×
27.12.2013
216.012.8fff

Результат интеллектуальной деятельности: СПОСОБ ПРИГОТОВЛЕНИЯ МОДЕЛЬНОГО КОЛЛОИДНОГО РАСТВОРА

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано в установках водоподготовки при оценке эффективности их работы и выборе оптимальной последовательности технологического процесса водоочистки. Способ приготовления модельного коллоидного раствора включает внесение в дисперсионную среду при перемешивании компонентов в следующей последовательности: метасиликат натрия, гумат натрия, сульфат железа (II), сульфат марганца (II). Путем коррекции pH раствора в пределах 6-9 обеспечивают образование коллоидных частиц требуемого размера. Изобретение позволяет повысить устойчивость коллоидных растворов, приближенных по составу и размеру частиц дисперсионной фазы к подземным природным водам, а также тестировать водоочистные комплексы, избегая ошибок при их монтаже. 1 з.п. ф-лы, 6 табл., 3 пр.

Изобретение относится к моделированию состава коллоидных систем, встречающихся в природных подземных водах, и может быть использовано для тестирования установок водоподготовки при оценке эффективности их работы и выбора оптимальной последовательности технологического процесса водоочистки.

Основными примесями, влияющими на качество подземных вод и создающими колоссальные проблемы при водоподготовке, являются соединения железа в коллоидном состоянии. Обогащение подземных вод этими соединениями происходит вследствие выщелачивания и растворения железистых минералов и пород, а наличие болот и мелких рек, содержащих органические вещества гумусового типа, способствует образованию устойчивых коллоидных соединений железа. Для воды сложного состава, по классификациям Кульского Л.А. [Кульский Л.А. Теоретические основы и технология кондиционирования воды. - Киев, Наукова думка, 1980. с.79-96.] и Николадзе Г.И. [Николадзе Г.И. Обработка подземных вод для хозяйственно-питьевого водоснабжения // Водоснабжение и санитарная техника. - 1999. - №5. - с.2-4.], выбор технологии водоподготовки предлагается проводить в зависимости от фазово-дисперсного состояния примесей. Размер частиц играет важную роль в процессах осаждения, коагулирование и фильтрования. Так, например, размер коллоидов железа в подземных водах Западно-Сибирского региона составляет 100-450 нм. Однако, используя указанные классификации, выбор рациональной схемы обработки воды сложного состава без проведения специальных исследований, затруднен. Современный рынок водоочистных технологий предлагает широкий выбор новых водоочистных устройств, фильтрующих материалов и коагулянтов. Проведение предварительных испытаний по оценке эффективности очистки воды на выбранном водоочистном устройстве, загрузке и т.п. является экономически выгодным и позволяет избежать лишних затрат, особенно это важно в условиях удаленных поселков. На практике для этого используют метод технологического моделирования процессов очистки воды. Такое моделирование, по рекомендациям [ГОСТ Р 51232-98. Вода питьевая. Общие требования к методам контроля качества. Введен впервые 17.12.1998. - М.: ИПК Изд-во стандартов, 1999], проводят на модельных растворах, имитирующих очищаемую воду по отдельным компонентам или показателям (цветность, мутность, pH). Использование модельного раствора, наиболее близко имитирующего состав и показатели исследуемой воды, позволяет выбрать эффективную технологию водоочистки, провести настройку оборудования при испытаниях и тем самым снизить затраты при монтаже у источника воды. Однако известные модельные растворы не учитывают дисперсное состояние примесей и при имитации цветности воды используют неорганические вещества, а не гуминовые вещества, обуславливающие цветность природных вод и способствующие образованию устойчивых коллоидных форм железа а, следовательно, и не позволяют правильно установить технологические параметры водоочистных устройств. Наличие примесей в коллоидном состоянии, приводит к снижению производительности водоочистных установок, требует дополнительных затрат, связанных с подбором и использованием более эффективных фильтрующих материалов, коагулянтов. Поэтому создание модельного коллоидного раствора, с заданным размером частиц, имитирующего природные воды является актуальной задачей.

Известно определение эффективности коагулянтов на модельных суспензиях мутности и модельных растворов цветности [ГОСТ Р 51642-2000. Коагулянты для хозяйственно-питьевого водоснабжения. Общие требования и метод определения эффективности. - Веден впервые 01.07.2001. - М.: ИПК Изд-во стандартов, 2000]. Модельный раствор цветности готовят на гумате натрия, при этом не учитывается вклад коллоидного железе в цветность, что характерно для природных вод.

