×
10.01.2014
216.012.94e4

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ УГЛОВ ИСКРИВЛЕНИЯ СКВАЖИНЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной навигационной аппаратуре, предназначенной для контроля пространственного положения траектории ствола скважин. Техническим результатом расширение функциональных возможностей способа за счет проведения измерений в обсаженной и не обсаженной скважинах, повышение точности реализующего его устройства за счет совместного применения феррозондов и гироскопов, а также компенсации дрейфа последних. Предложен способ определения углов искривления скважины, включающий измерение проекций напряженности магнитного поля феррозондами, измерение проекций ускорения свободного падения акселерометрами, измерение проекций угловой скорости Земли гироскопами на оси инклинометра, преобразование первичных сигналов и определение пространственной ориентации ствола скважины. При этом оценивают погрешность гироскопических датчиков с привлечением информации от спутниковой навигационной системы и корректируют величину дрейфа гироскопических датчиков с учетом информации от феррозондов. Причем при отсутствии магнитных аномалий вычисляют углы ориентации по сигналам с феррозондов и акселерометров, а при работе в средах с аномальными магнитными свойствами или обсаженных стальными трубами вычисляют параметры ориентации скважины по сигналам с гироскопов и акселерометров. 2 ил.
Основные результаты: Способ определения углов искривления скважины, включающий измерение проекций напряженности магнитного поля феррозондами, измерение проекций ускорения свободного падения акселерометрами, измерение проекций угловой скорости Земли гироскопами на оси инклинометра, преобразование первичных сигналов и определение пространственной ориентации ствола скважины, отличающийся тем, что оценивают погрешность гироскопических датчиков с привлечением информации от спутниковой навигационной системы, корректируют величину дрейфа гироскопических датчиков с учетом информации от феррозондов, при отсутствии магнитных аномалий вычисляют углы ориентации по сигналам с феррозондов и акселерометров, при работе в средах с аномальными магнитными свойствами или в средах, обсаженных стальными трубами, вычисляют параметры ориентации скважины по сигналам с гироскопов и акселерометров.

Изобретение относится к измерительной навигационной аппаратуре, предназначенной для контроля пространственного положения траектории ствола скважин.

Известен способ измерения зенитных и азимутальных углов (RU 2231638 C1, МПК7 E21B 47/02, 27.06.2004). Устройство содержит три ортогонально закрепленных феррозонда и три акселерометра. По показаниям феррозондов определяют компоненты полного вектора геомагнитного поля Земли, а по показаниям акселерометров определяют компоненты полного вектора силы тяжести. По полученным данным вычисляют текущие значения азимутального и зенитного углов. Далее производят сравнение текущего замера со средним значением четырех замеров, отстающих от текущего на четыре записи, относительно допуска. Если текущий замер находится за пределами допуска, то его заменяют на среднее.

Известно также устройство для определения углов искривления скважины и положения отклонителя при бурении (RU 2184845 C1, МПК7 E21B 47/022, 10.07.2002). Устройство содержит генератор возбуждения, датчик азимута, выполненный в виде трех ортогональных феррозондов, жестко закрепленных в корпусе, датчик угла установки отклонителя, три акселерометра, оси чувствительности которых взаимно ортогональны, два коммутатора, блок управления, аналого-цифровой преобразователь (АЦП). Сигналы с феррозондов и акселерометров подаются через коммутатор на АЦП, и далее в оперативную память персональной ЭВМ. После окончания полного цикла измерения и записи в памяти ЭВМ измерения накапливаются, осредняются и после алгоритмической обработки и вычислений высвечиваются на дисплее ЭВМ в виде цифровой, графической и текстовой информации.

Недостатком этих устройств является невозможность определения параметров ориентации скважин на участках с аномальными магнитными свойствами или обсаженных стальными трубами.

