×
27.12.2013
216.012.91d0

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ КОЭФФИЦИЕНТА ОТРАЖЕНИЯ ПЛОСКОГО ОТРАЖАТЕЛЯ В СВЧ-ДИАПАЗОНЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технике измерений на сверхвысоких частотах. Согласно способу предварительно осуществляют калибровку с помощью плоского эталонного отражателя, затем перпендикулярно оси зеркала по середине расстояния L между фазовым центром облучателя и фокусом зеркала устанавливают эталонный отражатель с известным коэффициентом отражения Г, измеряют коэффициент отражения в той же полосе частот и определяют третий коэффициент обобщенного полинома , аппроксимирующего разность измеренных коэффициентов отражения, отнесенных к апертуре облучателя: после чего вместо эталонного отражателя устанавливают испытуемый отражатель, измеряют коэффициент отражения на входе измерительной антенны в той же полосе частот и определяют третий коэффициент полинома , аппроксимирующего разность коэффициентов отражения , отнесенных к апертуре облучателя коэффициент отражения Г испытуемого отражателя определяют по формуле . Устройство измерения коэффициента отражения содержит измерительную антенну, эталонный плоский отражатель, прибор измерения комплексной амплитуды отраженного сигнала, СВЧ-кабель, вычислитель. При этом антенна выполнена в виде осесимметричного параболического зеркала с облучателем в его вершине, а на краю зеркала закреплен радиопрозрачный фиксатор с механизмом юстировки положения плоского отражателя. Технический результат изобретения - повышение точности измерения коэффициента отражения. 2 н.п. ф-лы, 5 ил.

Изобретение относится к технике сверхвысоких частот и предназначено для измерения коэффициентов отражения от плоского отражателя в миллиметровом, сантиметровом и дециметровом диапазонах радиоволн.

Известен способ измерения параметров (комплексной диэлектрической проницаемости) плоских отражателей, по которым вычисляется коэффициент отражения (www.agilent.com/find/materials фирма Agilent Technologies). Способ состоит в калибровке установки по результатам измерения амплитуды и фазы отраженной и прошедшей волн в свободном пространстве и с эталонным отражателем. Затем в аналогичных с эталонным отражателем условиях исследуется измеряемый отражатель и определяется его коэффициент отражения (http://cp.literature.agilent.com/litweb/pdf/5989-2589EN.pdf фирма Agilent Technologies).

Реализующее этот способ устройство состоит из двух ориентированных друг на друга слабонаправленных рупорных антенн, измерительного прибора, измерительные порты которого высокочастотными кабелями соединены с антеннами, фиксатор плоских отражателей и вычислитель, встроенный в измерительный прибор (http://cp.literature.agilent.com/litweb/pdf/5989-2589EN.pdf фирма Agilent Technologies).

Недостатки известных способа и устройства состоят в том, что измерение близких к единице коэффициентов отражения в рамках этого способа осуществляется непосредственно, т.к. прошедшая плоский отражатель волна практически отсутствует. Следовательно, точность измерения коэффициента отражения хорошо отражающих плоских отражателей ограничена напрямую приборной погрешностью. Кроме того, размеры измеряемых и эталонного плоских отражателей должны совпадать, что затрудняет использование известных способа и устройства в производственных условиях.

Известны устройства (патенты РФ №2281471, G01M 11/02, G01N 21/55, Бюл. №22 от 10.08.2006, РФ №2281476, G01N 21/55, Бюл. №22 от 10.08.2006, [Т.А. Жевлакова, С.С. Семенцов, "Схема с многоходовой кюветой и интегрирующей сферой для измерения коэффициента зеркального отражения при длине волны 10,6 мкм", Оптико-механическая промышленность, 1983, №7, стр.31-32.]), в частности, рефлектометр многократного отражения (патент РФ №2281471 G01M 11/02, G01N 21/55, Бюл. №22 от 10.08.2006) содержит последовательно установленные источник излучения, формирующий параллельный пучок, модулятор с приводом, диафрагму размером "d×1", два плоских зеркала, фотоприемное устройство, усилитель и регистрирующее устройство.

Недостаток известных устройств состоит в том, что их применение ограничено оптическим диапазоном частот.

