×
27.12.2013
216.012.918d

Результат интеллектуальной деятельности: СПОСОБ ВИЗУАЛЬНО-ОПТИЧЕСКОГО КОНТРОЛЯ ПОВЕРХНОСТИ

Вид РИД

Изобретение

Аннотация: Способ визуально-оптического контроля поверхности глазом или с помощью микроскопа заключается в том, что между эталонной и контролируемой поверхностями помещают слой жидкости толщиной не более 10 мкм с показателем преломления больше, чем у контактирующих с ней оптических деталей, вводят в этот слой лазерное излучение, идущее по слою с полным внутренним отражением, и наблюдают свет, сконцентрированный и рассеянный на аномалиях и дефектах поверхности. В слой жидкости может быть введено поляризованное лазерное излучение, а наблюдают рассеянный от аномалий и дефектов свет через скрещенный по поляризации анализатор. Технический результат - возможность фиксировать наличие локальных аномалий поверхности глубиной меньше 0,05 мкм на больших площадях и без дорогостоящего оборудования. 1 з.п. ф-лы, 3 ил.

Изобретение относится к физике поверхностей, а точнее к визуально-оптическому контролю поверхностей.

Известно несколько способов визуального контроля чистоты оптических поверхностей /1, 2/, позволяющих при освещении и наблюдении поверхностей фиксировать на них аномалии (дефекты, шероховатости) с размерами в доли микрона.

Так, в «Методах контроля», п 2.2 /1/ при определении наличия дефектов (царапин и точек) предлагается поверхности деталей просматривать в косонаправленном пучке проходящего или отраженного света, т.е. под углом к оси детали, на фоне черного экрана, когда источником света служит лампа накаливания мощностью от 60 до 100 Вт (прототип).

Ограничение размера выявляемых аномалий связано с тем, что длина волны света в оптическом диапазоне составляет около 0.5 мкм, дефекты и аномалии с размерами по глубине меньше 0,05 мкм в используемых способах обычно остаются незамеченными. Но для ряда приложений контролирование наличия таких дефектов представляет интерес.

Контактные профилометры, использующие в качестве датчика иглу, ощупывающую контролируемую поверхность, позволяют фиксировать на ней аномалии, начиная от нанометров /2/, но для осмотра больших поверхностей они требуют существенных финансовых затрат и времени.

Задачей, решаемой изобретением, является создание способа визуально-оптического контроля, позволяющего фиксировать наличие локальных аномалий поверхности глубиной меньше 0,05 мкм на больших площадях и без дорогостоящего оборудования.

Для решения этой задачи предложено использовать тонкие жидкие пленки между эталонной (бездефектной, используемой для сравнения) и контролируемой оптической поверхностью (плоской или изогнутой) из жидкостей с показателем преломления больше, чем у контактирующих с ней оптических деталей, для получения полного внутреннего отражения света в пленке. В пленку сбоку вводится лазерный свет (Фиг.1), и при таком освещении аномалии на контролируемой поверхности становятся видны из-за рассеянного на них света, а царапины с жидкостью в них становятся световыми волноводами, концентрирующими введенное в пленку излучение, и из-за этого становятся особенно хорошо видны при наблюдении на темном фоне (так же, как это происходит с лазерными треками в тонких пленках /3/).

Схема наблюдения показана на Фиг.1, где 1 - эталон, 2 - контролируемая поверхность с дефектами, 3 - слой жидкости (меньше 10 мкм) между 1 и 2, 4 - фокусируемый лазерный луч, 5 - рассеянное на дефектах излучение.

Для уменьшения фоновой засветки лазерное излучение может быть поляризовано, а наблюдение аномалий при этом можно проводить через анализатор со скрещенной поляризацией. Глубины аномалий поверхности в данном способе не определяются, но отмеченные в способе места дефектов можно затем детально проверить профилометром.

Выбор жидкости определяется ее показателем преломления (известен набор жидкостей с показателями преломления до n=2 /4/) и совместимостью с материалом контролируемых деталей (исключающей их повреждение). Толщина пленки выбирается из условия, при котором свет концентрируется в зоне, например, царапины, т.е. после полного внутреннего отражения от поверхности царапины и последующего отражения от контрольной подложки свет снова возвращается в царапину. Для этого необходимо иметь малую толщину пленки, сравнимую или меньше ожидаемой ширины царапин. Дальнейшее уменьшение толщины пленки затрудняет ввод в нее лазерного излучения, поэтому оптимальный диапазон толщин пленки обычно выбирают меньше 10 мкм и составляет (1-5) мкм.

Минимально заметная в таком способе глубина визуально фиксируемых дефектов и отклонений определяется мощностью введенного в пленку лазерного излучения, и при использовании широкодоступных источников типа лазерной указки мощностью 10 мВт (532 нм) она из-за резонансного накопления и концентрации света в волноводной царапине при ширине (1-5 мкм), по оценкам /3, см. порог образования трека, стр.4/, может составлять доли нанометра.

