×
10.01.2014
216.012.94e4

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ УГЛОВ ИСКРИВЛЕНИЯ СКВАЖИНЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной навигационной аппаратуре, предназначенной для контроля пространственного положения траектории ствола скважин. Техническим результатом расширение функциональных возможностей способа за счет проведения измерений в обсаженной и не обсаженной скважинах, повышение точности реализующего его устройства за счет совместного применения феррозондов и гироскопов, а также компенсации дрейфа последних. Предложен способ определения углов искривления скважины, включающий измерение проекций напряженности магнитного поля феррозондами, измерение проекций ускорения свободного падения акселерометрами, измерение проекций угловой скорости Земли гироскопами на оси инклинометра, преобразование первичных сигналов и определение пространственной ориентации ствола скважины. При этом оценивают погрешность гироскопических датчиков с привлечением информации от спутниковой навигационной системы и корректируют величину дрейфа гироскопических датчиков с учетом информации от феррозондов. Причем при отсутствии магнитных аномалий вычисляют углы ориентации по сигналам с феррозондов и акселерометров, а при работе в средах с аномальными магнитными свойствами или обсаженных стальными трубами вычисляют параметры ориентации скважины по сигналам с гироскопов и акселерометров. 2 ил.
Основные результаты: Способ определения углов искривления скважины, включающий измерение проекций напряженности магнитного поля феррозондами, измерение проекций ускорения свободного падения акселерометрами, измерение проекций угловой скорости Земли гироскопами на оси инклинометра, преобразование первичных сигналов и определение пространственной ориентации ствола скважины, отличающийся тем, что оценивают погрешность гироскопических датчиков с привлечением информации от спутниковой навигационной системы, корректируют величину дрейфа гироскопических датчиков с учетом информации от феррозондов, при отсутствии магнитных аномалий вычисляют углы ориентации по сигналам с феррозондов и акселерометров, при работе в средах с аномальными магнитными свойствами или в средах, обсаженных стальными трубами, вычисляют параметры ориентации скважины по сигналам с гироскопов и акселерометров.

Изобретение относится к измерительной навигационной аппаратуре, предназначенной для контроля пространственного положения траектории ствола скважин.

Известен способ измерения зенитных и азимутальных углов (RU 2231638 C1, МПК7 E21B 47/02, 27.06.2004). Устройство содержит три ортогонально закрепленных феррозонда и три акселерометра. По показаниям феррозондов определяют компоненты полного вектора геомагнитного поля Земли, а по показаниям акселерометров определяют компоненты полного вектора силы тяжести. По полученным данным вычисляют текущие значения азимутального и зенитного углов. Далее производят сравнение текущего замера со средним значением четырех замеров, отстающих от текущего на четыре записи, относительно допуска. Если текущий замер находится за пределами допуска, то его заменяют на среднее.

Известно также устройство для определения углов искривления скважины и положения отклонителя при бурении (RU 2184845 C1, МПК7 E21B 47/022, 10.07.2002). Устройство содержит генератор возбуждения, датчик азимута, выполненный в виде трех ортогональных феррозондов, жестко закрепленных в корпусе, датчик угла установки отклонителя, три акселерометра, оси чувствительности которых взаимно ортогональны, два коммутатора, блок управления, аналого-цифровой преобразователь (АЦП). Сигналы с феррозондов и акселерометров подаются через коммутатор на АЦП, и далее в оперативную память персональной ЭВМ. После окончания полного цикла измерения и записи в памяти ЭВМ измерения накапливаются, осредняются и после алгоритмической обработки и вычислений высвечиваются на дисплее ЭВМ в виде цифровой, графической и текстовой информации.

Недостатком этих устройств является невозможность определения параметров ориентации скважин на участках с аномальными магнитными свойствами или обсаженных стальными трубами.