Наиболее близким является способ измерения коэффициента отражения плоских образцов радиопоглощающего покрытия (РПП) в миллиметровом, сантиметровом и дециметровом диапазоне радиоволн (патент РФ №2362176 от 20.07.2009, G01R 27/06). Способ состоит в калибровке рупорной измерительной антенны с помощью эталонного образца РПП, для чего антенну раскрывом ставят на плоский эталонный образец РПП. Перемещают антенну вверх, вдоль ее электрической оси на расстояние больше четверти длины радиоволны СВЧ-генератора, одновременно регистрируют максимальное U1max и минимальное U1min значения суммы амплитуд интерферирующих радиоволн, отраженных от эталонного образца и измерительной антенны. Значения коэффициента отражения измерительной антенны Г1 и Г2 рассчитывают по формулам:

Значение коэффициента отражения, отличное от значения коэффициента отражения эталона Гэ, будет являться значением коэффициента отражения антенны Га. Откалиброванную антенну ставят раскрывом вниз вплотную на плоский измеряемый образец РПП с неизвестным коэффициентом отражения. Производят измерение коэффициента отражения образца РПП, для чего перемещают антенну вверх вдоль ее электрической оси на расстояние больше четверти длины радиоволны СВЧ-генератора и одновременно регистрируют максимальное U2max и минимальное U2min значения суммы амплитуд интерферирующих радиоволн, отраженных от измеряемого образца РПП и измерительной антенны. Значение коэффициента отражения измеряемого образца РПП Г3 и Г4 рассчитывают по формулам:

Значение коэффициента отражения, отличное от коэффициента отражения Га, будет являться значением коэффициента отражения Го измеряемого образца РПП.

Наиболее близким устройством является устройство измерения коэффициента отражения плоских образцов радиопоглощающего покрытия (патент РФ №2362176 от 20.07.2009, G01R 27/06), который содержит:

измерительный прибор, СВЧ-кабель, измерительную антенну, эталонный образец радиопоглощающего покрытия и устройство перемещения антенны по вертикали. Антенна плоскостью раскрыва установлена вплотную на плоском эталонном образце. Устройство перемещения антенны содержит:

станину, подвес антенны, направляющую перемещения антенны, измерительную линейку, втулку, ходовой винт, червячный редуктор, вал привода редуктора и рукоятку вала привода.

Работа наиболее близкого устройства происходит следующим образом. Рупорную измерительную антенну ставят раскрывом на плоский эталонный образец РПП. Перемещают антенну вверх, вдоль ее электрической оси на расстояние больше четверти длины радиоволны СВЧ-генератора, одновременно регистрируют максимальное U1max и минимальное U1min значения суммы амплитуд интерферирующих радиоволн, отраженных от эталонного образца и измерительной антенны. Возможные значения коэффициента отражения измерительной антенны Г1 и Г2 рассчитывают по формулам: (1) и (2). Значение коэффициента отражения, отличное от значения коэффициента отражения эталона Гэ, будет являться значением коэффициента отражения антенны Га. Откалиброванную таким образом антенну ставят раскрывом вниз вплотную на плоский измеряемый образец РПП с неизвестным коэффициентом отражения. Производят измерение коэффициента отражения образца РПП, для чего перемещают антенну вверх вдоль ее электрической оси на расстояние больше четверти длины радиоволны СВЧ-генератора и одновременно регистрируют максимальное U2max и минимальное U2min значения суммы амплитуд интерферирующих радиоволн, отраженных от измеряемого образца РПП и измерительной антенны. Возможные значение коэффициента отражения измеряемого образца РПП Г3 и Г4 рассчитывают по формулам: (3) и (4). Значение коэффициента отражения, отличное от коэффициента отражения Га, будет являться значением коэффициента отражения Го измеряемого образца РПП.

Недостатки наиболее близких способа и устройства состоят в том, что точность измерения коэффициента отражения ограничена напрямую инструментальной погрешностью, что приводит к недостаточной точности измерений. Кроме того, необходимость перемещения рупорной антенны увеличивает время и трудоемкость измерений, что затрудняет использование известных способа и устройства в производственных условиях.

Заявляемое изобретение направлено на устранение указанных недостатков. Таким образом, решаемой задачей является повышение точности измерения коэффициента отражения плоского отражателя и облегчение контроля коэффициента отражения плоских отражателей в производственных условиях.