Пример 1. Между эталонной и контролируемой плоскими кварцевыми подложками марки КУ (n=1,46) размером 6×6 см2 создают пленку бензола (n=1,5) толщиной от 1 до 5 мкм. В пленку сбоку линзой с фокусным расстоянием 5 см фокусируют излучение лазерной указки (10 мВт, 532 нм). Меняя место ввода лазерного излучения, через прозрачную эталонную подложку глазом или через микроскоп в зоне освещения лазером наблюдают на темном фоне проявляющиеся из-за рассеянного света на поверхности контролируемой подложки дефекты и царапины.

На Фиг.2 показан вид рассеянного на дефектах света в слое бензола толщиной 5 мкм между эталонной и контролируемой плоскими кварцевыми подложками марки КУ (n=1,46) размером 6×6 см2, где 1 - лазерный луч, 2 - длинная царапина на поверхности, 3 - мелкие дефекты от полировки.

Пример 2. Между эталонной и контролируемой плоскими стеклянными подложками марки К8 (n=1,5) диаметром 6 см создают пленку дийодметана (n=1,7) толщиной от 1 до 5 мкм. В пленку сбоку линзой с фокусным расстоянием 5 см фокусируют излучение лазерной указки (10 мВт, 532 нм). Меняя место ввода лазерного излучения, через прозрачную эталонную подложку глазом или через микроскоп в зоне освещения лазером наблюдают на темном фоне проявляющиеся из-за рассеянного света на поверхности контролируемой подложке дефекты и царапины.

На Фиг.3 показан вид рассеянного на дефектах света в слое дийодметана (n=1,7) толщиной 5 мкм между эталонной и контролируемой плоскими стеклянными подложками марки К8 (n=1,5) диаметром 6 см.

Таким образом, предлагаемый способ позволяет без особых затрат визуально определить наличие групп или отдельных дефектов на контролируемой поверхности.

Возможные применения.

Выявление мелких аномалий и дефектов может быть использовано как экспресс-метод для контроля качества и износа шлифовального оборудования, а также в научных целях при отборе особо гладких поверхностей для изучения свойств лазерных треков в тонких пленках на подложках /5/.

Литература

1. ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР. ДЕТАЛИ ОПТИЧЕСКИЕ. КЛАССЫ ЧИСТОТЫ ПОВЕРХНОСТЕЙ. МЕТОДЫ КОНТРОЛЯ. ГОСТ 11141-84. Издание официальное ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО СТАНДАРТАМ, (с.7).

2. Ким К.Ю. Диссертация к.т.н. «Исследование и разработка оптического метода бесконтактного контроля шероховатости поверхностей». Москва. 2009.

3. Стойлов Ю.Ю. Патент на изобретение «Способ получения световодных каналов в жидкой среде». RU 2403596 С11 (2009).

4. Иоффе Б.В. «Рефрактометрические методы в химии» Л. «Химия». 1983. (с.311-312).

5. Старцев А.В., Стойлов Ю.Ю. «ЛАЗЕРНЫЕ ТРЕКИ В РАДУЖНОЙ ЖИДКОЙ ПЛЕНКЕ НА ТВЕРДОЙ ПОДЛОЖКЕ». Препринт ФИАН №6 (2012). http://ellphi.lebedev.ru/wp-content/uploads/2012/06/preprint_06-12.pdf


СПОСОБ ВИЗУАЛЬНО-ОПТИЧЕСКОГО КОНТРОЛЯ ПОВЕРХНОСТИ
СПОСОБ ВИЗУАЛЬНО-ОПТИЧЕСКОГО КОНТРОЛЯ ПОВЕРХНОСТИ
СПОСОБ ВИЗУАЛЬНО-ОПТИЧЕСКОГО КОНТРОЛЯ ПОВЕРХНОСТИ
Источник поступления информации: Роспатент

Показаны записи 31-40 из 45.
13.11.2019
№219.017.e146

Лазерная система измерения параметров теплоносителя в энергетическом ядерном реакторе

Изобретение относится к области ядерной энергетики. Заявленная лазерная система измерения параметров теплоносителя в энергетическом ядерном реакторе содержит лазерный генератор 1, блок 2 измерения лазерного излучения, входной и выходной иллюминаторы 11, 12 трубопровода 10 теплоносителя,...
Тип: Изобретение
Номер охранного документа: 0002705725
Дата охранного документа: 11.11.2019
04.02.2020
№220.017.fd16

Способ создания двумерной матрицы лазерных диодов и двумерная матрица лазерных диодов

Изобретение относится к области лазерной техники и касается двумерной матрицы лазерных диодов. Матрица лазерных диодов содержит линейки лазерных диодов и две прозрачные для излучения лазерных диодов подложки. На одной поверхности каждой подложки сформированы параллельные металлизированные...
Тип: Изобретение
Номер охранного документа: 0002712764
Дата охранного документа: 31.01.2020
27.02.2020
№220.018.066e