Наиболее близким техническим решением к заявленному изобретению относится способ и устройство для определения углов искривления скважины (RU 2166084 C1, МПК7 E21B 47/022, 27.04.2001), содержащее блоки датчиков азимута на основе трех ортогональных феррозондов, неподвижно закрепленных относительно корпуса устройства, и датчиков угла отклонения в виде трех ортогональных акселерометров, аналого-цифровой преобразователь, блок коммутаторов, датчик температуры и давления, блок телеметрии и блок гироскопических датчиков. Способ определения углов ориентации скважины включает измерение проекций напряженности магнитного поля феррозондами, измерение проекций ускорения свободного падения акселерометрами, измерение проекций угловой скорости Земли гироскопами на оси, связанные с корпусом инклинометра, последующее преобразование первичных сигналов и определение пространственной ориентации ствола скважины. Блок гироскопических датчиков используется для измерения географического азимута при наклонно-направленном и горизонтальном бурении из обсаженной скважины.

Недостаток прототипа заключается в следующем. Включение в состав измерительного модуля трех или двух одноосных гироскопических датчиков приводит к увеличению габаритов и стоимости инклинометрической системы, что в свою очередь ограничивает возможность применения измерительной системы при бурении скважин малого диаметра. При этом стоимость самого устройства увеличивается как минимум на 20-30%.

Задачей настоящего изобретения является расширение функциональных возможностей способа за счет проведения измерений в обсаженной и не обсаженной скважинах, повышение точности реализующего его устройства за счет совместного применения феррозондов и гироскопов, а также компенсации дрейфа последних.

Поставленная задача решается, а технический результат достигается, следующим образом.

В способе определения углов искривления скважины, включающем измерение проекций напряженности магнитного поля феррозондами, измерение проекций ускорения свободного падения акселерометрами, измерение проекций угловой скорости Земли гироскопами на оси инклинометра, преобразование первичных сигналов и определение пространственной ориентации ствола скважины, согласно изобретению оценивают погрешность гироскопических датчиков с привлечением информации от спутниковой навигационной системы, корректируют величину дрейфа гироскопических датчиков с учетом информации от феррозондов, при отсутствии магнитных аномалий вычисляют углы ориентации по сигналам с феррозондов и акселерометров, при работе в средах с аномальными магнитными свойствами или обсаженных стальными трубами вычисляют параметры ориентации скважины по сигналам с гироскопов и акселерометров.

В устройстве, реализующем предложенный способ, используются микромеханические гироскопы (ММГ). Такие датчики обладают хорошими эксплуатационными, габаритными и стоимостными показателями. При этом непрерывный режим работы блока гироскопических датчиков позволяет проводить измерения в обсаженных и не обсаженных скважинах, при прохождении аномальных участков и отказе блока феррозондов.

Для уменьшения величины дрейфа ММГ и обеспечения требуемой точности реализованы операции начальной оценки погрешности и последующая коррекция гироскопических датчиков. Оценить начальное состояние погрешностей ММГ можно при помощи внешнего курсоуказателя. В качестве которого предлагается использовать спутниковую навигационную систему (СНС), например GPS или Глонасс [Первовский B.C., Биндер Я.И. Азимутальная выставка гироинклинометров для скважин произвольной ориентации с использованием GPS-компаса // Научно-технический вестник Санкт-Петербургского государственного университета информационных технологий, механики и оптики. 2009. №57. С.41-46.]. Компенсацию дрейфа предлагается осуществлять, используя информацию от феррозондовых датчиков.

Сущность изобретения поясняется чертежами. На фиг.1 представлена структурная схема устройства для определения углов искривления скважины. На фиг.2 представлена структурная схема блока обработки информации.