Известен способ приготовления модельных вод и их использование для тестирования водоочистных устройств [Кирьянов Л.Ф. Методические основы гигиенической оценки бытовых водоочистных устройств. Диссертация д-ра биол. Наук: 14.00.07. - М.: РГБ, 2005, с.79]. Состав этих модельных вод включает следующие компоненты: алюминий, железо, марганец, медь, цинк, фенол. Недостатком указанных модельных вод является то, что они не учитывают дисперсное состояние примесей металлов.

Известен способ получения коллоидного раствора железа [Патент РФ №2238140, МПК B01J 13/00, 2004 г.], получаемого путем электрохимического взаимодействия в присутствии органического вещества. В качестве электрода используют пластину из металлического железа, а в качестве органического вещества - олеиновую кислоту. Процесс приготовления данного коллоидного раствора длиться 20 часов, при воздействии электрического тока. Полученный таким способом коллоидный раствор железа может быть использован для изготовления ферромагнитных жидкостей, красителей, медицинских или косметических препаратов. Недостатком данного коллоидного раствора является то, что олеиновая кислота не растворяется в воде и, следовательно, не может быть использована для приготовления водных коллоидных растворов, имитирующих природные воды.

Известен способ получения ферромагнитной жидкости на водной основе [Патент РФ №2058605, кл. H01A 1/28, 1996], включающий осаждение коллоидного магнетита из растворов солей двух- и трехвалентного железа, избытком щелочного реагента и пептизацию полученного осадка при помощи углещелочного реагента, состоящего из молекулярного и коллоидного растворов гуматов при нагревании. Недостатком данного способа является сложность приготовления коллоидного раствора.

Наиболее близкий способ приготовления модельного коллоидного раствора (МКР), принятый за прототип, описан в статье [Сериков Л.В., Шиян Л.Н., Тропина Е.А., Хряпов П.А. и др. Синтез коллоидных соединений железа и исследование их свойств. Известия Томского политехнического университета. 2010. Т.316. №3, с.28-33], где представлены результаты по экспериментальному моделированию состава коллоидных систем, встречающихся в природных подземных водах. Определены размеры частиц при различном соотношении компонентов коллоидных растворов. Способ его приготовления включал внесение в дисперсионную среду при перемешивании, ионов железа и ионов кремния, гуминовых веществ. Наибольшей коллоидной устойчивостью (в течении 30 дней) обладали модельные растворы при значение pH 10,0±0,2, которое поддерживали в течении всего эксперимента. Размер частиц дисперсной фазы по результатам измерений с применением анализатора Zetasizer Nano ZS (Malvem Instruments), составлял ≈ 92 нм.

Недостатки способа-прототипа заключаются в том, что не полностью учтены показатели и состав реальных подземных вод. В способе-прототипе состав дисперсной фазы модельного раствора ограничен содержанием гуминовых веществ, ионов кремния и железа. При этом устойчивости коллоидного раствора добивались, поддерживая значение pH 10,0±0,2, в реальных же природных водах такое значение pH встречается крайне редко и в основном оно находится в пределах 6,0-9,0. Кроме того, в природных водах размер частиц может быть различным, что существенно изменяет подход к выбору технологического режима обработки воды и определяет выбор фильтрующих материалов, в том числе мембранных систем, пористость которых напрямую связана с размером частиц дисперсной фазы.

Задачей предлагаемого изобретения является создание технологии приготовления модельных коллоидных растворов с требуемыми свойствами.

Технический результат заключается в повышении устойчивости модельных коллоидных растворов приближенных по составу и размеру частиц дисперсной фазы к подземным природным водам, содержащим ионы железа, кремния и органические вещества. Это позволит проводить тестирование эффективности работы, как отдельных модулей, входящих в технологический комплекс водоочистки, так и в целом весь комплекс водоочистки и избежать ошибок при монтаже комплекса в отдаленных поселках.

Указанный технический результат достигается тем, что в способе приготовления модельного коллоидного раствора, включающем, как и прототип, внесение в дисперсионную среду при перемешивании сульфата железа (II), метасиликата натрия, гумата натрия, в отличие от прототипа, компоненты в дисперсионную среду вносят в последовательности: метасиликат натрия, гумат натрия, сульфат железа (II), дополнительно вносят сульфат марганца (II) и путем коррекции pH раствора в пределах 6-9 обеспечивают образование коллоидных частиц требуемого размера.

Целесообразно для упрощения способа, предварительно готовить концентрированные растворы используемых компонентов.

