×
10.01.2014
216.012.94e4

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ УГЛОВ ИСКРИВЛЕНИЯ СКВАЖИНЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной навигационной аппаратуре, предназначенной для контроля пространственного положения траектории ствола скважин. Техническим результатом расширение функциональных возможностей способа за счет проведения измерений в обсаженной и не обсаженной скважинах, повышение точности реализующего его устройства за счет совместного применения феррозондов и гироскопов, а также компенсации дрейфа последних. Предложен способ определения углов искривления скважины, включающий измерение проекций напряженности магнитного поля феррозондами, измерение проекций ускорения свободного падения акселерометрами, измерение проекций угловой скорости Земли гироскопами на оси инклинометра, преобразование первичных сигналов и определение пространственной ориентации ствола скважины. При этом оценивают погрешность гироскопических датчиков с привлечением информации от спутниковой навигационной системы и корректируют величину дрейфа гироскопических датчиков с учетом информации от феррозондов. Причем при отсутствии магнитных аномалий вычисляют углы ориентации по сигналам с феррозондов и акселерометров, а при работе в средах с аномальными магнитными свойствами или обсаженных стальными трубами вычисляют параметры ориентации скважины по сигналам с гироскопов и акселерометров. 2 ил.
Основные результаты: Способ определения углов искривления скважины, включающий измерение проекций напряженности магнитного поля феррозондами, измерение проекций ускорения свободного падения акселерометрами, измерение проекций угловой скорости Земли гироскопами на оси инклинометра, преобразование первичных сигналов и определение пространственной ориентации ствола скважины, отличающийся тем, что оценивают погрешность гироскопических датчиков с привлечением информации от спутниковой навигационной системы, корректируют величину дрейфа гироскопических датчиков с учетом информации от феррозондов, при отсутствии магнитных аномалий вычисляют углы ориентации по сигналам с феррозондов и акселерометров, при работе в средах с аномальными магнитными свойствами или в средах, обсаженных стальными трубами, вычисляют параметры ориентации скважины по сигналам с гироскопов и акселерометров.

Изобретение относится к измерительной навигационной аппаратуре, предназначенной для контроля пространственного положения траектории ствола скважин.

Известен способ измерения зенитных и азимутальных углов (RU 2231638 C1, МПК7 E21B 47/02, 27.06.2004). Устройство содержит три ортогонально закрепленных феррозонда и три акселерометра. По показаниям феррозондов определяют компоненты полного вектора геомагнитного поля Земли, а по показаниям акселерометров определяют компоненты полного вектора силы тяжести. По полученным данным вычисляют текущие значения азимутального и зенитного углов. Далее производят сравнение текущего замера со средним значением четырех замеров, отстающих от текущего на четыре записи, относительно допуска. Если текущий замер находится за пределами допуска, то его заменяют на среднее.

Известно также устройство для определения углов искривления скважины и положения отклонителя при бурении (RU 2184845 C1, МПК7 E21B 47/022, 10.07.2002). Устройство содержит генератор возбуждения, датчик азимута, выполненный в виде трех ортогональных феррозондов, жестко закрепленных в корпусе, датчик угла установки отклонителя, три акселерометра, оси чувствительности которых взаимно ортогональны, два коммутатора, блок управления, аналого-цифровой преобразователь (АЦП). Сигналы с феррозондов и акселерометров подаются через коммутатор на АЦП, и далее в оперативную память персональной ЭВМ. После окончания полного цикла измерения и записи в памяти ЭВМ измерения накапливаются, осредняются и после алгоритмической обработки и вычислений высвечиваются на дисплее ЭВМ в виде цифровой, графической и текстовой информации.

Недостатком этих устройств является невозможность определения параметров ориентации скважин на участках с аномальными магнитными свойствами или обсаженных стальными трубами.