Скважный модуль содержит блоки датчиков первичной информации, состоящие их трех взаимно ортогональных феррозондов 1, микромеханических гироскопов 2 и акселерометров 3, выходы которых соединены с входом коммутатора 4, АЦП 5, вход которого соединен с коммутатором, а выход с блоком связи с наземным устройством (блок телеметрии) 6, блок питания 7 датчиков и электронных схем (фиг.1). Наземное устройство состоит из последовательно соединенных блока приема и дешифрации информации 8, блока обработки информации 9, устройства отображения информации 10 (дисплей), а также приемника СНС 11, соединенного с блоком обработки информации 9.

Блок обработки информации 9, состоит из блоков коррекции 12, выходы которых соединены с вычислителем 13. Выходы вычислителя 13 соединены с фильтром Калмана 14, с блоком сравнения 15 и с запоминающим устройством 16 (фиг.2). Также блок обработки информации включает блок управления 17, на вход которого поступает информация с феррозондов 1 и гироскопов 2, с блока сравнения 15, а выход соединен с вычислителем 13, фильтром Калмана 14 и приемником СНС 11.

Устройство, реализующее предложенный способ, работает следующим образом. В устье скважины происходит начальная оценка погрешности ММГ. Для этого блок управления 17 подает управляющий сигнал на приемник СНС 11 и на вычислитель 13, где происходит вычисление географического азимута по показаниям сигналов с блока микромеханических гироскопов 2, блока акселерометров 3 и приемника СНС 11. В фильтр Калмана 14 поступает начальная оценка погрешности ММГ и далее информация о поправке погрешности передается в блок коррекции сигналов гироскопов 12.

Далее блок управления 17 подает управляющий сигнал на вычислитель 13, где происходит вычисление азимута по показаниям сигналов с блоков первичных датчиков 1-3. Здесь же происходит расчет угла магнитного наклонения и оценка величины расхождения рассчитанного значения азимута по показаниям с феррозондов и гироскопов. В запоминающем устройстве 16 фиксируются полученные опорные значения разности сигналов и угла магнитного наклонения.

В процессе измерений сигналы с блока феррозондов 1, микромеханических гироскопов 2 и акселерометров 3, через коммутатор 4 поступают в АЦП 5 и далее через блок связи 6 по каналу связи передаются в блок приема и дешифрации информации 8. Обработанная информация поступает на вход блока обработки информации 9. Показания с первичных датчиков 1-3 после коррекции в блоке 12 поступают в вычислитель 13. Здесь происходит расчет углов ориентации и оценка величины расхождения сигналов. Далее полученные значения передаются в блок сравнения 15, где сравниваются с опорными значениями, хранящимися в запоминающем устройстве 16. Если в результате сравнения полученные значения совпадают с опорными, то на экран оператора 10 выводится значение азимута, рассчитанное по результатам измерений феррозондов и акселерометров. Одновременно результат сравнения из блока 15 подается на блок управления 17. Далее в фильтре Калмана 14 по сигналу с блока управления 17 осуществляется оценка погрешности ММГ с учетом информации от феррозондов 1 и последующая коррекция сигналов гироскопов в блоке 12. Если в результате сравнения рассчитанные значения не совпадают с опорными, то на экран оператора 10 выводится значение азимута, рассчитанное по результатам измерений гироскопами и акселерометрами. Одновременно блок управления 17 подает сигнал на фильтр Калмана 14 проводить коррекцию гироскопических датчиков без привлечения информации от феррозондов 1.

Предложенный способ реализуется следующим образом.

Скважный прибор устанавливается в устье скважины. Проекции магнитного поля Земли hi, ускорения свободного падения gi и угловой скорости Земли ωi, измеренные соответственно феррозондами, акселерометрами и гироскопами в виде аналоговых сигналов поступают на коммутатор. Далее происходит преобразование аналоговых сигналов в цифровой вид в АЦП и передача в наземное устройство. В наземном устройстве происходит вычисление углов ориентации по формулам:

;

;

;

,

где αh, αω - азимут, рассчитанный по сигналам с феррозондов и гироскопов,

θ - зенитный угол,

φ - визирный угол,

d - угол магнитного склонения.