Заявляемая последовательность внесения компонентов в дисперсионную среду обусловлена следующим причинами. На свойства гуминовых веществ влияет величина pH среды. В кислой среде при pH ниже 4,5 гуминовые вещества коагулируют с образованием осадка. Для увеличения растворимости гуминовых веществ и увеличения их химической активности по отношению к железу, целесообразно приготовление МКР проводить в щелочной среде, то есть первым компонентом, который вводят в дистиллированную воду являются ионы кремния (метасиликат натрия), который благодаря гидролизу создает при растворении щелочную среду, затем вводят раствор гуминовых веществ, при этом pH раствора сохраняется, затем, когда вводят ионы железа и ионы марганца, pH раствора понижается. При этом значении pH раствора скорость окисления железа (II) незначительная, что не приводит к образованию крупных агрегатов, способных коагулировать, благодаря, защитному действию кремний органических соединений, образующихся путем взаимодействия карбоксильных и гидроксильных групп гуминовых веществ, способствуя увеличению устойчивости коллоидов железа.

Природные воды, обогащенные железом, как правило, содержат и ионы марганца, что определяется составом пород при выщелачивании примесей. Наиболее часто встречающееся содержание Mn(II) составляет ≈ 0,5 мг/л. При окислении ионов марганца(II) в процессе водоподготовки образуются соединения Mn(IV). Значение окислительно-восстановительного потенциала (φ°) для марганца составляет - 1,18 В, что существенно отличается от такового для железа -0,44 В. Поэтому при удалении соединений марганца из подземных вод, возникают проблемы, связанные с природой соединений марганца, что необходимо учитывать при организации процесса водоочистки. Поэтому для расчета количества окислителя, а это связано с организацией процесса аэрации, озонирования или расчета дозы окислителя при реагентной очистке, наличие ионов марганца в модельном растворе позволит избежать ошибок при оценке эффективности работы водоочистных устройств.

Проведенные экспериментальные исследования показали, что размер частиц существенно зависит от значения pH модельного раствора, следовательно, изменяя pH можно регулировать размер части дисперсной фазы, обеспечивая соответствие с исходной природной водой.

Осуществление способа приготовления МКР заключается в последовательном внесении в дисперсионную среду (вода дистиллированная ГОСТ 6709-72) аликвоты концентрированных растворов следующих компонентов: ионов кремния, гуминовых веществ, ионов железа и ионов марганца. Соотношение компонентов МКР задают в соответствии с заранее определенным химическим составом очищаемой природной воды. Концентрированные растворы готовят из следующих веществ: FeSO4×7H2O - соединение железа (СЖ); Na2SiO3×9H2O - соединение кремния (СК); MnSO4×5H2O - соединение марганца (СМ); гумат натрия - гуминовые вещества (ГВ); и вода дистиллированная. При приготовлении концентрированного раствора СЖ, для предотвращения окисления ионов железа (II), используют концентрированную серную кислоту из расчета 4 мл на 1 литр раствора. Характеристики концентрированных растворов приведены в таблице 1. Измеряют pH МКР с использованием pH-метра, затем проводят корректировку pH раствора, добавляя щелочь (например, гидроокись натрия, гидроокись калия) в диапазоне 6-9, регулируя размер получаемых коллоидных частиц железа в соответствии с размером частиц исходной природной воды. Распределение частиц по размерам в приготовленных модельных растворах исследовали на анализаторе Zetasizer Nano ZS (Malvem Instruments), который позволяет проводить измерение размеров частиц в диапазоне 0,6-6000 нм.

Пример 1. Приготовление модельного коллоидного раствора осуществляли по следующей схеме: в дисперсионную среду (вода дистиллированная) при перемешивании вносили аликвоту концентрированных растворов: СК, ГВ, СЖ и СМ (таблица 1), до достижения концентраций компонентов в МКР для СК 20 мг/л, для ГВ 4 мг/л, для СЖ 5,6 мг/л и для СМ 0,5 мг/л. Такой выбор концентраций компонентов основан на мониторинге природных вод Западно-Сибирского региона [Тропина Е.А. Аппаратурно-технологическая система получения питьевой воды из подземных источников Западно-Сибирского региона. Диссертация кандидата техн. наук: 13.11.2007. - Томск: Б.и., 2007 с.52-58; 72]. В таблице 2 приведены данные по содержанию ионов кремния, железа, марганца, органических веществ и величине pH, характерных для природных вод Западно-Сибирского региона. Размер коллоидных частиц в этих водах различен и меняется от 100 до 450 нм.

