×
10.01.2014
216.012.94e4

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ УГЛОВ ИСКРИВЛЕНИЯ СКВАЖИНЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной навигационной аппаратуре, предназначенной для контроля пространственного положения траектории ствола скважин. Техническим результатом расширение функциональных возможностей способа за счет проведения измерений в обсаженной и не обсаженной скважинах, повышение точности реализующего его устройства за счет совместного применения феррозондов и гироскопов, а также компенсации дрейфа последних. Предложен способ определения углов искривления скважины, включающий измерение проекций напряженности магнитного поля феррозондами, измерение проекций ускорения свободного падения акселерометрами, измерение проекций угловой скорости Земли гироскопами на оси инклинометра, преобразование первичных сигналов и определение пространственной ориентации ствола скважины. При этом оценивают погрешность гироскопических датчиков с привлечением информации от спутниковой навигационной системы и корректируют величину дрейфа гироскопических датчиков с учетом информации от феррозондов. Причем при отсутствии магнитных аномалий вычисляют углы ориентации по сигналам с феррозондов и акселерометров, а при работе в средах с аномальными магнитными свойствами или обсаженных стальными трубами вычисляют параметры ориентации скважины по сигналам с гироскопов и акселерометров. 2 ил.
Основные результаты: Способ определения углов искривления скважины, включающий измерение проекций напряженности магнитного поля феррозондами, измерение проекций ускорения свободного падения акселерометрами, измерение проекций угловой скорости Земли гироскопами на оси инклинометра, преобразование первичных сигналов и определение пространственной ориентации ствола скважины, отличающийся тем, что оценивают погрешность гироскопических датчиков с привлечением информации от спутниковой навигационной системы, корректируют величину дрейфа гироскопических датчиков с учетом информации от феррозондов, при отсутствии магнитных аномалий вычисляют углы ориентации по сигналам с феррозондов и акселерометров, при работе в средах с аномальными магнитными свойствами или в средах, обсаженных стальными трубами, вычисляют параметры ориентации скважины по сигналам с гироскопов и акселерометров.

Изобретение относится к измерительной навигационной аппаратуре, предназначенной для контроля пространственного положения траектории ствола скважин.

Известен способ измерения зенитных и азимутальных углов (RU 2231638 C1, МПК7 E21B 47/02, 27.06.2004). Устройство содержит три ортогонально закрепленных феррозонда и три акселерометра. По показаниям феррозондов определяют компоненты полного вектора геомагнитного поля Земли, а по показаниям акселерометров определяют компоненты полного вектора силы тяжести. По полученным данным вычисляют текущие значения азимутального и зенитного углов. Далее производят сравнение текущего замера со средним значением четырех замеров, отстающих от текущего на четыре записи, относительно допуска. Если текущий замер находится за пределами допуска, то его заменяют на среднее.

Известно также устройство для определения углов искривления скважины и положения отклонителя при бурении (RU 2184845 C1, МПК7 E21B 47/022, 10.07.2002). Устройство содержит генератор возбуждения, датчик азимута, выполненный в виде трех ортогональных феррозондов, жестко закрепленных в корпусе, датчик угла установки отклонителя, три акселерометра, оси чувствительности которых взаимно ортогональны, два коммутатора, блок управления, аналого-цифровой преобразователь (АЦП). Сигналы с феррозондов и акселерометров подаются через коммутатор на АЦП, и далее в оперативную память персональной ЭВМ. После окончания полного цикла измерения и записи в памяти ЭВМ измерения накапливаются, осредняются и после алгоритмической обработки и вычислений высвечиваются на дисплее ЭВМ в виде цифровой, графической и текстовой информации.

Недостатком этих устройств является невозможность определения параметров ориентации скважин на участках с аномальными магнитными свойствами или обсаженных стальными трубами.

