 и 6 роторов, а устройство 3 для передачи крутящего момента выполнено, предпочтительно, клино-ременным.

Вал 6 ротора насоса 4 содержит объединяющую консольные концы 7, 8 ходовую часть 20, выполненную с участками с уступообразно дифференцированными диаметрами. Участок 21 с наибольшим диаметром выполнен длиной, превышающей длину каждого из других участков. К уступообразным кольцевым границам участка 21 примыкают образующие упорный подшипниковый комплекс заключенные каждый в свой корпус 22, преимущественно, радиально-упорные подшипники 23, которыми упомянутый вал 6 с возможностью вращения без осевых смещений подвижно прикреплен к ходовой части 20 корпуса 5 насоса 4. Вал 6 ротора насоса 4 со стороны, примыкающей к проточной части 11, снабжен гидравлически непрозрачным, предпочтительно, сальниковым уплотнением 24.

Рабочее колесо 9 выполнено в виде крыльчатки закрытого типа и содержит жестко установленные на валу 6 основной и покрывной диски 25 и 26 соответственно, между которыми расположены объединяющие их лопатки 16 в количестве от 3 до 8. Покрывной диск 26 рабочего колеса 9 выполнен с заходной горловиной 27 с радиусом, частично перекрывающим в проекции на упомянутую условную плоскость, нормальную к оси вала 6, заходные оконечности лопаток 16. Покрывной и основной диски 25 и 26 рабочего колеса 9 снабжены с внешней стороны гидродинамическим уплотнением в виде импеллера 28.

Рабочее колесо 9 вариантно выполнено в виде крыльчатки открытого типа (на чертежах не показано) и содержит жестко установленный на валу диск с лопатками, количество которых принято от 3 до 8.

Напорный патрубок 15 выполнен с переменной конфигурацией по длине с переходом от упомянутой призматической на входе в коническую с превышением площади поперечного сечения на выходе относительно площади, обеспечивающем при номинальных мощности электродвигателя 18÷60 кВт и числе оборотов рабочего колеса 1200÷1500 об/мин скорость потока на входе в упомянутый диффузор 1,5÷14,5 м/с и снижение скорости нагнетаемого потока на выходе из его канала в 1,2÷3,1 раза.

Проточная часть 11 насоса 4 оснащена с заходной стороны всасывающим патрубком 12, преимущественно, с горизонтально ориентированной осью, имеющим устье 29, минимальная площадь проходного сечения которого принята не менее соответствующей площади заходной горловины 27 покрывного диска 26 рабочего колеса 9.

Конфигурация угловой закрутки каждой из лопаток 16 рабочего колеса 9 в проекции на условную плоскость, нормальную к оси вращения указанного колеса, определена градиентом угловой закрутки медиальной оси лопатки, а, при необходимости, любой из граней лопатки. Указанный градиент выражен отношением величины угла α между радиусом, проведенным через точку касания к вершине заходного конца лопатки, и касательной к любой точке на оси или соответственно боковой грани лопатки, отнесенной к разнице радиальных расстояний рассматриваемых точек от оси рабочего колеса. Среднее значение градиента угловой закрутки лопаток 16 рабочего колеса 9 составляет 5÷50 рад/м.

Изменение площади проходного сечения по длине межлопаточного канала 17 рабочего колеса 9 от заходного до выходного сечения канала определено градиентом диффузорного расширения межлопаточного канала рабочего колеса. Указанный градиент выражен отношением разности площадей заходного и текущего поперечных сечений в соответствующих точках медиальной оси канала 17 к величине взаимного удаления по упомянутой оси текущего от заходного сечения. В варианте четырехлопастного рабочего колеса 9 среднее значение градиента диффузорного расширения межлопаточного канала 17 составляет 0,026÷0,7 м2/м.

Электронасосный агрегат предназначен для перекачивания абразивных жидкостей от гидросмесей с включениями твердых абразивных частиц до пластовой воды и промышленных стоков - суспензий руд, пульпы, загрязненной технической воды, сырой нефти, нефте-, газоконденсатосодержащих гидросмесей с песком с плотностью до 2200 кг/м, с температурой от 3 до 80°С водородным показателем до 10 рН и твердыми включениями в виде дискретных абразивных частиц до 8 мм, с микротвердостью до 9 ГПа и объемной концентрацией микрочастиц до 50% включительно.

Центробежный насос 4 и комплектующий электродвигатель 1 выполнены с возможностью подачи от 25 до 170 м3/ч с напором от 25 до 50 м. Электродвигатель 1 принят асинхронным мощностью от 15 до 70 кВт, с обеспечением частоты вращения вала, передаваемой рабочему колесу, до 1500 об/мин.

Работа предлагаемого электронасосного агрегата осуществляется следующим образом.