Решаемая техническая задача в способе измерения коэффициента отражения плоского отражателя в СВЧ-диапазоне, основанном на измерении отраженных от плоского отражателя радиоволн на входе измерительной антенны, предварительно откалиброванной с помощью эталонного плоского отражателя, достигается тем, что калибровку осуществляют путем измерения коэффициента отражения в полосе частот на входе измерительной антенны в свободном пространстве или безэховой камере, затем перпендикулярно оси зеркала по середине расстояния Lфок между фазовым центром облучателя и фокусом зеркала устанавливают эталонный плоский отражатель (ЭПО) с известным коэффициентом отражения ГЭТ, измеряют коэффициент отражения (ЭПО) в той же полосе частот и определяют третий коэффициент обобщенного полинома

аппроксимирующего разность измеренных коэффициентов отражения, отнесенных к апертуре облучателя:

где φИО(f), рад - электрическая длина участка от входа облучателя до его апертуры,

после чего вместо эталонного отражателя устанавливают испытуемый отражатель, измеряют коэффициент отражения на входе измерительной антенны в той же полосе частот и определяют третий коэффициент полинома

аппроксимирующего разность коэффициентов отражения и , отнесенных к апертуре облучателя

коэффициент отражения ГИО испытуемого отражателя определяют по формуле

где - коэффициент отражения на входе измерительной антенны в полосе частот, в свободном пространстве;

Lфoк, м - расстояния между фазовым центром облучателя и фокусом зеркала;

ГЭТ - коэффициент отражения эталонного отражателя;

- коэффициент отражения эталонного отражателя в полосе частот;

- третий коэффициент обобщенного полинома PЭТ(f) для эталонного отражателя;

φИО(f), рад - электрическая длина участка от входа облучателя до его апертуры;

- коэффициент отражения на входе измерительной антенны в полосе частот испытуемого отражателя;

- третий коэффициент обобщенного полинома PИО(f) для испытуемого отражателя;

ГИО - коэффициент отражения испытуемого плоского отражателя.

В соответствии с формулой (9) погрешность определения коэффициента отражения ΔГИО и инструментальная погрешность измерения связаны очевидным соотношением:

т.к. значения ГЭТ и для хорошо отражающих образцов близки к единице, то

Решаемая техническая задача в устройстве измерения коэффициента отражения плоского отражателя в СВЧ-диапазоне, содержащем измерительную антенну, эталонный плоский отражатель, прибор измерения комплексной амплитуды отраженного сигнала в полосе частот, соединенный посредством СВЧ-кабеля с измерительной антенной, достигается тем, что измерительная антенна, выполнена в виде осесимметричного параболического зеркала с облучателем в его вершине, на краю осесимметричного параболического зеркала установлен радиопрозрачный фиксатор с механизмом юстировки положения плоского отражателя относительно измерительной антенны, введен вычислитель, соединенный с прибором измерения комплексной амплитуды отраженного сигнала в полосе частот.

Изобретения иллюстрируются следующими чертежами.

На фиг.1 представлена схема устройства для измерения коэффициента отражения плоского отражателя.

На фиг.2 представлен рисунок, поясняющий способ измерения коэффициента отражения плоского отражателя.

На фиг.3-5 представлен алгоритм работы вычислителя.

Устройство для измерения коэффициента отражения содержит (Фиг.1): прибор измерения комплексной амплитуды отраженного сигнала в полосе частот 1, вычислитель 2, СВЧ-кабель 3, облучатель 4, осесимметричное параболическое зеркало 5, радиопрозрачный фиксатор 6, плоский отражатель 7, механизм юстировки положения плоского отражателя относительно параболического зеркала 8.

Рассмотрим осуществление способа измерения коэффициента отражения плоского отражателя и работу устройства измерения коэффициента отражения плоского отражателя.

Измерительный прибор 1 (Фиг.1) соединяют с вычислителем 2, который может быть реализован как персональный компьютер или в виде программы, записанной в программируемом измерительном приборе. Измерительную антенну, выполненную в виде осесимметричного параболического зеркала 5 с облучателем 4 в его вершине, СВЧ-кабелем 3 соединяют с измерительным прибором 1. Включают прибор и вычислитель.

Первоначально осуществляется калибровка устройства, для этого на измерительном приборе 1 определяется коэффициент отражения измерительной антенны в свободном пространстве или безэховой камере без установки плоских отражателей 7, полученное значение коэффициента отражения записывается в память вычислителя 2 (Фиг.3, 4, 5). Затем в радиопрозрачном фиксаторе 6 закрепляют эталонный плоский отражатель с известным коэффициентом отражения ГЭТ, значение которого записано в памяти вычислителя 2, повторяют измерение и записывают в память вычислителя 2 полученное значение . После этого в вычислителе 2 рассчитывается третий коэффициент обобщенного полинома (5) для эталонного отражателя и записывается в память. На этом этап калибровки заканчивается. Далее вместо эталонного плоского отражателя в радиопрозрачном фиксаторе 6 закрепляют испытуемый плоский отражатель, производят измерение и записывают в память полученное значение . В вычислителе 2 определяется третий коэффициент обобщенного полинома (7) для испытуемого отражателя и вычисляется коэффициент отражения испытуемого плоского отражателя ГИО (9). Калибровка может проводиться один раз для серии измерений.