Наиболее близким техническим решением к заявленному изобретению относится способ и устройство для определения углов искривления скважины (RU 2166084 C1, МПК7 E21B 47/022, 27.04.2001), содержащее блоки датчиков азимута на основе трех ортогональных феррозондов, неподвижно закрепленных относительно корпуса устройства, и датчиков угла отклонения в виде трех ортогональных акселерометров, аналого-цифровой преобразователь, блок коммутаторов, датчик температуры и давления, блок телеметрии и блок гироскопических датчиков. Способ определения углов ориентации скважины включает измерение проекций напряженности магнитного поля феррозондами, измерение проекций ускорения свободного падения акселерометрами, измерение проекций угловой скорости Земли гироскопами на оси, связанные с корпусом инклинометра, последующее преобразование первичных сигналов и определение пространственной ориентации ствола скважины. Блок гироскопических датчиков используется для измерения географического азимута при наклонно-направленном и горизонтальном бурении из обсаженной скважины.

Недостаток прототипа заключается в следующем. Включение в состав измерительного модуля трех или двух одноосных гироскопических датчиков приводит к увеличению габаритов и стоимости инклинометрической системы, что в свою очередь ограничивает возможность применения измерительной системы при бурении скважин малого диаметра. При этом стоимость самого устройства увеличивается как минимум на 20-30%.

Задачей настоящего изобретения является расширение функциональных возможностей способа за счет проведения измерений в обсаженной и не обсаженной скважинах, повышение точности реализующего его устройства за счет совместного применения феррозондов и гироскопов, а также компенсации дрейфа последних.

Поставленная задача решается, а технический результат достигается, следующим образом.

В способе определения углов искривления скважины, включающем измерение проекций напряженности магнитного поля феррозондами, измерение проекций ускорения свободного падения акселерометрами, измерение проекций угловой скорости Земли гироскопами на оси инклинометра, преобразование первичных сигналов и определение пространственной ориентации ствола скважины, согласно изобретению оценивают погрешность гироскопических датчиков с привлечением информации от спутниковой навигационной системы, корректируют величину дрейфа гироскопических датчиков с учетом информации от феррозондов, при отсутствии магнитных аномалий вычисляют углы ориентации по сигналам с феррозондов и акселерометров, при работе в средах с аномальными магнитными свойствами или обсаженных стальными трубами вычисляют параметры ориентации скважины по сигналам с гироскопов и акселерометров.

В устройстве, реализующем предложенный способ, используются микромеханические гироскопы (ММГ). Такие датчики обладают хорошими эксплуатационными, габаритными и стоимостными показателями. При этом непрерывный режим работы блока гироскопических датчиков позволяет проводить измерения в обсаженных и не обсаженных скважинах, при прохождении аномальных участков и отказе блока феррозондов.

Для уменьшения величины дрейфа ММГ и обеспечения требуемой точности реализованы операции начальной оценки погрешности и последующая коррекция гироскопических датчиков. Оценить начальное состояние погрешностей ММГ можно при помощи внешнего курсоуказателя. В качестве которого предлагается использовать спутниковую навигационную систему (СНС), например GPS или Глонасс [Первовский B.C., Биндер Я.И. Азимутальная выставка гироинклинометров для скважин произвольной ориентации с использованием GPS-компаса // Научно-технический вестник Санкт-Петербургского государственного университета информационных технологий, механики и оптики. 2009. №57. С.41-46.]. Компенсацию дрейфа предлагается осуществлять, используя информацию от феррозондовых датчиков.

Сущность изобретения поясняется чертежами. На фиг.1 представлена структурная схема устройства для определения углов искривления скважины. На фиг.2 представлена структурная схема блока обработки информации.

Скважный модуль содержит блоки датчиков первичной информации, состоящие их трех взаимно ортогональных феррозондов 1, микромеханических гироскопов 2 и акселерометров 3, выходы которых соединены с входом коммутатора 4, АЦП 5, вход которого соединен с коммутатором, а выход с блоком связи с наземным устройством (блок телеметрии) 6, блок питания 7 датчиков и электронных схем (фиг.1). Наземное устройство состоит из последовательно соединенных блока приема и дешифрации информации 8, блока обработки информации 9, устройства отображения информации 10 (дисплей), а также приемника СНС 11, соединенного с блоком обработки информации 9.