Наиболее близким техническим решением к заявленному изобретению относится способ и устройство для определения углов искривления скважины (RU 2166084 C1, МПК7 E21B 47/022, 27.04.2001), содержащее блоки датчиков азимута на основе трех ортогональных феррозондов, неподвижно закрепленных относительно корпуса устройства, и датчиков угла отклонения в виде трех ортогональных акселерометров, аналого-цифровой преобразователь, блок коммутаторов, датчик температуры и давления, блок телеметрии и блок гироскопических датчиков. Способ определения углов ориентации скважины включает измерение проекций напряженности магнитного поля феррозондами, измерение проекций ускорения свободного падения акселерометрами, измерение проекций угловой скорости Земли гироскопами на оси, связанные с корпусом инклинометра, последующее преобразование первичных сигналов и определение пространственной ориентации ствола скважины. Блок гироскопических датчиков используется для измерения географического азимута при наклонно-направленном и горизонтальном бурении из обсаженной скважины.

Недостаток прототипа заключается в следующем. Включение в состав измерительного модуля трех или двух одноосных гироскопических датчиков приводит к увеличению габаритов и стоимости инклинометрической системы, что в свою очередь ограничивает возможность применения измерительной системы при бурении скважин малого диаметра. При этом стоимость самого устройства увеличивается как минимум на 20-30%.

Задачей настоящего изобретения является расширение функциональных возможностей способа за счет проведения измерений в обсаженной и не обсаженной скважинах, повышение точности реализующего его устройства за счет совместного применения феррозондов и гироскопов, а также компенсации дрейфа последних.

Поставленная задача решается, а технический результат достигается, следующим образом.

В способе определения углов искривления скважины, включающем измерение проекций напряженности магнитного поля феррозондами, измерение проекций ускорения свободного падения акселерометрами, измерение проекций угловой скорости Земли гироскопами на оси инклинометра, преобразование первичных сигналов и определение пространственной ориентации ствола скважины, согласно изобретению оценивают погрешность гироскопических датчиков с привлечением информации от спутниковой навигационной системы, корректируют величину дрейфа гироскопических датчиков с учетом информации от феррозондов, при отсутствии магнитных аномалий вычисляют углы ориентации по сигналам с феррозондов и акселерометров, при работе в средах с аномальными магнитными свойствами или обсаженных стальными трубами вычисляют параметры ориентации скважины по сигналам с гироскопов и акселерометров.

В устройстве, реализующем предложенный способ, используются микромеханические гироскопы (ММГ). Такие датчики обладают хорошими эксплуатационными, габаритными и стоимостными показателями. При этом непрерывный режим работы блока гироскопических датчиков позволяет проводить измерения в обсаженных и не обсаженных скважинах, при прохождении аномальных участков и отказе блока феррозондов.

Для уменьшения величины дрейфа ММГ и обеспечения требуемой точности реализованы операции начальной оценки погрешности и последующая коррекция гироскопических датчиков. Оценить начальное состояние погрешностей ММГ можно при помощи внешнего курсоуказателя. В качестве которого предлагается использовать спутниковую навигационную систему (СНС), например GPS или Глонасс [Первовский B.C., Биндер Я.И. Азимутальная выставка гироинклинометров для скважин произвольной ориентации с использованием GPS-компаса // Научно-технический вестник Санкт-Петербургского государственного университета информационных технологий, механики и оптики. 2009. №57. С.41-46.]. Компенсацию дрейфа предлагается осуществлять, используя информацию от феррозондовых датчиков.

Сущность изобретения поясняется чертежами. На фиг.1 представлена структурная схема устройства для определения углов искривления скважины. На фиг.2 представлена структурная схема блока обработки информации.

Скважный модуль содержит блоки датчиков первичной информации, состоящие их трех взаимно ортогональных феррозондов 1, микромеханических гироскопов 2 и акселерометров 3, выходы которых соединены с входом коммутатора 4, АЦП 5, вход которого соединен с коммутатором, а выход с блоком связи с наземным устройством (блок телеметрии) 6, блок питания 7 датчиков и электронных схем (фиг.1). Наземное устройство состоит из последовательно соединенных блока приема и дешифрации информации 8, блока обработки информации 9, устройства отображения информации 10 (дисплей), а также приемника СНС 11, соединенного с блоком обработки информации 9.