Способ наращивания монокристаллических слоёв полупроводниковых структур

Изобретение относится к способу наращивания слоев полупроводниковых структур, осуществляемого методами эпитаксиального осаждения. Сущность: способ наращивания монокристаллических слоев полупроводниковых структур, осуществляемого методом эпитаксиального осаждения, заключается в том, что...
Тип: Изобретение
Номер охранного документа: 0002715080
Дата охранного документа: 25.02.2020
15.07.2020
№220.018.3260

Способ формирования и компенсации астигматического волнового фронта и устройство для его осуществления

Изобретение относится к способу формирования и компенсации произвольного астигматического волнового фронта и к устройству для осуществления этого способа. Изобретение обеспечивает повышение энергетической эффективности, широкий рабочий спектральный диапазон и технологичность изготовления...
Тип: Изобретение
Номер охранного документа: 0002726306
Дата охранного документа: 13.07.2020
18.07.2020
№220.018.33a9

Способ нелинейного внутрирезонаторного преобразования длины волны в лазере с продольной накачкой

Изобретение относится к лазерной технике. Способ нелинейного внутрирезонаторного преобразования длины волны в лазере с продольной накачкой заключается в том, что для генерации на основной оптической частоте в лазере используют резонатор, конфигурация которого обеспечивает возможность...
Тип: Изобретение
Номер охранного документа: 0002726915
Дата охранного документа: 16.07.2020
18.07.2020
№220.018.3470

Сканирующий моноблочный интерферометр фабри-перо

Изобретение относится к оптическим спектральным системам. Сканирующий моноблочный интерферометр Фабри-Перо по настоящему изобретению содержит два плоскопараллельных мембранных зеркала, обращенных одно к другому и зафиксированных с помощью оптического контакта на своих краях на противоположных...
Тип: Изобретение
Номер охранного документа: 0002726717
Дата охранного документа: 15.07.2020
29.07.2020
№220.018.38b6

Способ доставки криогенной топливной мишени для управляемого инерциального термоядерного синтеза, система и носитель

Изобретение относится к средству доставки криогенной топливной мишени (КТМ) для управляемого инерциального термоядерного синтеза, системе для реализации этого способа и носителю для использования в такой системе. В заявленном способе размещают каждую криогенную топливную мишень в носитель,...
Тип: Изобретение
Номер охранного документа: 0002727925
Дата охранного документа: 27.07.2020
12.04.2023
№223.018.4309

Способ определения магнитных свойств материала

Изобретение относится к области измерительной техники. Для определения магнитных свойств материала в заданной области пространства размещают мишень, изготовленную из исследуемого материала, и создают магнитное поле с заданными свойствами, силовые линии которого имеют составляющую, параллельную...
Тип: Изобретение
Номер охранного документа: 0002793610
Дата охранного документа: 04.04.2023
12.04.2023
№223.018.432b

Способ определения распределения магнитного поля

Использование: изобретение относится к области измерительной техники и может быть использовано для определения распределения магнитного поля в заданной области пространства (в частности, рабочих камерах высокоэнергетических установок). Сущность: для определения распределения магнитного поля в...
Тип: Изобретение
Номер охранного документа: 0002793615
Дата охранного документа: 04.04.2023
12.04.2023
№223.018.4547

Двумерная матрица лазерных диодов и способ её сборки

Изобретение относится к двумерной матрице лазерных диодов и способу её сборки. Его использование обеспечивает технический результат, а именно повышение плотности мощности излучения матрицы при обеспечении надежности и срока службы. Двумерная матрица лазерных диодов содержит: линейки лазерных...
Тип: Изобретение
Номер охранного документа: 0002757055
Дата охранного документа: 11.10.2021
Показаны записи 21-22 из 22.
25.08.2017
№217.015.bf97

Способ электрометрического измерения производной химического потенциала по температуре и устройство для его осуществления

Изобретение относится к области электрометрического анализа химического потенциала μ c помощью модуляции температуры T и может быть использовано для исследования характеристик имеющихся и для конструирования новых элементов наноэлектроники. Предложен способ измерения ∂μ/∂T, который позволяет...
Тип: Изобретение
Номер охранного документа: 0002617149
Дата охранного документа: 21.04.2017
25.08.2017
№217.015.bfba

Способ усиления мощности радиочастотно-модулированного терагерцового излучения 30-периодной слабосвязанной полупроводниковой сверхрешетки gaas/algaas

Изобретение относится к физике полупроводниковых структур. Способ усиления мощности радиочастотно-модулированного терагерцового излучения 30-периодной слабосвязанной полупроводниковой сверхрешетки GaAs/AlGaAs заключается в том, что соединяют параллельно активные модули, каждый из которых...
Тип: Изобретение
Номер охранного документа: 0002617179
Дата охранного документа: 21.04.2017
+ добавить свой РИД