Эта начальная процедура позволяет оценить величину расхождения сигналов между феррозондами и гироскопами, а так же рассчитать значение угла магнитного наклонения, которое в устье и в стволе скважины одинаково:

Δα=αhω;

ϑ=arctg(h1·g1+h2·g2+h3·g3).

В процессе измерений в не обсаженной скважине величина расхождения сигналов Δα и угол магнитного наклонения в сохраняют свое значение, и в результате сравнения с опорным значением на экран оператора выводится значение азимута, рассчитанное по результатам измерений феррозондов и акселерометров.

При работе в обсаженной скважине, или на участках с аномальными магнитными свойствами возникают отклонения допустимой величины расхождения сигналов Да и угла магнитного наклонения ϑ. На экране оператора отображается значение азимута, рассчитанное по результатам измерений гироскопических датчиков и акселерометров.

Отклонение величины расхождения Δα от опорного значения может быть также вызвано дрейфом гироскопических датчиков. Таким образом, для реализации предложенного способа в устройство введен дополнительный блок приема сигналов СНС и реализована процедура компенсации дрейфа.

В предложенном способе начальная оценка погрешности ММГ осуществляется с привлечением информации с приемника СНС, для компенсации дрейфа ММГ реализована процедура оптимальной фильтрации с привлечением информации от феррозондов. При этом коррекция ММГ по сигналам с феррозондов разрешена только в том случае, если величина расхождения сигналов и угол магнитного наклонения не отличаются от опорного значения, измеренного в устье скважины.

Итак, заявляемое изобретение позволяет расширить функциональные возможности способа за счет проведения измерений в обсаженной и не обсаженной скважинах, повысить точность реализующего его устройства за счет совместного применения феррозондов и гироскопов, а также компенсации дрейфа последних.

Способ определения углов искривления скважины, включающий измерение проекций напряженности магнитного поля феррозондами, измерение проекций ускорения свободного падения акселерометрами, измерение проекций угловой скорости Земли гироскопами на оси инклинометра, преобразование первичных сигналов и определение пространственной ориентации ствола скважины, отличающийся тем, что оценивают погрешность гироскопических датчиков с привлечением информации от спутниковой навигационной системы, корректируют величину дрейфа гироскопических датчиков с учетом информации от феррозондов, при отсутствии магнитных аномалий вычисляют углы ориентации по сигналам с феррозондов и акселерометров, при работе в средах с аномальными магнитными свойствами или в средах, обсаженных стальными трубами, вычисляют параметры ориентации скважины по сигналам с гироскопов и акселерометров.
СПОСОБ ОПРЕДЕЛЕНИЯ УГЛОВ ИСКРИВЛЕНИЯ СКВАЖИНЫ
СПОСОБ ОПРЕДЕЛЕНИЯ УГЛОВ ИСКРИВЛЕНИЯ СКВАЖИНЫ
Источник поступления информации: Роспатент

Показаны записи 41-50 из 103.
20.03.2015
№216.013.33fc

Управляемое прецизионное регенеративное пороговое устройство

Изобретение относится к импульсной электронике и может использоваться в прецизионных время-импульсных преобразователях и генераторах сигналов двухтактного интегрирования. Технический результат заключается в увеличении крутизны фронтов выходных импульсов и повышении температурной стабильности...
Тип: Изобретение
Номер охранного документа: 0002544783
Дата охранного документа: 20.03.2015
10.04.2015
№216.013.3b8d

Аэродинамическое транспортное средство (варианты)

Изобретение относится к транспортным средствам. Аэродинамическое транспортное средство по первому варианту содержит компрессор, соединенный с магистралью, грузовую или пассажирскую платформу, электродвигатели, с возможностью управления углом поворота заслонками сопл и регулирования угла и силы...
Тип: Изобретение
Номер охранного документа: 0002546733
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3b95