Блок обработки информации 9, состоит из блоков коррекции 12, выходы которых соединены с вычислителем 13. Выходы вычислителя 13 соединены с фильтром Калмана 14, с блоком сравнения 15 и с запоминающим устройством 16 (фиг.2). Также блок обработки информации включает блок управления 17, на вход которого поступает информация с феррозондов 1 и гироскопов 2, с блока сравнения 15, а выход соединен с вычислителем 13, фильтром Калмана 14 и приемником СНС 11.

Устройство, реализующее предложенный способ, работает следующим образом. В устье скважины происходит начальная оценка погрешности ММГ. Для этого блок управления 17 подает управляющий сигнал на приемник СНС 11 и на вычислитель 13, где происходит вычисление географического азимута по показаниям сигналов с блока микромеханических гироскопов 2, блока акселерометров 3 и приемника СНС 11. В фильтр Калмана 14 поступает начальная оценка погрешности ММГ и далее информация о поправке погрешности передается в блок коррекции сигналов гироскопов 12.

Далее блок управления 17 подает управляющий сигнал на вычислитель 13, где происходит вычисление азимута по показаниям сигналов с блоков первичных датчиков 1-3. Здесь же происходит расчет угла магнитного наклонения и оценка величины расхождения рассчитанного значения азимута по показаниям с феррозондов и гироскопов. В запоминающем устройстве 16 фиксируются полученные опорные значения разности сигналов и угла магнитного наклонения.

В процессе измерений сигналы с блока феррозондов 1, микромеханических гироскопов 2 и акселерометров 3, через коммутатор 4 поступают в АЦП 5 и далее через блок связи 6 по каналу связи передаются в блок приема и дешифрации информации 8. Обработанная информация поступает на вход блока обработки информации 9. Показания с первичных датчиков 1-3 после коррекции в блоке 12 поступают в вычислитель 13. Здесь происходит расчет углов ориентации и оценка величины расхождения сигналов. Далее полученные значения передаются в блок сравнения 15, где сравниваются с опорными значениями, хранящимися в запоминающем устройстве 16. Если в результате сравнения полученные значения совпадают с опорными, то на экран оператора 10 выводится значение азимута, рассчитанное по результатам измерений феррозондов и акселерометров. Одновременно результат сравнения из блока 15 подается на блок управления 17. Далее в фильтре Калмана 14 по сигналу с блока управления 17 осуществляется оценка погрешности ММГ с учетом информации от феррозондов 1 и последующая коррекция сигналов гироскопов в блоке 12. Если в результате сравнения рассчитанные значения не совпадают с опорными, то на экран оператора 10 выводится значение азимута, рассчитанное по результатам измерений гироскопами и акселерометрами. Одновременно блок управления 17 подает сигнал на фильтр Калмана 14 проводить коррекцию гироскопических датчиков без привлечения информации от феррозондов 1.

Предложенный способ реализуется следующим образом.

Скважный прибор устанавливается в устье скважины. Проекции магнитного поля Земли hi, ускорения свободного падения gi и угловой скорости Земли ωi, измеренные соответственно феррозондами, акселерометрами и гироскопами в виде аналоговых сигналов поступают на коммутатор. Далее происходит преобразование аналоговых сигналов в цифровой вид в АЦП и передача в наземное устройство. В наземном устройстве происходит вычисление углов ориентации по формулам:

;

;

;

,

где αh, αω - азимут, рассчитанный по сигналам с феррозондов и гироскопов,

θ - зенитный угол,

φ - визирный угол,

d - угол магнитного склонения.

Эта начальная процедура позволяет оценить величину расхождения сигналов между феррозондами и гироскопами, а так же рассчитать значение угла магнитного наклонения, которое в устье и в стволе скважины одинаково:

Δα=αhω;

ϑ=arctg(h1·g1+h2·g2+h3·g3).