Наиболее близким техническим решением к заявленному изобретению относится способ и устройство для определения углов искривления скважины (RU 2166084 C1, МПК7 E21B 47/022, 27.04.2001), содержащее блоки датчиков азимута на основе трех ортогональных феррозондов, неподвижно закрепленных относительно корпуса устройства, и датчиков угла отклонения в виде трех ортогональных акселерометров, аналого-цифровой преобразователь, блок коммутаторов, датчик температуры и давления, блок телеметрии и блок гироскопических датчиков. Способ определения углов ориентации скважины включает измерение проекций напряженности магнитного поля феррозондами, измерение проекций ускорения свободного падения акселерометрами, измерение проекций угловой скорости Земли гироскопами на оси, связанные с корпусом инклинометра, последующее преобразование первичных сигналов и определение пространственной ориентации ствола скважины. Блок гироскопических датчиков используется для измерения географического азимута при наклонно-направленном и горизонтальном бурении из обсаженной скважины.

Недостаток прототипа заключается в следующем. Включение в состав измерительного модуля трех или двух одноосных гироскопических датчиков приводит к увеличению габаритов и стоимости инклинометрической системы, что в свою очередь ограничивает возможность применения измерительной системы при бурении скважин малого диаметра. При этом стоимость самого устройства увеличивается как минимум на 20-30%.

Задачей настоящего изобретения является расширение функциональных возможностей способа за счет проведения измерений в обсаженной и не обсаженной скважинах, повышение точности реализующего его устройства за счет совместного применения феррозондов и гироскопов, а также компенсации дрейфа последних.

Поставленная задача решается, а технический результат достигается, следующим образом.

В способе определения углов искривления скважины, включающем измерение проекций напряженности магнитного поля феррозондами, измерение проекций ускорения свободного падения акселерометрами, измерение проекций угловой скорости Земли гироскопами на оси инклинометра, преобразование первичных сигналов и определение пространственной ориентации ствола скважины, согласно изобретению оценивают погрешность гироскопических датчиков с привлечением информации от спутниковой навигационной системы, корректируют величину дрейфа гироскопических датчиков с учетом информации от феррозондов, при отсутствии магнитных аномалий вычисляют углы ориентации по сигналам с феррозондов и акселерометров, при работе в средах с аномальными магнитными свойствами или обсаженных стальными трубами вычисляют параметры ориентации скважины по сигналам с гироскопов и акселерометров.

В устройстве, реализующем предложенный способ, используются микромеханические гироскопы (ММГ). Такие датчики обладают хорошими эксплуатационными, габаритными и стоимостными показателями. При этом непрерывный режим работы блока гироскопических датчиков позволяет проводить измерения в обсаженных и не обсаженных скважинах, при прохождении аномальных участков и отказе блока феррозондов.

Для уменьшения величины дрейфа ММГ и обеспечения требуемой точности реализованы операции начальной оценки погрешности и последующая коррекция гироскопических датчиков. Оценить начальное состояние погрешностей ММГ можно при помощи внешнего курсоуказателя. В качестве которого предлагается использовать спутниковую навигационную систему (СНС), например GPS или Глонасс [Первовский B.C., Биндер Я.И. Азимутальная выставка гироинклинометров для скважин произвольной ориентации с использованием GPS-компаса // Научно-технический вестник Санкт-Петербургского государственного университета информационных технологий, механики и оптики. 2009. №57. С.41-46.]. Компенсацию дрейфа предлагается осуществлять, используя информацию от феррозондовых датчиков.

Сущность изобретения поясняется чертежами. На фиг.1 представлена структурная схема устройства для определения углов искривления скважины. На фиг.2 представлена структурная схема блока обработки информации.

Скважный модуль содержит блоки датчиков первичной информации, состоящие их трех взаимно ортогональных феррозондов 1, микромеханических гироскопов 2 и акселерометров 3, выходы которых соединены с входом коммутатора 4, АЦП 5, вход которого соединен с коммутатором, а выход с блоком связи с наземным устройством (блок телеметрии) 6, блок питания 7 датчиков и электронных схем (фиг.1). Наземное устройство состоит из последовательно соединенных блока приема и дешифрации информации 8, блока обработки информации 9, устройства отображения информации 10 (дисплей), а также приемника СНС 11, соединенного с блоком обработки информации 9.