Например, для приготовления 1 л МКР в мерную колбу объемом 1 л вносили 900 мл дистиллированной воды, далее добавляли 20 мл раствора СК, затем 10 мл раствора ГВ, 10 мл раствора СЖ и 5 мл СМ. При введении каждой порции добавки раствор перемешивали. Объем раствора доводили до метки 1 л дистиллированной водой. Корректировку pH в диапазоне 6-9 проводили 1 М раствором едкого натрия по показаниям pH-метра. Такой выбор диапазона pH обусловлен тем, что природные воды как, правило, имеют pH 6-9, а так же в соответствии с ГОСТ 2761-84 «Источники централизованного хозяйственно-питьевого водоснабжения» значение pH водного объекта, пригодного в качестве источника хозяйственно-питьевого водоснабжения должно быть в пределах 6-9. Размер коллоидных частиц в полученных растворах составлял 100-200 нм. В таблице 3 приведены данные о зависимости размера коллоидных частиц от величины pH. Из таблицы 3 видно, что размер коллоидных частиц МКР увеличивается с ростом pH МКР, что позволяет подбирать размер коллоидных частиц в соответствии с характеристиками очищаемой природной воды. Полученные коллоидные растворы стабильны в течение года. Содержание железа, кремния в растворах определяли по стандартным методикам, рекомендованным для питьевых вод ГОСТ Р 51232-98. Водородный показатель измеряли с использованием pH-метра «ЭКСПЕРТ-pH». Распределение частиц по размерам в приготовленных модельных растворах исследовали на анализаторе Zetasizer Nano ZS (Malvem Instruments), который позволяет проводить измерение размеров частиц в диапазоне 0,6-6000 нм.

Пример 2. Приготовление модельных коллоидных растворов осуществляли при различном соотношении концентрации компонентов МКР. В природных водах содержание железа в коллоидном состоянии может изменяться в широком диапазоне значений, в зависимости от условий формирования состава этих вод. На образование коллоидных соединений железа влияют растворенные органические вещества гуминового происхождения и ионы кремния, концентрации которых также лежат в широком диапазоне значений. Так, например, для подземных вод Томской области по данным [Сериков Л.В., Шиян Л.Н., Тропина Е.А. Особенности природных вод Западно-Сибирского региона // Высокоразбавленные системы: массоперенос, реакции и процессы, «КарлсТом»: Матер. III рос.-герм. семинара 26-29 октября 2008 г. - Томск, 2008 - С.54-57; Сериков Л.В., Шиян Л.Н., Тропина Е.А., и др. Коллоидные системы подземных вод Западно-Сибирского региона // Известия Томского политехнического университета. - 2006. - Т.309. - №6, с.27-31], концентрация железа в коллоидном состоянии меняется от 0,5 до 3,9 мг/л, кремния 10-28 мг/л, органических веществ, определенных по значению перманганатной окисляемости от 3,0 до 14,0 мг О2/л. В таблице 4 приведены показатели природной воды конкретных источников воды, в которых железо присутствовало в коллоидном виде.

Для воды, содержащей железо в коллоидном состоянии, выбор технологии водоподготовки определяется в первую очередь коагуляционной устойчивостью коллоида. Устойчивость коллоидов может оцениваться по значению электрокинетического потенциала (ζ-потенциал). Если его значение меньше 10-20 мВ, то коллоиды малоустойчивы, и способны к произвольной коагуляции. Так, например, суспензии поверхностных вод имеют электрокинетический потенциал около от -10 до -15 мВ, гидроксиды тяжелых металлов образуют коллоидные системы с потенциалом около 40-50 мВ [Николадзе Г.И. Улучшение качества подземных вод. - М.: Стройиздат, 1987, с.18]. В таблице 5 приведены примеры приготовления МКР, имитирующих природные воды, показатели которых представлены в таблице 4. Например, для приготовления МКР, имитирующего состав природной воды п.Тарко-Сале Тюменской области в мерную колбу объемом 1 л вносили 900 мл дистиллированной воды, далее добавляли 12 мл раствора СК, затем 10 мл раствора ГВ, 0,9 мл раствора СЖ и 2 мл СМ. При введении каждой порции добавки раствор перемешивали. Объем раствора доводили до метки 1 л дистиллированной водой. Корректировку pH до значения 6,2 проводили раствором едкого натрия по показаниям pH-метра.