Блок обработки информации 9, состоит из блоков коррекции 12, выходы которых соединены с вычислителем 13. Выходы вычислителя 13 соединены с фильтром Калмана 14, с блоком сравнения 15 и с запоминающим устройством 16 (фиг.2). Также блок обработки информации включает блок управления 17, на вход которого поступает информация с феррозондов 1 и гироскопов 2, с блока сравнения 15, а выход соединен с вычислителем 13, фильтром Калмана 14 и приемником СНС 11.

Устройство, реализующее предложенный способ, работает следующим образом. В устье скважины происходит начальная оценка погрешности ММГ. Для этого блок управления 17 подает управляющий сигнал на приемник СНС 11 и на вычислитель 13, где происходит вычисление географического азимута по показаниям сигналов с блока микромеханических гироскопов 2, блока акселерометров 3 и приемника СНС 11. В фильтр Калмана 14 поступает начальная оценка погрешности ММГ и далее информация о поправке погрешности передается в блок коррекции сигналов гироскопов 12.

Далее блок управления 17 подает управляющий сигнал на вычислитель 13, где происходит вычисление азимута по показаниям сигналов с блоков первичных датчиков 1-3. Здесь же происходит расчет угла магнитного наклонения и оценка величины расхождения рассчитанного значения азимута по показаниям с феррозондов и гироскопов. В запоминающем устройстве 16 фиксируются полученные опорные значения разности сигналов и угла магнитного наклонения.

В процессе измерений сигналы с блока феррозондов 1, микромеханических гироскопов 2 и акселерометров 3, через коммутатор 4 поступают в АЦП 5 и далее через блок связи 6 по каналу связи передаются в блок приема и дешифрации информации 8. Обработанная информация поступает на вход блока обработки информации 9. Показания с первичных датчиков 1-3 после коррекции в блоке 12 поступают в вычислитель 13. Здесь происходит расчет углов ориентации и оценка величины расхождения сигналов. Далее полученные значения передаются в блок сравнения 15, где сравниваются с опорными значениями, хранящимися в запоминающем устройстве 16. Если в результате сравнения полученные значения совпадают с опорными, то на экран оператора 10 выводится значение азимута, рассчитанное по результатам измерений феррозондов и акселерометров. Одновременно результат сравнения из блока 15 подается на блок управления 17. Далее в фильтре Калмана 14 по сигналу с блока управления 17 осуществляется оценка погрешности ММГ с учетом информации от феррозондов 1 и последующая коррекция сигналов гироскопов в блоке 12. Если в результате сравнения рассчитанные значения не совпадают с опорными, то на экран оператора 10 выводится значение азимута, рассчитанное по результатам измерений гироскопами и акселерометрами. Одновременно блок управления 17 подает сигнал на фильтр Калмана 14 проводить коррекцию гироскопических датчиков без привлечения информации от феррозондов 1.

Предложенный способ реализуется следующим образом.

Скважный прибор устанавливается в устье скважины. Проекции магнитного поля Земли hi, ускорения свободного падения gi и угловой скорости Земли ωi, измеренные соответственно феррозондами, акселерометрами и гироскопами в виде аналоговых сигналов поступают на коммутатор. Далее происходит преобразование аналоговых сигналов в цифровой вид в АЦП и передача в наземное устройство. В наземном устройстве происходит вычисление углов ориентации по формулам:

;

;

;

,

где αh, αω - азимут, рассчитанный по сигналам с феррозондов и гироскопов,

θ - зенитный угол,

φ - визирный угол,

d - угол магнитного склонения.

Эта начальная процедура позволяет оценить величину расхождения сигналов между феррозондами и гироскопами, а так же рассчитать значение угла магнитного наклонения, которое в устье и в стволе скважины одинаково:

Δα=αhω;

ϑ=arctg(h1·g1+h2·g2+h3·g3).