Энергодвигательная установка для дирижабля

Изобретение относится к транспортным средствам для воздухоплавания. Энергодвигательная установка для дирижабля содержит корпус дирижабля, пропеллеры, соединенные с электродвигателями, энерговырабатывающую установку, электрически связанную с электродвигателями. Силовая установка выполнена в виде...
Тип: Изобретение
Номер охранного документа: 0002546741
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3e5a

Система на гибридных магнитных подшипниках

Изобретение относится к области электромашиностроения и может быть использовано в качестве подвеса ротора электрических машин. Технический результат: повышение срока службы, энергоэффективности системы. Система на магнитных подшипниках содержит вал, ротор, статор, установленный в рубашке...
Тип: Изобретение
Номер охранного документа: 0002547450
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3fc5

Вентильно-индукторный двигатель

Изобретение относится к области электромашиностроения и может быть использовано в качестве электродвигателя автономных объектов. Техническим результатом является повышение надежности, энергоэффективности и выходной мощности вентильно-индукторного двигателя. Вентильно-индукторный двигатель...
Тип: Изобретение
Номер охранного документа: 0002547813
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.40b7

Шариковый электронно-оптический первичный преобразователь расхода прозрачных жидкостей

Использование относится к измерительной технике и может использоваться для измерения расхода любых электропроводных и неэлектропроводных, агрессивных и токсичных, огне- и взрывоопасных жидкостей в химической, нефтеперерабатывающей, фармакологической и других отраслях промышленности. Узел съема...
Тип: Изобретение
Номер охранного документа: 0002548055
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.4119

Устройство трехкоординатных перемещений

Изобретение относится к электротехнике и робототехнике и может быть использовано как трехкоординатный двигатель различных узлов. Технический результат состоит в возможности бесконтактного перемещения упругих стержней под действием электрического тока и возможность точной уставки координат...
Тип: Изобретение
Номер охранного документа: 0002548163
Дата охранного документа: 20.04.2015
27.04.2015
№216.013.456c

Способ и устройство для определения характеристик и границы устойчивой работы ступени осевого компрессора в составе гтд

Изобретение относится к испытательным стендам для определения характеристик и границы устойчивой работы компрессора в составе газотурбинного двигателя. Для смещения рабочей точки по характеристике ступени компрессора к границе устойчивой работы необходимо ввести рабочее тело (воздух) в...
Тип: Изобретение
Номер охранного документа: 0002549276
Дата охранного документа: 27.04.2015
27.04.2015
№216.013.45c3

Способ торможения ротора электрической машины на магнитных подшипниках

Изобретение относится к области электротехники и может быть использовано для торможения ротора электромеханического преобразователя энергии на магнитных подшипниках. Технический результат - мгновенный останов ротора, а также возможность применения во всех типах электромеханических...
Тип: Изобретение
Номер охранного документа: 0002549363
Дата охранного документа: 27.04.2015
20.05.2015
№216.013.4c4b

Способ термообработки сварных соединений, полученных линейной сваркой трением

Изобретение может быть использовано для термической обработки сварных соединений, полученных линейной сваркой трением, в частности, соединения диска и лопаток блисков. Нагревают сварное соединение пропусканием через сварное соединение электрического тока до 10 кА при закреплении токоподводов с...
Тип: Изобретение
Номер охранного документа: 0002551045
Дата охранного документа: 20.05.2015
Показаны записи 41-50 из 115.
10.12.2014
№216.013.0da1

Способ локальной обработки материала с эффектом полого катода при ионном азотировании

Изобретение относится к области термической и химико-термической обработки и может быть использовано в машиностроении и других областях промышленности для поверхностного упрочнения материалов. Способ азотирования стальной детали в плазме тлеющего разряда включает размещение стальной детали и...
Тип: Изобретение
Номер охранного документа: 0002534906
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0da2