Физика процесса измерений заключается в следующем - сферическая электромагнитная волна облучателя 4 (Фиг.1) после зеркального отражения от плоского отражателя 7 падает на зеркало 5, как если бы излучалась из фокуса. Соответственно зеркало формирует участок плоской электромагнитной волны, который в свою очередь отражается от плоского отражателя и облучает зеркало наподобие электромагнитной волны, приходящей из бесконечности по оси параболоида. Поэтому отраженное от параболоида поле представляет собой сферическую электромагнитную волну, сходящуюся в точку фокуса и после очередного (третьего по счету зеркального отражения от отражателя) поступает в облучатель. При неидеально согласованном облучателе некоторая доля сходящейся волны отражается от него и цикл многократно повторяется.

В соответствии с физикой процессов, происходящих в рассматриваемой системе, отраженная волна представляется суммой

где - коэффициент отражения на входе измерительной антенны в полосе частот, в свободном пространстве;

Nmax - количество учитываемых отражений от рефлектора;

второе слагаемое есть совокупность волн, приходящих после многократных отражений к апертуре облучателя;

сомножитель введен в формулу (10) для пересчета комплексных амплитуд волн от апертуры облучателя к его входу, т.е. к сечению, в котором измеряется коэффициент отражения, где

LB, м - это длина тракта от входного фланца облучателя до его апертуры

β(f) - фазовая постоянная тракта для волны Н10, которая в случае прямоугольного волновода шириной а определяется по известной формуле [Ефимов И.Е. Радиочастотные линии передачи, - М.: Советское радио, 1964, с.335, ф. 7.18]

,

где с, м/с - скорость света;

f, Гц - частота.

Таким образом ясно, что в случае волноводного тракта фигурирующая в выражении (8) электрическая длина φИО(f) участка от входа облучателя до его апертуры определяется равенством

Комплексные коэффициенты An, соответствующие амплитудам и фазам отраженных волн, заранее не известны. Из физических соображений (и расчеты подтверждают это) амплитуда третьей волны A3 заметно превышает амплитуды остальных волн. Число учитываемых волн Nmax выбирается на этапе настройки алгоритма вычисления коэффициента отражения и должно быть в пределах от 6-ти до 9-ти. Путь, проходимый отраженной волной после n-кратного отражении от отражателя, составляет nLфок, и поскольку распространение происходит в свободном пространстве, то фазовая постоянная соответствует волновому числу свободного пространства

В относительно узком частотном диапазоне fmin<f<fmax искомые коэффициенты {An} от частоты не зависят, и равенство (10) является системой Kmax комплексно-значных алгебраических уравнений относительно Nmax искомых коэффициентов

В правой части уравнений фигурируют частотные зависимости измеренных на входе облучателя коэффициентов отражения на частотах отсчетов fk в диапазоне fmin<fk<fmax в присутствии отражателя и то же, измеренное на этапе калибровки в отсутствии всякого отражателя , т.е. первичные отражения самого облучателя. Число Kmax частотных отсчетов fk существенно превышает число искомых коэффициентов, и решение системы (13) понимается в смысле наилучшего среднеквадратичного приближения. Алгоритм соответствующих вычислений удобнее записать в компактной матричной форме (Фиг.3, 4, 5). Составляется вектор-столбец из Nmax искомых коэффициентов An. Совокупность коэффициентов образуют прямоугольную матрицу <С> из Kmax строк (k=1…Kmax) и Nmax столбцов. Из значений правых частей системы (13) составляется Kmax - мерный вектор-столбец . Тогда система (13) преобразуется к матричному виду

Вычисление вектора , обеспечивающего минимальное среднеквадратичное отклонение, сводится к решению системы из Nmax, уравнений с квадратной матрицей путем умножения обеих частей равенства на эрмитово сопряженную (т.е. транспонированную с комплексным сопряжением) матрицу <С>*. В итоге получается

где квадратная матрица <L> образована коэффициентами , а компонентами вектора служат коэффициенты .