Блок обработки информации 9, состоит из блоков коррекции 12, выходы которых соединены с вычислителем 13. Выходы вычислителя 13 соединены с фильтром Калмана 14, с блоком сравнения 15 и с запоминающим устройством 16 (фиг.2). Также блок обработки информации включает блок управления 17, на вход которого поступает информация с феррозондов 1 и гироскопов 2, с блока сравнения 15, а выход соединен с вычислителем 13, фильтром Калмана 14 и приемником СНС 11.

Устройство, реализующее предложенный способ, работает следующим образом. В устье скважины происходит начальная оценка погрешности ММГ. Для этого блок управления 17 подает управляющий сигнал на приемник СНС 11 и на вычислитель 13, где происходит вычисление географического азимута по показаниям сигналов с блока микромеханических гироскопов 2, блока акселерометров 3 и приемника СНС 11. В фильтр Калмана 14 поступает начальная оценка погрешности ММГ и далее информация о поправке погрешности передается в блок коррекции сигналов гироскопов 12.

Далее блок управления 17 подает управляющий сигнал на вычислитель 13, где происходит вычисление азимута по показаниям сигналов с блоков первичных датчиков 1-3. Здесь же происходит расчет угла магнитного наклонения и оценка величины расхождения рассчитанного значения азимута по показаниям с феррозондов и гироскопов. В запоминающем устройстве 16 фиксируются полученные опорные значения разности сигналов и угла магнитного наклонения.

В процессе измерений сигналы с блока феррозондов 1, микромеханических гироскопов 2 и акселерометров 3, через коммутатор 4 поступают в АЦП 5 и далее через блок связи 6 по каналу связи передаются в блок приема и дешифрации информации 8. Обработанная информация поступает на вход блока обработки информации 9. Показания с первичных датчиков 1-3 после коррекции в блоке 12 поступают в вычислитель 13. Здесь происходит расчет углов ориентации и оценка величины расхождения сигналов. Далее полученные значения передаются в блок сравнения 15, где сравниваются с опорными значениями, хранящимися в запоминающем устройстве 16. Если в результате сравнения полученные значения совпадают с опорными, то на экран оператора 10 выводится значение азимута, рассчитанное по результатам измерений феррозондов и акселерометров. Одновременно результат сравнения из блока 15 подается на блок управления 17. Далее в фильтре Калмана 14 по сигналу с блока управления 17 осуществляется оценка погрешности ММГ с учетом информации от феррозондов 1 и последующая коррекция сигналов гироскопов в блоке 12. Если в результате сравнения рассчитанные значения не совпадают с опорными, то на экран оператора 10 выводится значение азимута, рассчитанное по результатам измерений гироскопами и акселерометрами. Одновременно блок управления 17 подает сигнал на фильтр Калмана 14 проводить коррекцию гироскопических датчиков без привлечения информации от феррозондов 1.

Предложенный способ реализуется следующим образом.

Скважный прибор устанавливается в устье скважины. Проекции магнитного поля Земли hi, ускорения свободного падения gi и угловой скорости Земли ωi, измеренные соответственно феррозондами, акселерометрами и гироскопами в виде аналоговых сигналов поступают на коммутатор. Далее происходит преобразование аналоговых сигналов в цифровой вид в АЦП и передача в наземное устройство. В наземном устройстве происходит вычисление углов ориентации по формулам:

;

;

;

,

где αh, αω - азимут, рассчитанный по сигналам с феррозондов и гироскопов,

θ - зенитный угол,

φ - визирный угол,

d - угол магнитного склонения.