В процессе измерений в не обсаженной скважине величина расхождения сигналов Δα и угол магнитного наклонения в сохраняют свое значение, и в результате сравнения с опорным значением на экран оператора выводится значение азимута, рассчитанное по результатам измерений феррозондов и акселерометров.

При работе в обсаженной скважине, или на участках с аномальными магнитными свойствами возникают отклонения допустимой величины расхождения сигналов Да и угла магнитного наклонения ϑ. На экране оператора отображается значение азимута, рассчитанное по результатам измерений гироскопических датчиков и акселерометров.

Отклонение величины расхождения Δα от опорного значения может быть также вызвано дрейфом гироскопических датчиков. Таким образом, для реализации предложенного способа в устройство введен дополнительный блок приема сигналов СНС и реализована процедура компенсации дрейфа.

В предложенном способе начальная оценка погрешности ММГ осуществляется с привлечением информации с приемника СНС, для компенсации дрейфа ММГ реализована процедура оптимальной фильтрации с привлечением информации от феррозондов. При этом коррекция ММГ по сигналам с феррозондов разрешена только в том случае, если величина расхождения сигналов и угол магнитного наклонения не отличаются от опорного значения, измеренного в устье скважины.

Итак, заявляемое изобретение позволяет расширить функциональные возможности способа за счет проведения измерений в обсаженной и не обсаженной скважинах, повысить точность реализующего его устройства за счет совместного применения феррозондов и гироскопов, а также компенсации дрейфа последних.

Способ определения углов искривления скважины, включающий измерение проекций напряженности магнитного поля феррозондами, измерение проекций ускорения свободного падения акселерометрами, измерение проекций угловой скорости Земли гироскопами на оси инклинометра, преобразование первичных сигналов и определение пространственной ориентации ствола скважины, отличающийся тем, что оценивают погрешность гироскопических датчиков с привлечением информации от спутниковой навигационной системы, корректируют величину дрейфа гироскопических датчиков с учетом информации от феррозондов, при отсутствии магнитных аномалий вычисляют углы ориентации по сигналам с феррозондов и акселерометров, при работе в средах с аномальными магнитными свойствами или в средах, обсаженных стальными трубами, вычисляют параметры ориентации скважины по сигналам с гироскопов и акселерометров.
СПОСОБ ОПРЕДЕЛЕНИЯ УГЛОВ ИСКРИВЛЕНИЯ СКВАЖИНЫ
СПОСОБ ОПРЕДЕЛЕНИЯ УГЛОВ ИСКРИВЛЕНИЯ СКВАЖИНЫ
Источник поступления информации: Роспатент

Показаны записи 11-20 из 103.
10.11.2013
№216.012.8020

Устройство защиты магнитоэлектрического генератора от короткого замыкания (варианты)

Изобретение относится к области машиностроения и может быть использовано в магнитоэлектрических генераторах. Технический результат заключается в повышении эксплуатационного ресурса обмотки статора и уменьшении времени отключения обмоток магнитоэлектрического генератора при коротком замыкании,...
Тип: Изобретение
Номер охранного документа: 0002498473
Дата охранного документа: 10.11.2013
20.11.2013
№216.012.8189

Магнитная игрушка

Магнитная игрушка содержит немагнитный корпус и постоянные магниты. При этом немагнитный корпус выполнен в виде пистолета. Причем постоянные магниты установлены одноименными полюсами относительно друг друга и выполнены в виде неподвижного постоянного магнита и подвижного постоянного магнита с...
Тип: Изобретение
Номер охранного документа: 0002498837
Дата охранного документа: 20.11.2013
10.03.2014
№216.012.a8ab

Многофункциональное походное спасательное устройство

Изобретение относится к индивидуальным походным средствам спасения для туристов, военнослужащих и людей, находящихся в зоне стихийных бедствий. Задачей изобретения является создание многофункционального походного спасательного устройства с расширенными функциональными возможностями при...
Тип: Изобретение
Номер охранного документа: 0002508894
Дата охранного документа: 10.03.2014
10.04.2014
№216.012.b173

