×
27.12.2013
216.012.918d

Результат интеллектуальной деятельности: СПОСОБ ВИЗУАЛЬНО-ОПТИЧЕСКОГО КОНТРОЛЯ ПОВЕРХНОСТИ

Вид РИД

Изобретение

Аннотация: Способ визуально-оптического контроля поверхности глазом или с помощью микроскопа заключается в том, что между эталонной и контролируемой поверхностями помещают слой жидкости толщиной не более 10 мкм с показателем преломления больше, чем у контактирующих с ней оптических деталей, вводят в этот слой лазерное излучение, идущее по слою с полным внутренним отражением, и наблюдают свет, сконцентрированный и рассеянный на аномалиях и дефектах поверхности. В слой жидкости может быть введено поляризованное лазерное излучение, а наблюдают рассеянный от аномалий и дефектов свет через скрещенный по поляризации анализатор. Технический результат - возможность фиксировать наличие локальных аномалий поверхности глубиной меньше 0,05 мкм на больших площадях и без дорогостоящего оборудования. 1 з.п. ф-лы, 3 ил.

Изобретение относится к физике поверхностей, а точнее к визуально-оптическому контролю поверхностей.

Известно несколько способов визуального контроля чистоты оптических поверхностей /1, 2/, позволяющих при освещении и наблюдении поверхностей фиксировать на них аномалии (дефекты, шероховатости) с размерами в доли микрона.

Так, в «Методах контроля», п 2.2 /1/ при определении наличия дефектов (царапин и точек) предлагается поверхности деталей просматривать в косонаправленном пучке проходящего или отраженного света, т.е. под углом к оси детали, на фоне черного экрана, когда источником света служит лампа накаливания мощностью от 60 до 100 Вт (прототип).

Ограничение размера выявляемых аномалий связано с тем, что длина волны света в оптическом диапазоне составляет около 0.5 мкм, дефекты и аномалии с размерами по глубине меньше 0,05 мкм в используемых способах обычно остаются незамеченными. Но для ряда приложений контролирование наличия таких дефектов представляет интерес.

Контактные профилометры, использующие в качестве датчика иглу, ощупывающую контролируемую поверхность, позволяют фиксировать на ней аномалии, начиная от нанометров /2/, но для осмотра больших поверхностей они требуют существенных финансовых затрат и времени.

Задачей, решаемой изобретением, является создание способа визуально-оптического контроля, позволяющего фиксировать наличие локальных аномалий поверхности глубиной меньше 0,05 мкм на больших площадях и без дорогостоящего оборудования.

Для решения этой задачи предложено использовать тонкие жидкие пленки между эталонной (бездефектной, используемой для сравнения) и контролируемой оптической поверхностью (плоской или изогнутой) из жидкостей с показателем преломления больше, чем у контактирующих с ней оптических деталей, для получения полного внутреннего отражения света в пленке. В пленку сбоку вводится лазерный свет (Фиг.1), и при таком освещении аномалии на контролируемой поверхности становятся видны из-за рассеянного на них света, а царапины с жидкостью в них становятся световыми волноводами, концентрирующими введенное в пленку излучение, и из-за этого становятся особенно хорошо видны при наблюдении на темном фоне (так же, как это происходит с лазерными треками в тонких пленках /3/).

Схема наблюдения показана на Фиг.1, где 1 - эталон, 2 - контролируемая поверхность с дефектами, 3 - слой жидкости (меньше 10 мкм) между 1 и 2, 4 - фокусируемый лазерный луч, 5 - рассеянное на дефектах излучение.

Для уменьшения фоновой засветки лазерное излучение может быть поляризовано, а наблюдение аномалий при этом можно проводить через анализатор со скрещенной поляризацией. Глубины аномалий поверхности в данном способе не определяются, но отмеченные в способе места дефектов можно затем детально проверить профилометром.