Эта начальная процедура позволяет оценить величину расхождения сигналов между феррозондами и гироскопами, а так же рассчитать значение угла магнитного наклонения, которое в устье и в стволе скважины одинаково:

Δα=αhω;

ϑ=arctg(h1·g1+h2·g2+h3·g3).

В процессе измерений в не обсаженной скважине величина расхождения сигналов Δα и угол магнитного наклонения в сохраняют свое значение, и в результате сравнения с опорным значением на экран оператора выводится значение азимута, рассчитанное по результатам измерений феррозондов и акселерометров.

При работе в обсаженной скважине, или на участках с аномальными магнитными свойствами возникают отклонения допустимой величины расхождения сигналов Да и угла магнитного наклонения ϑ. На экране оператора отображается значение азимута, рассчитанное по результатам измерений гироскопических датчиков и акселерометров.

Отклонение величины расхождения Δα от опорного значения может быть также вызвано дрейфом гироскопических датчиков. Таким образом, для реализации предложенного способа в устройство введен дополнительный блок приема сигналов СНС и реализована процедура компенсации дрейфа.

В предложенном способе начальная оценка погрешности ММГ осуществляется с привлечением информации с приемника СНС, для компенсации дрейфа ММГ реализована процедура оптимальной фильтрации с привлечением информации от феррозондов. При этом коррекция ММГ по сигналам с феррозондов разрешена только в том случае, если величина расхождения сигналов и угол магнитного наклонения не отличаются от опорного значения, измеренного в устье скважины.

Итак, заявляемое изобретение позволяет расширить функциональные возможности способа за счет проведения измерений в обсаженной и не обсаженной скважинах, повысить точность реализующего его устройства за счет совместного применения феррозондов и гироскопов, а также компенсации дрейфа последних.

Способ определения углов искривления скважины, включающий измерение проекций напряженности магнитного поля феррозондами, измерение проекций ускорения свободного падения акселерометрами, измерение проекций угловой скорости Земли гироскопами на оси инклинометра, преобразование первичных сигналов и определение пространственной ориентации ствола скважины, отличающийся тем, что оценивают погрешность гироскопических датчиков с привлечением информации от спутниковой навигационной системы, корректируют величину дрейфа гироскопических датчиков с учетом информации от феррозондов, при отсутствии магнитных аномалий вычисляют углы ориентации по сигналам с феррозондов и акселерометров, при работе в средах с аномальными магнитными свойствами или в средах, обсаженных стальными трубами, вычисляют параметры ориентации скважины по сигналам с гироскопов и акселерометров.
СПОСОБ ОПРЕДЕЛЕНИЯ УГЛОВ ИСКРИВЛЕНИЯ СКВАЖИНЫ
СПОСОБ ОПРЕДЕЛЕНИЯ УГЛОВ ИСКРИВЛЕНИЯ СКВАЖИНЫ
Источник поступления информации: Роспатент

Показаны записи 31-40 из 103.
10.01.2015
№216.013.1c4d

Способ оценки силы и коэффициента трения при холодной обработке металлов давлением и устройство для его реализации

Группа изобретений относится к обработке металлов давлением, а именно к оценке силы и коэффициента трения при холодной обработке металлов давлением. Представлен способ оценки параметров трения при холодной обработке металлов давлением, по которому протягивают через валки с заданным обжатием...
Тип: Изобретение
Номер охранного документа: 0002538673
Дата охранного документа: 10.01.2015
27.01.2015
№216.013.2032

Способ бессенсорного управления положением ротора в бесконтактных подшипниках

Изобретение относится к области энергомашиностроения, в частности к электромеханическим преобразователям энергии на бесконтактных подшипниках. Технический результат заключается в повышении точности управления и повышении надежности электрической машины с ротором на бесконтактных подшипниках....
Тип: Изобретение
Номер охранного документа: 0002539690
Дата охранного документа: 27.01.2015
10.02.2015
№216.013.223a