Устройство комплексной очистки бессточных водоемов

Изобретение относится к охране окружающей среды и методам экореабилитации водоемов, в частности сбора загрязняющих веществ из толщи воды бессточных водоемов. Устройство содержит металлический каркас, внутри которого расположена емкость из полимерного материала с адсорбентом. Емкость имеет...
Тип: Изобретение
Номер охранного документа: 0002511142
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b77c

Способ контроля состояния грузов при перевозках

Изобретение относится к способам, предназначенным для контроля и фиксации параметров колебаний. Техническим результатом заявленного изобретения является возможность контроля и записи на запоминающее устройство параметров колебаний во всех координатах. Технический результат достигается...
Тип: Изобретение
Номер охранного документа: 0002512699
Дата охранного документа: 10.04.2014
27.06.2014
№216.012.d846

Способ дистанционного тестирования приборов акустического каротажа в полевых условиях

Изобретение относится к нефтепромысловой геофизике и может быть использовано в процессе акустического каротажа. Согласно заявленному изобретению обеспечивается моделирование реального акустического волнового сигнала и полное дистанционное тестирование прибора акустического каротажа в полевых...
Тип: Изобретение
Номер охранного документа: 0002521144
Дата охранного документа: 27.06.2014
10.07.2014
№216.012.dcad

Ветроустановка

Изобретение относится к ветроэнергетике. Ветроустановка содержит воздухозаборник с расположенным внутри него ветроколесом с лопастями, прикрепленными к верхнему и нижнему кольцам, опирающимся на центрирующие ролики, установленные на валах роторов преобразователей энергии, расположенные сверху и...
Тип: Изобретение
Номер охранного документа: 0002522271
Дата охранного документа: 10.07.2014
27.07.2014
№216.012.e387

Способ аргонодуговой обработки сварных соединений, полученных линейной сваркой трением

Изобретение может быть использовано при термической обработке сварных соединений, полученных линейной сваркой трением, в частности сварных соединений диска и лопаток, например дисков ротора в моноблоке с лопатками - блисков. Нагрев участка перехода от шва к основному металлу осуществляют...
Тип: Изобретение
Номер охранного документа: 0002524037
Дата охранного документа: 27.07.2014
10.08.2014
№216.012.e751

Заготовка для изготовления полой лопатки турбомашины способом сверхпластической формовки

Изобретение относится к машиностроению, а именно к области изготовления полых лопаток авиационных двигателей способом сверхпластической формовки, и может быть использовано при изготовлении, например, полой вентиляторной лопатки турбомашины. Заготовка содержит формуемую и неформуемую части. По...
Тип: Изобретение
Номер охранного документа: 0002525010
Дата охранного документа: 10.08.2014
10.09.2014
№216.012.f24c

Способ диагностики помпажа компрессора газотурбинного двигателя

Изобретение относится области двигателестроения и может быть использовано для надежного и своевременного диагностирования помпажа газотурбинного двигателя, и позволяет устранить неустойчивый режим работы компрессора путем оперативного воздействия на различные системы регулирования двигателя....
Тип: Изобретение
Номер охранного документа: 0002527850
Дата охранного документа: 10.09.2014
Показаны записи 11-20 из 115.
27.10.2013
№216.012.7a5d

Способ изготовления моноблочного лопаточного диска

Изобретение может быть использовано при изготовлении моноблочного лопаточного диска (блиска), преимущественно, для ротора газотурбинного двигателя. Получают лопатку с выступом, параметры которого обеспечивают присоединение к диску посредством линейной сварки трением. На лопатке выполняют...
Тип: Изобретение
Номер охранного документа: 0002496987
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.7a5f