В процессе измерений в не обсаженной скважине величина расхождения сигналов Δα и угол магнитного наклонения в сохраняют свое значение, и в результате сравнения с опорным значением на экран оператора выводится значение азимута, рассчитанное по результатам измерений феррозондов и акселерометров.

При работе в обсаженной скважине, или на участках с аномальными магнитными свойствами возникают отклонения допустимой величины расхождения сигналов Да и угла магнитного наклонения ϑ. На экране оператора отображается значение азимута, рассчитанное по результатам измерений гироскопических датчиков и акселерометров.

Отклонение величины расхождения Δα от опорного значения может быть также вызвано дрейфом гироскопических датчиков. Таким образом, для реализации предложенного способа в устройство введен дополнительный блок приема сигналов СНС и реализована процедура компенсации дрейфа.

В предложенном способе начальная оценка погрешности ММГ осуществляется с привлечением информации с приемника СНС, для компенсации дрейфа ММГ реализована процедура оптимальной фильтрации с привлечением информации от феррозондов. При этом коррекция ММГ по сигналам с феррозондов разрешена только в том случае, если величина расхождения сигналов и угол магнитного наклонения не отличаются от опорного значения, измеренного в устье скважины.

Итак, заявляемое изобретение позволяет расширить функциональные возможности способа за счет проведения измерений в обсаженной и не обсаженной скважинах, повысить точность реализующего его устройства за счет совместного применения феррозондов и гироскопов, а также компенсации дрейфа последних.

Способ определения углов искривления скважины, включающий измерение проекций напряженности магнитного поля феррозондами, измерение проекций ускорения свободного падения акселерометрами, измерение проекций угловой скорости Земли гироскопами на оси инклинометра, преобразование первичных сигналов и определение пространственной ориентации ствола скважины, отличающийся тем, что оценивают погрешность гироскопических датчиков с привлечением информации от спутниковой навигационной системы, корректируют величину дрейфа гироскопических датчиков с учетом информации от феррозондов, при отсутствии магнитных аномалий вычисляют углы ориентации по сигналам с феррозондов и акселерометров, при работе в средах с аномальными магнитными свойствами или в средах, обсаженных стальными трубами, вычисляют параметры ориентации скважины по сигналам с гироскопов и акселерометров.
СПОСОБ ОПРЕДЕЛЕНИЯ УГЛОВ ИСКРИВЛЕНИЯ СКВАЖИНЫ
СПОСОБ ОПРЕДЕЛЕНИЯ УГЛОВ ИСКРИВЛЕНИЯ СКВАЖИНЫ
Источник поступления информации: Роспатент

Показаны записи 71-80 из 103.
20.10.2015
№216.013.82da

Экзоскелет с электропневматической системой управления

Изобретение относится к медицинской технике, а именно к экзоскелетам, и может быть использовано для осуществления ходьбы и реабилитации людей с нарушениями опорно-двигательного аппарата, а также в качестве универсальной транспортной платформы. Экзоскелет, состоящий из силового каркаса, который...
Тип: Изобретение
Номер охранного документа: 0002565101
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.870e

Устройство и способ полета в воздухе с возможностью вертикального взлета и посадки

Изобретение относится к области авиации, в частности к конструкциям и способам полета летательных аппаратов вертикального взлета и посадки. Способ полета включает создание воздушного потока, направленного сверху вниз, соосными движителями с лопатками, вращающимися в противоположные стороны....
Тип: Изобретение
Номер охранного документа: 0002566177
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.8755

Способ утилизации тепловой энергии, вырабатываемой электрической станцией

Способ включает дополнительный подогрев греющего агента перед вакуумным деаэратором в теплонасосной установке, в которой в качестве источника низкопотенциальной теплоты используют нагретую циркуляционную воду после конденсатора турбины. Теплоту нагретой циркуляционной воды утилизируют в...
Тип: Изобретение
Номер охранного документа: 0002566248
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.8758