Выбор жидкости определяется ее показателем преломления (известен набор жидкостей с показателями преломления до n=2 /4/) и совместимостью с материалом контролируемых деталей (исключающей их повреждение). Толщина пленки выбирается из условия, при котором свет концентрируется в зоне, например, царапины, т.е. после полного внутреннего отражения от поверхности царапины и последующего отражения от контрольной подложки свет снова возвращается в царапину. Для этого необходимо иметь малую толщину пленки, сравнимую или меньше ожидаемой ширины царапин. Дальнейшее уменьшение толщины пленки затрудняет ввод в нее лазерного излучения, поэтому оптимальный диапазон толщин пленки обычно выбирают меньше 10 мкм и составляет (1-5) мкм.

Минимально заметная в таком способе глубина визуально фиксируемых дефектов и отклонений определяется мощностью введенного в пленку лазерного излучения, и при использовании широкодоступных источников типа лазерной указки мощностью 10 мВт (532 нм) она из-за резонансного накопления и концентрации света в волноводной царапине при ширине (1-5 мкм), по оценкам /3, см. порог образования трека, стр.4/, может составлять доли нанометра.

Пример 1. Между эталонной и контролируемой плоскими кварцевыми подложками марки КУ (n=1,46) размером 6×6 см2 создают пленку бензола (n=1,5) толщиной от 1 до 5 мкм. В пленку сбоку линзой с фокусным расстоянием 5 см фокусируют излучение лазерной указки (10 мВт, 532 нм). Меняя место ввода лазерного излучения, через прозрачную эталонную подложку глазом или через микроскоп в зоне освещения лазером наблюдают на темном фоне проявляющиеся из-за рассеянного света на поверхности контролируемой подложки дефекты и царапины.

На Фиг.2 показан вид рассеянного на дефектах света в слое бензола толщиной 5 мкм между эталонной и контролируемой плоскими кварцевыми подложками марки КУ (n=1,46) размером 6×6 см2, где 1 - лазерный луч, 2 - длинная царапина на поверхности, 3 - мелкие дефекты от полировки.

Пример 2. Между эталонной и контролируемой плоскими стеклянными подложками марки К8 (n=1,5) диаметром 6 см создают пленку дийодметана (n=1,7) толщиной от 1 до 5 мкм. В пленку сбоку линзой с фокусным расстоянием 5 см фокусируют излучение лазерной указки (10 мВт, 532 нм). Меняя место ввода лазерного излучения, через прозрачную эталонную подложку глазом или через микроскоп в зоне освещения лазером наблюдают на темном фоне проявляющиеся из-за рассеянного света на поверхности контролируемой подложке дефекты и царапины.

На Фиг.3 показан вид рассеянного на дефектах света в слое дийодметана (n=1,7) толщиной 5 мкм между эталонной и контролируемой плоскими стеклянными подложками марки К8 (n=1,5) диаметром 6 см.

Таким образом, предлагаемый способ позволяет без особых затрат визуально определить наличие групп или отдельных дефектов на контролируемой поверхности.

Возможные применения.

Выявление мелких аномалий и дефектов может быть использовано как экспресс-метод для контроля качества и износа шлифовального оборудования, а также в научных целях при отборе особо гладких поверхностей для изучения свойств лазерных треков в тонких пленках на подложках /5/.

Литература

1. ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР. ДЕТАЛИ ОПТИЧЕСКИЕ. КЛАССЫ ЧИСТОТЫ ПОВЕРХНОСТЕЙ. МЕТОДЫ КОНТРОЛЯ. ГОСТ 11141-84. Издание официальное ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО СТАНДАРТАМ, (с.7).

2. Ким К.Ю. Диссертация к.т.н. «Исследование и разработка оптического метода бесконтактного контроля шероховатости поверхностей». Москва. 2009.

3. Стойлов Ю.Ю. Патент на изобретение «Способ получения световодных каналов в жидкой среде». RU 2403596 С11 (2009).

4. Иоффе Б.В. «Рефрактометрические методы в химии» Л. «Химия». 1983. (с.311-312).