Способ локальной обработки материала при азотировании в тлеющем разряде

Изобретение относится к области термической и химико-термической обработки и может быть использовано в машиностроении и других областях промышленности для поверхностного упрочнения материалов. Способ азотирования стальной детали в плазме тлеющего разряда включает размещение стальной детали и...
Тип: Изобретение
Номер охранного документа: 0002534907
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0da4

Способ термомеханической обработки для повышения технологической пластичности объемных полуфабрикатов из al-cu-mg-ag сплавов

Изобретение относится к области металлургии, а именно к способу термомеханической обработки полуфабрикатов из Al-Cu-Mg-Ag сплавов для дальнейшей формовки из них объемных деталей сложной формы, применяемых в авиакосмической технике и транспортном машиностроении. Термомеханическая обработка...
Тип: Изобретение
Номер охранного документа: 0002534909
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0ef9

Способ определения критической температуры резания

Способ заключается в том, что проводят сокращенные испытания стойкости инструмента на различных скоростях резания, при которых не доводят инструмент до полного затупления, и строят графики зависимостей h=ƒ(l), где h - величина износа инструмента по задней поверхности; f(l) - функция от пути...
Тип: Изобретение
Номер охранного документа: 0002535250
Дата охранного документа: 10.12.2014
20.12.2014
№216.013.1157

Устройство для защиты покрытия сооружения от атмосферных воздействий

Изобретение может быть использовано для защиты покрытий мостов, эстакад и подобных сооружений, расположенных вблизи водоемов, от обледенения в холодное время года и размягчения в теплое. Технический результат: повышение эффективности устройства для защиты покрытия сооружения. Устройство...
Тип: Изобретение
Номер охранного документа: 0002535862
Дата охранного документа: 20.12.2014
10.01.2015
№216.013.179d

Способ определения массы сжиженного газа в сливном рукаве и устройство для его осуществления

Способ определения массы сжиженного газа, по которому измеряют температуру и давление в емкости, выпускают вещество из емкости и контролируют время истечения вещества из емкости через насадку и изменение давления в емкости. Массу вещества определяют по газодинамическим соотношениям. При этом...
Тип: Изобретение
Номер охранного документа: 0002537473
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1c4d

Способ оценки силы и коэффициента трения при холодной обработке металлов давлением и устройство для его реализации

Группа изобретений относится к обработке металлов давлением, а именно к оценке силы и коэффициента трения при холодной обработке металлов давлением. Представлен способ оценки параметров трения при холодной обработке металлов давлением, по которому протягивают через валки с заданным обжатием...
Тип: Изобретение
Номер охранного документа: 0002538673
Дата охранного документа: 10.01.2015
27.01.2015
№216.013.2032

Способ бессенсорного управления положением ротора в бесконтактных подшипниках

Изобретение относится к области энергомашиностроения, в частности к электромеханическим преобразователям энергии на бесконтактных подшипниках. Технический результат заключается в повышении точности управления и повышении надежности электрической машины с ротором на бесконтактных подшипниках....
Тип: Изобретение
Номер охранного документа: 0002539690
Дата охранного документа: 27.01.2015
10.02.2015
№216.013.223a

Гибридный магнитный подшипник с осевым управлением

Изобретение относится к области энергомашиностроения и может быть использовано для обеспечения бесконтактного вращения ротора электрических машин. Гибридный магнитный подшипник с осевым управлением содержит вал (1), корпус (2), радиальную магнитную опору, статор и ротор осевой электромагнитной...
Тип: Изобретение
Номер охранного документа: 0002540215
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.2252

Способ определения толщины покрытия в ходе процесса плазменно-электролитического оксидирования

Использование: для определения толщины покрытия в ходе процесса плазменно-электролитического оксидирования. Сущность изобретения заключается в том, что выполняют измерение амплитуды анодного импульсного поляризационного напряжения U, при этом определяют длительность τ спада напряжения до...
Тип: Изобретение
Номер охранного документа: 0002540239
Дата охранного документа: 10.02.2015
+ добавить свой РИД