Способ нагрева сетевой воды на тепловой электрической станции

Способ включает конденсацию отработавшего в турбине пара в конденсаторе. Основной конденсат турбины нагревают в подогревателях низкого давления паром регенеративных отборов, сетевую воду нагревают в сетевых подогревателях паром отопительных отборов турбины. При этом к вакуумному деаэратору...
Тип: Изобретение
Номер охранного документа: 0002566251
Дата охранного документа: 20.10.2015
27.10.2015
№216.013.8809

Универсальный электрошариковый первичный преобразователь расхода электропроводной жидкости

Изобретение относится к измерительной технике и может использоваться в расходометрии любых электропроводных жидкостей в химической, фармацевтической, пищевой и других областях промышленности, в жилищно-коммунальном хозяйстве в автоматических системах учета потребления холодной и горячей воды в...
Тип: Изобретение
Номер охранного документа: 0002566428
Дата охранного документа: 27.10.2015
10.11.2015
№216.013.8d2c

Трехфазное симметрирующее устройство и способ управления им

Изобретение относится к области электротехники и может быть использовано для устранения несимметрии токов и напряжений в трехфазных сетях. Технический результат - повышение быстродействия и энергетических показателей, улучшение электромагнитной совместимости. Трехфазное симметрирующее...
Тип: Изобретение
Номер охранного документа: 0002567747
Дата охранного документа: 10.11.2015
10.12.2015
№216.013.992e

Магнитопровод статора электромеханических преобразователей энергии с интенсивным охлаждением (варианты) и способ его изготовления

Изобретение относится к электротехнике и может быть использовано в электромеханических преобразователях энергии автономных объектов. Технический результат состоит в повышении надежности, энергоэффективности и минимизация тепловыделений, повышении кпд Диэлектрический остов статора выполнен в...
Тип: Изобретение
Номер охранного документа: 0002570834
Дата охранного документа: 10.12.2015
27.12.2015
№216.013.9da2

Способ настройки многоцелевого станка для пятикоординатной обработки

Изобретение относится к станкостроению и может быть использовано в многоцелевых станках, используемых для многокоординатной обработки. Способ заключается в том, что определяют координаты осей вращения рабочих органов станка, для чего осуществляют измерение координат произвольных точек...
Тип: Изобретение
Номер охранного документа: 0002571984
Дата охранного документа: 27.12.2015
27.12.2015
№216.013.9dab

Способ деформационно-термической обработки объемных полуфабрикатов из al-cu-mg сплавов

Изобретение относится к области металлургии, в частности к термически упрочняемым сплавам на основе алюминия, а именно к способу деформационно-термической обработки высокопрочных сплавов системы Al-Cu-Mg, используемых в качестве конструкционных материалов для деталей авиакосмической техники и...
Тип: Изобретение
Номер охранного документа: 0002571993
Дата охранного документа: 27.12.2015
10.02.2016
№216.014.c32f

Способ линейной сварки трением

Изобретение может быть использовано при сварке блисков. На диске и лопатке формируют выступы с поверхностями контакта при сварке трением с необходимым технологическим припуском Р на периферии свариваемых деталей. Приводят лопатку в линейное колебание относительно диска в заданном направлении...
Тип: Изобретение
Номер охранного документа: 0002574566
Дата охранного документа: 10.02.2016
Показаны записи 71-80 из 115.
20.06.2015
№216.013.56c2

Способ повышения показателя чувствительности магниторезистивных датчиков

Изобретение относится к измерительной технике, представляет собой способ повышения показателя чувствительности магниторезистивных датчиков и предназначено для использования в магнитометрических информационно-измерительных системах. При реализации способа измерительный мост запитывают повышенным...
Тип: Изобретение
Номер охранного документа: 0002553740
Дата охранного документа: 20.06.2015
27.06.2015
№216.013.5909