Присоединяют напорный и всасывающий трубопроводы (на чертежах не показано), а также трубопровод подачи затворной воды (на чертежах не показано) в узел сальникового уплотнения 24. Подключают питание к электродвигателю 1. Пуск насоса 4 производят в следующей последовательности: открывают подачу затворной воды к узлу сальникового уплотнения 24 вала 6. Открывают задвижку на всасывающем трубопроводе и заполняют насос 4 перекачиваемой жидкостью, осуществляют пуск электродвигателя 1. Затем регулируют давление и расход затворной воды, подаваемой в сальниковое уплотнение 24.

Перекачиваемая жидкая среда через всасывающий патрубок 12, попадая на вход во вращающееся центробежное рабочее колесо 9, перемещается от центра к периферии под действием центробежных сил и диффузного расширения в межлопаточных каналах 17 рабочего колеса 9, приобретая при этом кинетическую энергию и получая закрутку в направлении вращения рабочего колеса 9.

После выхода из рабочего колеса 9 поток переходит в диффузорный спиральный отвод 14, расширяющийся к напорному патрубку 15 в режиме соблюдения равенства скоростей потока на протяжении отвода 14. Из отвода 14 жидкая среда попадает в напорный патрубок 15, выполненный диффузорным со снижением скорости при прохождении в патрубке в 3,4 раза и одновременным переходом части кинетической энергии потока в потенциальную и поступает в трубопровод для транспортирования к следующему объекту.

Остановку агрегата производят в следующем порядке: закрывают задвижку на напорном трубопроводе, отключают электродвигатель 1, закрывают задвижку на всасывающем трубопроводе, отключают подвод затворной воды к сальниковому уплотнению 24. Во избежание запульповывания рабочего колеса 9 отстоем перекачиваемой жидкости, промывают проточную полость 13 насоса 4 чистой водой через штуцера на всасывающем и напорном трубопроводах.

Таким образом, за счет разработанных в изобретении конструктивных решений и технологических параметров основных агрегатов, а именно, компактного расположения электродвигателя над насосом, разработанной системы лопаток рабочего колеса, найденными в изобретении диапазоном количества лопаток, их конструктивного решения и формы, выполнения тыльной стенки корпуса проточной части в виде бронедиска, технического решения конструкции вала ротора, достигается компактность исполнения, повышаются ресурс, надежность и эффективность перекачивания жидких сред с содержанием твердых абразивных частиц и агрессивным динамическим воздействием последних на конструкции и материалы проточной части центробежного насоса.


ЭЛЕКТРОНАСОСНЫЙ АГРЕГАТ ГОРИЗОНТАЛЬНОГО ТИПА
ЭЛЕКТРОНАСОСНЫЙ АГРЕГАТ ГОРИЗОНТАЛЬНОГО ТИПА
ЭЛЕКТРОНАСОСНЫЙ АГРЕГАТ ГОРИЗОНТАЛЬНОГО ТИПА
ЭЛЕКТРОНАСОСНЫЙ АГРЕГАТ ГОРИЗОНТАЛЬНОГО ТИПА
ЭЛЕКТРОНАСОСНЫЙ АГРЕГАТ ГОРИЗОНТАЛЬНОГО ТИПА
Источник поступления информации: Роспатент

Показаны записи 141-150 из 159.
20.01.2018
№218.016.1b72

Механизм передачи крутящего момента агрегатам турбореактивного двигателя (трд), центральная коническая передача (цкп) трд, главная коническая шестерённая пара цкп трд, корпус цкп трд, ведущее зубчатое коническое колесо цкп, ведомое зубчатое коническое колесо цкп, узел цкп трд

Группа изобретений относится к области авиадвигателестроения. Единый механизм передачи крутящего момента агрегатам двухвального, двухконтурного авиационного ТРД, имеющего газодинамически связанные между собой соосные валы РВД и РНД, включает соединенные с РВД с возможностью передачи агрегатам...
Тип: Изобретение
Номер охранного документа: 0002636626
Дата охранного документа: 24.11.2017
17.02.2018
№218.016.2a88

Единый механизм передачи крутящего момента агрегатам газотурбинного двигателя (варианты)

Группа изобретений относится к области авиадвигателестроения, а именно к газотурбинным двигателям газоперекачивающего агрегата. Единый механизм передачи крутящего момента агрегатам двигателя включает газодинамически связанные между собой соосные валы РВД и РНД модуля газогенератора и вал ротора...
Тип: Изобретение
Номер охранного документа: 0002642955
Дата охранного документа: 29.01.2018
04.04.2018
№218.016.2ead

Единый механизм передачи крутящего момента агрегатам газотурбинного двигателя (варианты)