Как видно из таблицы 5, имитирующие природные воды МКР, имеют ζ-потенциал менее 20 мВ, что указывает на их устойчивость к коагуляции.

Пример 3. Для подтверждения влияния последовательности внесения компонентов в дисперсионную среду на устойчивость МКР был проведен ряд экспериментов. Приготовление модельных коллоидных растворов (МКР) осуществляли по следующей схеме: в дисперсионную среду (вода дистиллированная) при перемешивании в определенной последовательности вносили аликвоту концентрированных растворов кремния, гуминовых веществ, железа и марганца до достижения концентрации компонентов (20:4:5,6:0,5 мг/л) соответственно. В таблице 6 приведены примеры приготовления МКР, при различной последовательности внесения компонентов, что существенно влияет на устойчивость МКР. В данном примере величину pH МКР поддерживали 7,5±0,2. На свойства гуминовых веществ влияет величина pH среды. В кислой среде при pH ниже 4,5 гуминовые вещества коагулируют с образованием осадка. Для увеличения растворимости гуминовых веществ и увеличения их химической активности по отношению к железу, целесообразно приготовление МКР проводить в щелочной среде. Поэтому для приготовления модельного раствора первым реагентом, который вводили в дистиллированную воду, являлся метасиликат натрия (раствор СК), который благодаря гидролизу создает при растворении щелочную среду порядка 8. В этот раствор вводили раствор ГВ, pH которого равен 9,4 (табл.1), затем вводили кислый раствор СЖ и раствор СМ, и pH образующегося МКР становился равным 5. При таком значении pH раствора скорость окисления железа (II) незначительная, что не приводит к образованию крупных агрегатов, способных коагулировать, благодаря, защитному действию кремний органических соединений, образующихся путем взаимодействия карбоксильных и гидроксильных групп гуминовых веществ.

Из таблицы 6 видно, что устойчивость к коагуляции в течение года имеет МКР под №6, приготовленный в последовательности: СК+ГВ+СЖ+СМ, при которой в щелочную среду, создаваемую соединениями кремния и ГВ, вносится раствор СЖ и СМ.

Разработанный способ позволяет осуществить приготовление устойчивых модельных коллоидных растворов с требуемыми свойствами, учитывающими состав примесей природных вод и размер коллоидных частиц.

Таблица 1.
Характеристики концентрированных растворов, используемых для приготовления МКР.
Вещества, используемые для приготовления МКР Шифр раствора Концентрация раствора pH
Вода дистиллированная ГОСТ 6709-72 - - 5,4±0,2
FeSO4×7H2O, H2SO4 марки х.ч. СЖ (соединения железа) 560 мг/л (по Fe) 1,1±0,2
MnSO4×5H2O, марки х.ч. СМ (соединения марганца) 100 мг/л (по Мп) 7,0±0,2
Na2SiO3×9H2O, марки х.ч. СК (соединения кремния) 1000 мг/л (по Si) 12,0±0,2
Гумат натрия, 4% ГВ (гуминовые вещества) 400 мг/л 9,4±0,2
NaOH, марки х.ч. - 1 М (40 г/л)

Таблица 2.
Показатели подземных вод Западно-Сибирского региона
pH Железо общее, мг/л Марганец, мг/л Содержание органических веществ1), мг О2 Кремний (по Si), мг/л Средний размер частиц дисперсной фазы, нм
6,0-7,0 1,0-25,0 0,03-0,75 3,0-14,0 10,0-28,0 100-450
1)Содержание органических веществ определяли по значению перманганатной окисляемости

Таблица 3.
Зависимость размера коллоидных частиц МКР от величины водородного показателя (pH)
pH раствора МКР заявляемый объект Прототип
6,0 7,0 8,0 9,0 10,0
Средний размер частиц дисперсной фазы, нм 200 140 120 100 90

Таблица 4.
Показатели природной воды Западно-Сибирского региона
Показатели природной воды Место отбора пробы подземной воды
I II III IV
г.Сургут п.Тарко-Сале г.Нижневартовск п.Белый Яр
РН 6,7 6,2 6,8 6,5
ζ-потенциал, мВ -30 -28 -25 -17
Железо общее, мг/л 10,6 1,9 22,4 9,6
Железо в коллоидном состоянии, мг/л 3,9 0,5 4,3 1,8
Марганец, мг/л 0,11 0,22 0,16 0,47
Содержание органических веществ1), мг О2 9,6 3,5 4,6 4,9
Кремний (по Si), мг/л 15,8 12 16,9 16,5
1) Содержание органических веществ определяли по значению перманганатной окисляемости