Способ линейной сварки трением лопаток с диском для получения блиска

Изобретение относится к авиационной промышленности, в частности к способу изготовления моноблочного лопаточного диска преимущественно для использования в роторе газотурбинного двигателя. При изготовлении лопаточного диска, имеющего множество лопаток, присоединенных к диску радиально, формируют...
Тип: Изобретение
Номер охранного документа: 0002496989
Дата охранного документа: 27.10.2013
10.11.2013
№216.012.7e48

Способ и устройство для локального нагрева битума

Использование: изобретение относится к строительству автомобильных дорог, для приготовления горячей асфальтобетонной смеси, в частности к устройствам хранения и нагрева битума. Технический результат: минимизация энергетических затрат за счет локального нагрева битума перед откачкой, а также...
Тип: Изобретение
Номер охранного документа: 0002498001
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.801c

Способ изготовления биметаллического центрального электрода искровой свечи зажигания двигателя внутреннего сгорания

Изобретение относится к обработке давлением биметаллических изделий. Способ изготовления биметаллического центрального электрода искровой свечи зажигания двигателя внутреннего сгорания заключается в холодном прямом выдавливании биметаллической цилиндрической заготовки с поперечной или...
Тип: Изобретение
Номер охранного документа: 0002498469
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.8020

Устройство защиты магнитоэлектрического генератора от короткого замыкания (варианты)

Изобретение относится к области машиностроения и может быть использовано в магнитоэлектрических генераторах. Технический результат заключается в повышении эксплуатационного ресурса обмотки статора и уменьшении времени отключения обмоток магнитоэлектрического генератора при коротком замыкании,...
Тип: Изобретение
Номер охранного документа: 0002498473
Дата охранного документа: 10.11.2013
20.11.2013
№216.012.8189

Магнитная игрушка

Магнитная игрушка содержит немагнитный корпус и постоянные магниты. При этом немагнитный корпус выполнен в виде пистолета. Причем постоянные магниты установлены одноименными полюсами относительно друг друга и выполнены в виде неподвижного постоянного магнита и подвижного постоянного магнита с...
Тип: Изобретение
Номер охранного документа: 0002498837
Дата охранного документа: 20.11.2013
10.01.2014
№216.012.9403

Система автоматического управления углом курса и ограничения нормальной перегрузки летательного аппарата

Изобретение относится к системам автоматического управления (САУ) летательными аппаратами. Система состоит из последовательно соединенных: задатчика угла курса, первого элемента сравнения, вычислителя заданного угла крена, второго элемента сравнения, последовательно соединенных: вычислителя...
Тип: Изобретение
Номер охранного документа: 0002503585
Дата охранного документа: 10.01.2014
27.01.2014
№216.012.9c49

Электрогидравлический следящий привод с трехкаскадным электрогидроусилителем

Привод может быть использован в гидросистемах летательных аппаратов, а также высоконагруженных системах, где используются быстродействующие электрогидравлические усилители большой мощности (расход рабочей жидкости от 300 л/мин, рабочее давление до 35 МПа). Гидроусилитель первого каскада...
Тип: Изобретение
Номер охранного документа: 0002505715
Дата охранного документа: 27.01.2014
27.01.2014
№216.012.9d0f

Импульсный регулятор постоянного напряжения

Изобретение относится к области силовой электроники и может быть использовано для питания автономных инверторов, станций катодной защиты, установок микродугового оксидирования и для питания других различных электротехнологических установок. Импульсный регулятор постоянного напряжения содержит...
Тип: Изобретение
Номер охранного документа: 0002505913
Дата охранного документа: 27.01.2014
10.03.2014
№216.012.a8ab

Многофункциональное походное спасательное устройство

Изобретение относится к индивидуальным походным средствам спасения для туристов, военнослужащих и людей, находящихся в зоне стихийных бедствий. Задачей изобретения является создание многофункционального походного спасательного устройства с расширенными функциональными возможностями при...
Тип: Изобретение
Номер охранного документа: 0002508894
Дата охранного документа: 10.03.2014
+ добавить свой РИД