В соответствии с моделью многократных отражений, описывающей физику возбуждения системы, параболическое зеркало - плоский отражатель, в спектре коэффициентов {An}, вычисленных по исходным экспериментальным данным и , значение коэффициента А3 заметно превалирует над значениями других коэффициентов.

Поскольку доля мощности, излучаемая в свободное пространство, не известна, то измерение коэффициента отражения испытуемого плоского отражателя ГИО должно базироваться на сопоставлении измеренной частотной зависимости с эталонной частотной зависимостью отражателя, коэффициент отражения ГЭТ которого известен с высокой точностью.

Таким образом, достигаемый технический эффект состоит в том, что благодаря трехкратному отражению от испытуемого образца электромагнитной волны, обуславливающей коэффициент А3 обобщенного полинома PИО(f), погрешность измерения коэффициента отражения уменьшается в три раза по сравнению с инструментальной погрешностью измерения интенсивности отраженной электромагнитной волны.


СПОСОБ ИЗМЕРЕНИЯ КОЭФФИЦИЕНТА ОТРАЖЕНИЯ ПЛОСКОГО ОТРАЖАТЕЛЯ В СВЧ-ДИАПАЗОНЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ КОЭФФИЦИЕНТА ОТРАЖЕНИЯ ПЛОСКОГО ОТРАЖАТЕЛЯ В СВЧ-ДИАПАЗОНЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ КОЭФФИЦИЕНТА ОТРАЖЕНИЯ ПЛОСКОГО ОТРАЖАТЕЛЯ В СВЧ-ДИАПАЗОНЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ КОЭФФИЦИЕНТА ОТРАЖЕНИЯ ПЛОСКОГО ОТРАЖАТЕЛЯ В СВЧ-ДИАПАЗОНЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ КОЭФФИЦИЕНТА ОТРАЖЕНИЯ ПЛОСКОГО ОТРАЖАТЕЛЯ В СВЧ-ДИАПАЗОНЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ КОЭФФИЦИЕНТА ОТРАЖЕНИЯ ПЛОСКОГО ОТРАЖАТЕЛЯ В СВЧ-ДИАПАЗОНЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ КОЭФФИЦИЕНТА ОТРАЖЕНИЯ ПЛОСКОГО ОТРАЖАТЕЛЯ В СВЧ-ДИАПАЗОНЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ КОЭФФИЦИЕНТА ОТРАЖЕНИЯ ПЛОСКОГО ОТРАЖАТЕЛЯ В СВЧ-ДИАПАЗОНЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ КОЭФФИЦИЕНТА ОТРАЖЕНИЯ ПЛОСКОГО ОТРАЖАТЕЛЯ В СВЧ-ДИАПАЗОНЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ КОЭФФИЦИЕНТА ОТРАЖЕНИЯ ПЛОСКОГО ОТРАЖАТЕЛЯ В СВЧ-ДИАПАЗОНЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ КОЭФФИЦИЕНТА ОТРАЖЕНИЯ ПЛОСКОГО ОТРАЖАТЕЛЯ В СВЧ-ДИАПАЗОНЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ КОЭФФИЦИЕНТА ОТРАЖЕНИЯ ПЛОСКОГО ОТРАЖАТЕЛЯ В СВЧ-ДИАПАЗОНЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ КОЭФФИЦИЕНТА ОТРАЖЕНИЯ ПЛОСКОГО ОТРАЖАТЕЛЯ В СВЧ-ДИАПАЗОНЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ КОЭФФИЦИЕНТА ОТРАЖЕНИЯ ПЛОСКОГО ОТРАЖАТЕЛЯ В СВЧ-ДИАПАЗОНЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ КОЭФФИЦИЕНТА ОТРАЖЕНИЯ ПЛОСКОГО ОТРАЖАТЕЛЯ В СВЧ-ДИАПАЗОНЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ КОЭФФИЦИЕНТА ОТРАЖЕНИЯ ПЛОСКОГО ОТРАЖАТЕЛЯ В СВЧ-ДИАПАЗОНЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ КОЭФФИЦИЕНТА ОТРАЖЕНИЯ ПЛОСКОГО ОТРАЖАТЕЛЯ В СВЧ-ДИАПАЗОНЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ КОЭФФИЦИЕНТА ОТРАЖЕНИЯ ПЛОСКОГО ОТРАЖАТЕЛЯ В СВЧ-ДИАПАЗОНЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ КОЭФФИЦИЕНТА ОТРАЖЕНИЯ ПЛОСКОГО ОТРАЖАТЕЛЯ В СВЧ-ДИАПАЗОНЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 101-106 из 106.
09.05.2019
№219.017.4e85