Гибридный магнитный подшипник с осевым управлением

Изобретение относится к области энергомашиностроения и может быть использовано для обеспечения бесконтактного вращения ротора электрических машин. Гибридный магнитный подшипник с осевым управлением содержит вал (1), корпус (2), радиальную магнитную опору, статор и ротор осевой электромагнитной...
Тип: Изобретение
Номер охранного документа: 0002540215
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.2252

Способ определения толщины покрытия в ходе процесса плазменно-электролитического оксидирования

Использование: для определения толщины покрытия в ходе процесса плазменно-электролитического оксидирования. Сущность изобретения заключается в том, что выполняют измерение амплитуды анодного импульсного поляризационного напряжения U, при этом определяют длительность τ спада напряжения до...
Тип: Изобретение
Номер охранного документа: 0002540239
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.241b

Высокоскоростная электрическая машина с вертикальным валом

Изобретение относится к области энергомашиностроения и может быть использовано для обеспечения бесконтактного вращения ротора электрических машин. Технический результат: повышение надежности, энергоэффективности, силовых характеристик и жесткости гибридного магнитного подшипника, минимизация...
Тип: Изобретение
Номер охранного документа: 0002540696
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.2579

Плазменная полупроводниковая свеча зажигания

Плазменная полупроводниковая свеча зажигания содержит корпус с кольцевым боковым электродом, центральный электрод, концентрично закрепленный в корпусе через изолятор, и полупроводниковый элемент в виде кольца, соединенного с электродами. В свече выполнена полость, образованная рабочими...
Тип: Изобретение
Номер охранного документа: 0002541046
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.2641

Способ получения толстослойных износостойких покрытий методом микродугового оксидирования

Изобретение относится к области гальванотехники, а именно к электрохимической обработке поверхностей металлов и сплавов методом микродугового оксидирования (МДО), для создания толстослойных износостойких покрытий и может быть использовано для упрочнения деталей из алюминиевых сплавов объектов...
Тип: Изобретение
Номер охранного документа: 0002541246
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.27a7

Мобильный взлетно-посадочный комплекс

Изобретение относится к области авиационной техники, в частности к устройству взлетно-посадочных полос аэродрома. Мобильный взлетно-посадочный комплекс содержит n-грузовых автомобилей с гидравлическими упорами, выполненными в виде домкратов с цилиндрическими наконечниками. На каждом автомобиле...
Тип: Изобретение
Номер охранного документа: 0002541608
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2b83

Способ диагностирования электрической машины

Предложенное изобретение относится к электротехнике и предназначено для диагностирования статических и динамических эксцентриситетов в электрических машинах автономных объектов, как в процессе эксплуатации, так и в процессе испытаний, например авиационных генераторов. Согласно предложенному...
Тип: Изобретение
Номер охранного документа: 0002542596
Дата охранного документа: 20.02.2015
27.02.2015
№216.013.2c04

Волновая электростанция (варианты)

Изобретение относится к области электроэнергетики, в частности к установкам для преобразования энергии морских волн в электрическую энергию. Волновая электростанция содержит плавучий корпус, выполненный в виде цилиндра, в нижней части которого расположена рабочая камера с впускным и выпускными...
Тип: Изобретение
Номер охранного документа: 0002542736
Дата охранного документа: 27.02.2015
Показаны записи 31-40 из 115.
10.08.2014
№216.012.e751

Заготовка для изготовления полой лопатки турбомашины способом сверхпластической формовки

Изобретение относится к машиностроению, а именно к области изготовления полых лопаток авиационных двигателей способом сверхпластической формовки, и может быть использовано при изготовлении, например, полой вентиляторной лопатки турбомашины. Заготовка содержит формуемую и неформуемую части. По...
Тип: Изобретение
Номер охранного документа: 0002525010
Дата охранного документа: 10.08.2014
20.08.2014
№216.012.ea52

Электрическое устройство приготовления пищи (варианты)