Способ определения коэффициента извилистости русла реки

Изобретение относится к области гидрологии и может быть использовано при мониторинге, моделировании, количественной оценке водных ресурсов. Сущность: реку и ее притоки на цифровой топографической карте разбивают на квадраты размером δ. Вычисляют количество квадратов , покрывающих реку и каждый...
Тип: Изобретение
Номер охранного документа: 0002554334
Дата охранного документа: 27.06.2015
10.07.2015
№216.013.5bdc

Способ контроля местоположения и состояния контейнера с грузом

Изобретение относится к области мониторинга местоположения груза и может быть использовано для определения местоположения груза, транспортируемого железнодорожным транспортом. Способ включает в себя этапы: вычисление текущих координат, формирование и передачу в информационно-аналитический...
Тип: Изобретение
Номер охранного документа: 0002555057
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5c07

Роторная система магнитоэлектрической машины

Изобретение относится к энергомашиностроению и может быть использовано в автономных энергоустановках с высокоскоростными генераторами в летательных и космических аппаратах. Роторная система магнитоэлектрической машины содержит корпус турбинного блока, турбину на валу, установленном в...
Тип: Изобретение
Номер охранного документа: 0002555100
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.6086

Способ электролитно-плазменного удаления полимерных покрытий с поверхности пластинчатого торсина несущего винта вертолета

Изобретение относится к области гальванотехники и может быть использовано для удаления полимерных покрытий с поверхности деталей из легированных сталей, в частности из нержавеющих трип-сталей высокой прочности и пластичности, а также при восстановлении особо ответственных деталей летательных...
Тип: Изобретение
Номер охранного документа: 0002556251
Дата охранного документа: 10.07.2015
20.07.2015
№216.013.64ba

Способ разгрузки подшипников электромеханических преобразователей энергии

Изобретение относится к области энергомашиностроения и может быть использовано для разгрузки подшипниковых опор электромеханических преобразователей энергии. Способ разгрузки подшипников электромеханических преобразователей энергии заключается в том, что создают две разнонаправленные силы,...
Тип: Изобретение
Номер охранного документа: 0002557333
Дата охранного документа: 20.07.2015
27.07.2015
№216.013.67f3

Железнодорожный вагон с минимизацией центробежных сил, воздействующих на железнодорожный состав

Изобретение относится к области железнодорожного транспорта, в частности к подвеске железнодорожного вагона. Железнодорожный вагон содержит надрессорную балку, которая опирается через пружины рессорного подвешивания на боковые рамы и линейный электромеханический преобразователь энергии....
Тип: Изобретение
Номер охранного документа: 0002558164
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.688f

Способ упрочнения поверхности титановых сплавов в вакууме

Изобретение относится к области термической, химико-термической обработки и может быть использовано в машиностроении и других областях промышленности. Способ упрочнения поверхностей деталей из титановых сплавов включает азотирование с последующим отжигом. Азотирование деталей проводят в...
Тип: Изобретение
Номер охранного документа: 0002558320
Дата охранного документа: 27.07.2015
10.08.2015
№216.013.6bd6

Интеллектуальный бесконтактный мутномер

Использование: изобретение относится к области измерительной техники и может быть использовано для контроля мутности жидких дисперсных сред, экологического мониторинга, определения концентрации эмульсий и суспензий. Интеллектуальный бесконтактный мутномер содержит сосуд-стабилизатор с входным...
Тип: Изобретение
Номер охранного документа: 0002559164
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6d96

Способ защиты лопаток турбомашин из легированных сталей от эрозии и солевой коррозии

Изобретение относится к способам защиты лопаток турбомашин из легированных сталей от эрозии и солевой коррозии. Проводят подготовку поверхности пера лопатки под нанесение покрытия электролитно-плазменным полированием в электролите в виде 4 - 8% водного раствора сульфата аммония при напряжении...
Тип: Изобретение
Номер охранного документа: 0002559612
Дата охранного документа: 10.08.2015
+ добавить свой РИД