Группа изобретений относится к области авиадвигателестроения, а именно к газотурбинным двигателям газоперекачивающего агрегата. Единый механизм передачи крутящего момента агрегатам двигателя включает газодинамически связанные между собой соосные валы роторов высокого давления (РВД) и роторов...
Тип: Изобретение
Номер охранного документа: 0002644497
Дата охранного документа: 12.02.2018
09.06.2019
№219.017.7721

Технологическая линия для изготовления протяженных строительных конструкций и ригель, балка, колонна, изготовленные на этой технологической линии

Изобретение относится к области строительства, а именно к установкам для изготовления протяженных строительных конструкций с ненапрягаемой и напрягаемой арматурой, в том числе ригелей и балок, колонн, и конструкциям колонн, ригелей и балок, и может быть использовано при возведении жилых,...
Тип: Изобретение
Номер охранного документа: 0002288840
Дата охранного документа: 10.12.2006
09.06.2019
№219.017.7727

Способ изготовления протяженных строительных конструкций, протяженная строительная конструкция и колонна, изготовленные этим способом

Изобретение относится к области строительства, а именно к установкам для изготовления протяженных строительных конструкций с ненапрягаемой и напрягаемой арматурой, в том числе ригелей, полуригелей - технологических полуфабрикатов ригелей для возведения зданий с последующим омоноличиванием...
Тип: Изобретение
Номер охранного документа: 0002288839
Дата охранного документа: 10.12.2006
09.06.2019
№219.017.77a7

Здание и способ возведения зданий

Изобретение относится к области строительства и может быть использовано при возведении жилых, общественных и административных зданий и сооружений, а также при их восстановлении или реконструкции. Технический результат изобретения состоит в сокращении трудо- и материалозатрат и обеспечении...
Тип: Изобретение
Номер охранного документа: 0002293822
Дата охранного документа: 20.02.2007
09.06.2019
№219.017.77a9

Бетоноукладчик

Изобретение относится к области строительной техники и в частности к оборудованию для производства железобетонных изделий и конструкциям бетоноукладчиков. Бетоноукладчик, согласно изобретению, содержит систему электроснабжения, смонтированный на установленной с возможностью перемещения...
Тип: Изобретение
Номер охранного документа: 0002293653
Дата охранного документа: 20.02.2007
09.06.2019
№219.017.77bc

Способ изготовления строительных конструкций и строительные конструкции, изготовленные этим способом

Изобретение относится к области строительства, а именно к способам изготовления строительных конструкций с ненапрягаемой и напрягаемой арматурой, и может быть использовано при возведении жилых, общественных и административных зданий и сооружений, а также при их восстановлении или реконструкции....
Тип: Изобретение
Номер охранного документа: 0002292261
Дата охранного документа: 27.01.2007
09.06.2019
№219.017.77bf

Бетоноукладчик

Изобретение относится к области строительной техники, в частности к оборудованию для производства железобетонных изделий и конструкциям бетоноукладчиков. Бетоноукладчик, согласно изобретению, содержит гидросистему, смонтированный на установленной с возможностью перемещения пространственной раме...
Тип: Изобретение
Номер охранного документа: 0002292263
Дата охранного документа: 27.01.2007
09.06.2019
№219.017.77c1

Технологическая линия для изготовления протяженных строительных конструкций из твердеющего материала с армированием, ригель, балка и колонна, изготовленные на этой технологической линии

Изобретение относится к области строительства, а именно к установкам для изготовления протяженных строительных конструкций с ненапрягаемой и напрягаемой арматурой, в том числе ригелей и балок, колонн и конструкциям колонн, ригелей и балок, в том числе большепролетных, и может быть использовано...
Тип: Изобретение
Номер охранного документа: 0002292262
Дата охранного документа: 27.01.2007
Показаны записи 141-150 из 176.
20.01.2018
№218.016.15df

Коробка двигательных агрегатов (кда) турбореактивного двигателя, узел кда турбореактивного двигателя (варианты)

Группа изобретений относится к области авиадвигателестроения. Коробка двигательных агрегатов КДА ТРД содержит корпус и крышку. Корпус КДА размещен на промежуточном корпусе двигателя. На корпусе КДА смонтированы центробежный топливоподкачивающий насос, суфлер центробежный и насос плунжерный. Со...
Тип: Изобретение
Номер охранного документа: 0002635227
Дата охранного документа: 09.11.2017
20.01.2018
№218.016.1b72

Механизм передачи крутящего момента агрегатам турбореактивного двигателя (трд), центральная коническая передача (цкп) трд, главная коническая шестерённая пара цкп трд, корпус цкп трд, ведущее зубчатое коническое колесо цкп, ведомое зубчатое коническое колесо цкп, узел цкп трд

Группа изобретений относится к области авиадвигателестроения. Единый механизм передачи крутящего момента агрегатам двухвального, двухконтурного авиационного ТРД, имеющего газодинамически связанные между собой соосные валы РВД и РНД, включает соединенные с РВД с возможностью передачи агрегатам...
Тип: Изобретение
Номер охранного документа: 0002636626
Дата охранного документа: 24.11.2017
17.02.2018
№218.016.2a88