5. Старцев А.В., Стойлов Ю.Ю. «ЛАЗЕРНЫЕ ТРЕКИ В РАДУЖНОЙ ЖИДКОЙ ПЛЕНКЕ НА ТВЕРДОЙ ПОДЛОЖКЕ». Препринт ФИАН №6 (2012). http://ellphi.lebedev.ru/wp-content/uploads/2012/06/preprint_06-12.pdf


СПОСОБ ВИЗУАЛЬНО-ОПТИЧЕСКОГО КОНТРОЛЯ ПОВЕРХНОСТИ
СПОСОБ ВИЗУАЛЬНО-ОПТИЧЕСКОГО КОНТРОЛЯ ПОВЕРХНОСТИ
СПОСОБ ВИЗУАЛЬНО-ОПТИЧЕСКОГО КОНТРОЛЯ ПОВЕРХНОСТИ
Источник поступления информации: Роспатент

Показаны записи 41-45 из 45.
16.05.2023
№223.018.5e32

Способ поляризации плёнки из полимерного материала и устройство для его осуществления

Настоящее изобретение относится к способу поляризации пленок из полимерного материала и к устройству для осуществления этого способа. В способе поляризации пленки из полимерного материала согласно изобретению перемещают пленку 1, контактирующую с поверхностью заземленного электрода 2, с...
Тип: Изобретение
Номер охранного документа: 0002755643
Дата охранного документа: 17.09.2021
16.05.2023
№223.018.5e33

Способ поляризации плёнки из полимерного материала и устройство для его осуществления

Настоящее изобретение относится к способу поляризации пленок из полимерного материала и к устройству для осуществления этого способа. В способе поляризации пленки из полимерного материала согласно изобретению перемещают пленку 1, контактирующую с поверхностью заземленного электрода 2, с...
Тип: Изобретение
Номер охранного документа: 0002755643
Дата охранного документа: 17.09.2021
02.06.2023
№223.018.75cb

Устройство для комбинированной обработки поверхности изделия из металла или его сплава

Изобретение относится к области упрочняющей поверхностной обработки изделий из металлов или их сплавов с нанесением многослойных покрытий и может быть использовано в машиностроении при упрочнении рабочих поверхностей деталей для повышения их долговечности, коррозионной стойкости, сопротивления...
Тип: Изобретение
Номер охранного документа: 0002796479
Дата охранного документа: 24.05.2023
16.06.2023
№223.018.7ae0

Способ фототерапевтического облучения патологической зоны в организме живого существа и осветительное устройство для его осуществления

Группа изобретений относится к медицинской технике, к способу фототерапевтического облучения патологической зоны в организме живого существа и к осветительному устройству для осуществления этого способа. Изобретения обеспечивают более эффективное фототерапевтическое воздействие. Размещают по...
Тип: Изобретение
Номер охранного документа: 0002732829
Дата охранного документа: 23.09.2020
17.06.2023
№223.018.7f48

Лазерная система для обнаружения аварийного режима работы ядерного реактора

Изобретение относится к лазерной системе обнаружения аварийного режима работы ядерного реактора. Мониторинг атмосферы технического помещения 1 осуществляется путем анализа характеристик газового состава в объеме измерительного блока-контейнера 2 посредством просвечивания этого объема лазерным...
Тип: Изобретение
Номер охранного документа: 0002766300
Дата охранного документа: 14.03.2022
Показаны записи 21-22 из 22.
25.08.2017
№217.015.bf97

Способ электрометрического измерения производной химического потенциала по температуре и устройство для его осуществления

Изобретение относится к области электрометрического анализа химического потенциала μ c помощью модуляции температуры T и может быть использовано для исследования характеристик имеющихся и для конструирования новых элементов наноэлектроники. Предложен способ измерения ∂μ/∂T, который позволяет...
Тип: Изобретение
Номер охранного документа: 0002617149
Дата охранного документа: 21.04.2017
25.08.2017
№217.015.bfba

Способ усиления мощности радиочастотно-модулированного терагерцового излучения 30-периодной слабосвязанной полупроводниковой сверхрешетки gaas/algaas

Изобретение относится к физике полупроводниковых структур. Способ усиления мощности радиочастотно-модулированного терагерцового излучения 30-периодной слабосвязанной полупроводниковой сверхрешетки GaAs/AlGaAs заключается в том, что соединяют параллельно активные модули, каждый из которых...
Тип: Изобретение
Номер охранного документа: 0002617179
Дата охранного документа: 21.04.2017
+ добавить свой РИД