Изобретение относится к электрическому устройству для приготовления пищи. Электрическое устройство приготовления пищи содержит кожух, колбу, размещенную в кожухе, ручку, крышку, металлический прижим. В колбе установлены два электрода, соединенные электрически с регулируемым источником питания,...
Тип: Изобретение
Номер охранного документа: 0002525794
Дата охранного документа: 20.08.2014
20.08.2014
№216.012.ea89

Автономное зарядное устройство

Изобретение относится к области первичных источников электроэнергии. Технический результат: возможность выработки электрической энергии при ходьбе, беге, дыхании и прочей активности поясничной и тазобедренных частей тела человека. Сущность изобретения в том, что пневматический привод выполнен...
Тип: Изобретение
Номер охранного документа: 0002525849
Дата охранного документа: 20.08.2014
20.08.2014
№216.012.ec0a

Способ комплексной оценки эффекта геомагнитной псевдобури

Изобретение относится к области геофизики и может быть использовано для комплексной оценки эффекта геомагнитной псевдобури - эффекта возникновения эквивалента геомагнитной вариации, наблюдаемого в объеме существования объекта в среде невозмущенного анизотропного геомагнитного поля, при...
Тип: Изобретение
Номер охранного документа: 0002526234
Дата охранного документа: 20.08.2014
10.09.2014
№216.012.f24c

Способ диагностики помпажа компрессора газотурбинного двигателя

Изобретение относится области двигателестроения и может быть использовано для надежного и своевременного диагностирования помпажа газотурбинного двигателя, и позволяет устранить неустойчивый режим работы компрессора путем оперативного воздействия на различные системы регулирования двигателя....
Тип: Изобретение
Номер охранного документа: 0002527850
Дата охранного документа: 10.09.2014
20.09.2014
№216.012.f5f0

Ветроэнергетическая установка

Изобретение относится к энергетике и может быть использовано в устройствах для преобразовании энергии текучих сред в электрическую. Ветроэнергетическая установка содержит рабочий орган, преобразователь энергии и устройство защиты от запредельных ветровых нагрузок. Рабочий орган выполнен в виде...
Тип: Изобретение
Номер охранного документа: 0002528793
Дата охранного документа: 20.09.2014
27.09.2014
№216.012.f6c1

Магнитогидродинамическое устройство (варианты)

Изобретение относится к электротехнике, к магнитной гидродинамике, к электромагнитным насосам и может быть использовано в металлургии, в ядерной и нетрадиционной энергетике, машиностроении, химической промышленности, а также в космической технике. Технический результат состоит в введении...
Тип: Изобретение
Номер охранного документа: 0002529006
Дата охранного документа: 27.09.2014
20.11.2014
№216.013.08d4

Намагничивающая установка (варианты)

Изобретение относится к электротехнике, к первичным источникам электроэнергии. Технический результат состоит в обеспечении полного промагничивания намагничиваемых элементов в радиальном направлении и повышении тем самым их магнитных характеристик. По первому варианту электромагнит выполнен в...
Тип: Изобретение
Номер охранного документа: 0002533661
Дата охранного документа: 20.11.2014
10.12.2014
№216.013.0cd0

Способ локальной обработки материала с эффектом полого катода при ионном азотировании

Изобретение относится к области термической и химико-термической обработки и может быть использовано в машиностроении и других областях промышленности, для поверхностного упрочнения материалов. Способ азотирования стальной детали в плазме тлеющего разряда включает катодное распыление, вакуумный...
Тип: Изобретение
Номер охранного документа: 0002534697
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0d0b

Высокоскоростная бесконтактная электрическая машина (варианты)

Изобретение относится к области электромашиностроения и может быть использовано в качестве источников электрической энергии автономных систем электроснабжения. Технический результат заключается в повышении надежности и энергоэффективности, а также в повышении выходной мощности бесконтактной...
Тип: Изобретение
Номер охранного документа: 0002534756
Дата охранного документа: 10.12.2014
+ добавить свой РИД