Устройство для вывода информации

Изобретение относится к вычислительной технике и автоматике. Техническим результатом является повышение надежности и сбоеустойчивости. В устройство введены второй и третий регистры, группа мажоритарных элементов, число которых определяется количеством разрядов информационного входа устройства,...
Тип: Изобретение
Номер охранного документа: 0002411568
Дата охранного документа: 10.02.2011
09.05.2019
№219.017.4f5a

Способ выравнивания емкости аккумуляторов никель-водородной аккумуляторной батареи

Изобретение относится к электротехнике и может быть использовано в системах электропитания потребителей, установленных на автономных объектах, в частности на космических аппаратах. Техническим результатом изобретения является повышение эффективности и функциональных возможностей способа...
Тип: Изобретение
Номер охранного документа: 0002401486
Дата охранного документа: 10.10.2010
09.06.2019
№219.017.79a1

Система электропитания космического аппарата

Изобретение относится к области космической энергетики, в частности к бортовым системам электропитания космических аппаратов (КА). Согласно изобретению система электропитания космического аппарата состоит из солнечной батареи, стабилизатора напряжения, аккумуляторной батареи, экстремального...
Тип: Изобретение
Номер охранного документа: 0002396666
Дата охранного документа: 10.08.2010
09.06.2019
№219.017.7efa

Подложка панели солнечной батареи и способ ее изготовления

Изобретение относится к солнечным батареям, служащим для преобразования солнечной энергии в электрическую. Подложка панели солнечной батареи состоит из сетчатого материала, изготовленного из струн, пропитанных связующим составом, согласно изобретению струны выполнены из арамидного шнура. Способ...
Тип: Изобретение
Номер охранного документа: 0002449226
Дата охранного документа: 27.04.2012
10.07.2019
№219.017.b008

Способ эксплуатации никель-водородной аккумуляторной батареи в составе искусственного спутника земли

Изобретение относится к электротехнической промышленности и может быть использовано при эксплуатации никель-водородных аккумуляторных батарей преимущественно в автономных системах электропитания искусственных спутников Земли (ИСЗ). Согласно изобретению, способ эксплуатации никель-водородной...
Тип: Изобретение
Номер охранного документа: 0002401487
Дата охранного документа: 10.10.2010
10.07.2019
№219.017.b029

Способ эксплуатации литий-ионной аккумуляторной батареи в составе искусственного спутника земли

Изобретение относится к электротехнической промышленности и может быть использовано при эксплуатации литий-ионных аккумуляторных батарей (ЛИАБ). Техническим результатом изобретения является повышение эффективности использования ЛИАБ и увеличение срока службы. Согласно изобретению способ...
Тип: Изобретение
Номер охранного документа: 0002403656
Дата охранного документа: 10.11.2010
Показаны записи 101-103 из 103.
06.06.2023
№223.018.78cf

Вентиль заправочный для химически агрессивных сред

Изобретение относится к ручным вентилям, в частности, предназначенным для заполнения и слива жидкостной системы терморегулирования космических аппаратов с химически агрессивным теплоносителем с сохранением внешней герметичности в широком диапазоне температур и давлений теплоносителя. Вентиль...
Тип: Изобретение
Номер охранного документа: 0002751928
Дата охранного документа: 20.07.2021
16.06.2023
№223.018.7d13

Многолучевая зеркальная антенна

Изобретение относится к антенной технике, в частности к зеркальным антеннам, и предназначено для использования в составе бортовых антенн искусственных спутников Земли для обеспечения многолучевой зоны покрытия Земной поверхности в СВЧ диапазоне. Техническим результатом изобретения является...
Тип: Изобретение
Номер охранного документа: 0002741770
Дата охранного документа: 28.01.2021
19.06.2023
№223.018.8257

Способ измерения комплексной диэлектрической проницаемости материала в диапазоне свч

Изобретение относится к области радиоизмерений параметров диэлектрических материалов на СВЧ, включая относительную диэлектрическую проницаемость и тангенс угла диэлектрических потерь. Сущность: способ измерения комплексной диэлектрической проницаемости материала в диапазоне СВЧ включает...
Тип: Изобретение
Номер охранного документа: 0002797142
Дата охранного документа: 31.05.2023
+ добавить свой РИД