Единый механизм передачи крутящего момента агрегатам газотурбинного двигателя (варианты)

Группа изобретений относится к области авиадвигателестроения, а именно к газотурбинным двигателям газоперекачивающего агрегата. Единый механизм передачи крутящего момента агрегатам двигателя включает газодинамически связанные между собой соосные валы РВД и РНД модуля газогенератора и вал ротора...
Тип: Изобретение
Номер охранного документа: 0002642955
Дата охранного документа: 29.01.2018
04.04.2018
№218.016.2ead

Единый механизм передачи крутящего момента агрегатам газотурбинного двигателя (варианты)

Группа изобретений относится к области авиадвигателестроения, а именно к газотурбинным двигателям газоперекачивающего агрегата. Единый механизм передачи крутящего момента агрегатам двигателя включает газодинамически связанные между собой соосные валы роторов высокого давления (РВД) и роторов...
Тип: Изобретение
Номер охранного документа: 0002644497
Дата охранного документа: 12.02.2018
01.03.2019
№219.016.c8d9

Рабочее колесо осевой газовой турбины для кислородно-керосинового жидкостного ракетного двигателя

Предлагаемое изобретение относится к области турбостроения, к конструкциям неразъемных рабочих колес осевых газовых турбин, преимущественно турбонасосных агрегатов жидкостных ракетных двигателей. Рабочее колесо осевой газовой турбины кислородно-керосинового жидкостного ракетного двигателя...
Тип: Изобретение
Номер охранного документа: 0002272912
Дата охранного документа: 27.03.2006
08.04.2019
№219.016.fe67

Способ охлаждения ротора турбины высокого давления (твд) газотурбинного двигателя (гтд), ротор твд и лопатка ротора твд, охлаждаемые этим способом, узел аппарата закрутки воздуха ротора твд

Способ охлаждения ротора турбины высокого давления газотурбинного двигателя осуществляют путем того, что ротор охлаждают вторичным потоком воздуха из камеры сгорания газогенератора двигателя, имеющим температуру более низкую, чем температура первичного потока рабочего тела из жаровой трубы...
Тип: Изобретение
Номер охранного документа: 0002684298
Дата охранного документа: 05.04.2019
08.04.2019
№219.016.feba

Газоперекачивающий агрегат (гпа), тракт выхлопа гпа (варианты), выхлопная труба гпа и блок шумоглушения выхлопной трубы гпа

Группа изобретений относится к нефтегазовой области. Газоперекачивающий агрегат (ГПА) содержит последовательно сообщенные по рабочему телу тракт всасывания воздуха, газотурбинную установку с входным устройством для подачи воздуха из камеры всасывания воздуха на вход в ГТД, тракт выхлопа...
Тип: Изобретение
Номер охранного документа: 0002684297
Дата охранного документа: 05.04.2019
10.04.2019
№219.016.fedf

Ротор турбины низкого давления (тнд) газотурбинного двигателя (варианты), узел соединения вала ротора с диском тнд, тракт воздушного охлаждения ротора тнд и аппарат подачи воздуха на охлаждение лопаток ротора тнд

Группа изобретений относится к области авиадвигателестроения. Ротор ТНД двигателя содержит вал РНД с цапфой и рабочее колесо ТНД, включающее диск и лопаточный венец с системой рабочих лопаток. Диск рабочего колеса снабжен аппаратом подачи воздуха на охлаждение лопаток, содержащим напорное...
Тип: Изобретение
Номер охранного документа: 0002684355
Дата охранного документа: 08.04.2019
29.04.2019
№219.017.3e44

Тракт воздушного охлаждения лопатки соплового аппарата турбины высокого давления газотурбинного двигателя (варианты)

Тракт воздушного охлаждения сопловой лопатки выполнен трехканальным. Сопловая лопатка выполнена полой, с аэродинамическим профилем и наделена радиальной перегородкой, разделяющей внутренний объем пера на переднюю и заднюю полости, снабженные дефлекторами. Входной участок первого канала тракта...
Тип: Изобретение
Номер охранного документа: 0002686430
Дата охранного документа: 25.04.2019
29.04.2019
№219.017.469f

Технологический комплекс системы разделения суспензий руд

Изобретение относится к технике фракционного разделения суспензий руд. Технологический комплекс содержит блок гидроциклонов с распределителем суспензий в виде пульпы, электронасосный агрегат, всасывающий и напорный пульпопроводы, транспортер подачи грубоизмельченной руды, мельницу тонкого...
Тип: Изобретение
Номер охранного документа: 0002464330
Дата охранного документа: 20.10.2012
+ добавить свой РИД