Таблица 5.
Характеристика модельных коллоидных растворов, имитирующих природные воды, показатели которых приведены в таблице 4
Характеристика МКР Наименование МКР
I II III IV
pH 6,7 6,2 6,8 6,5
ζ-потенциал, мВ -30 -30 -28 -30
Концентрация ионов железо, мг/л 4,0 0,5 4,0 2,0
Концентрация ионов марганца, мг/л 0,10 0,20 0,15 0,50
Концентрация ГВ, мг/л 10,0 4,0 5,0 5,0
Концентрация ионов кремний, мг/л 15,0 12,0 17,0 17,0

Таблица 6.
Влияние последовательности введения добавок компонент на устойчивость МКР
Но-
мер МКР
Шифр МКР Концентрация железа общего в МКР, мг/л Концентрация коллоидного железа в МКР в зависимости от времени отстаивания, мг/л
24 часа 14 дней 60 дней 1 год
1 ГВ+СЖ+СК+СМ 5,6±0,8 2,7±0,4 2,4±0,4 2,9±0,4 -
2 ГВ+СК+СЖ+СМ 5,3±0,5 4,9±0,7 5,3±0,5 -
3 СЖ+ГВ+СК+СМ 4,2±0,6 3,6±0,5 4,2±0,6 -
4 СЖ+СК+ГВ+СМ 3,5±0,5 3,4±0,5 3,4±0,5 -
5 СК+СЖ+ГВ+СМ 4,5±0,7 4,5±0,7 4,5±0,7 -
6 СК+ГВ+СЖ+СМ 5,6±0,8 5,6±0,8 5,6±0,8 5,6±0,8

Источник поступления информации: Роспатент

Показаны записи 51-60 из 145.
10.11.2014
№216.013.04af

Способ визуализации ультразвуковой дефектоскопии трехмерного изделия

Использование: для визуализации ультразвуковой дефектоскопии трехмерного изделия. Сущность изобретения заключается в том, что размещают пьезопреобразователи антенной решетки на объекте контроля, причем расстояние между соседними положениями антенной решетки, при которой получают одно...
Тип: Изобретение
Номер охранного документа: 0002532597
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.04b8

Устройство ультразвуковой томографии

Использование: для визуализации ультразвуковой дефектоскопии трехмерного изделия. Сущность изобретения заключается в том, что устройство ультразвуковой томографии содержит антенную решетку с n приемно-передающими элементами, каждый из которых соединен с выходом соответствующего генератора...
Тип: Изобретение
Номер охранного документа: 0002532606
Дата охранного документа: 10.11.2014
20.11.2014
№216.013.08b4

Способ определения частотных границ полезного сигнала и полос пропускания цифровых частотных фильтров

Изобретение относится к области цифровой обработки сигналов и может быть использовано для решения задач неразрушающего контроля и диагностики оборудования на основе корреляционного анализа. Техническим результатом является определение частотных границ полезного сигнала и полос пропускания...
Тип: Изобретение
Номер охранного документа: 0002533629
Дата охранного документа: 20.11.2014
10.12.2014
№216.013.0cf1

Способ прогнозирования износостойкости твердосплавных режущих инструментов

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования-контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации. Сущность: проводят испытания на изменение величины исходного параметра от...
Тип: Изобретение
Номер охранного документа: 0002534730
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0cf3

Способ количественного определения афлатоксина в1 методом дифференциальной вольтамперометрии

Изобретение относится к области аналитической химии и может быть использовано в фармакокинетических исследованиях, для контроля кормов и кормовых добавок, в пищевой промышленности для определения фальсификации и др. Способ определения афлатоксина B1, включающий следующие операции: афлатоксин...
Тип: Изобретение
Номер охранного документа: 0002534732
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0d2f

Способ получения фторида водорода из отходов алюминиевого производства

Изобретение может быть использовано в химической промышленности. Способ получения фторида водорода из отходов алюминиевого производства включает сернокислотное разложение криолитсодержащих отходов. В качестве отходов алюминиевого производства берут пыль электрофильтров. Отходы предварительно...
Тип: Изобретение
Номер охранного документа: 0002534792
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0d82

Шихта для получения пинкового пигмента со структурой оловянного сфена

Изобретение относится к керамическому производству, в частности, к получению керамических пигментов. Техническим результатом изобретения является понижение температуры синтеза пигмента, удешевление керамических пигментов и утилизация отхода производства глинозема. Шихта для получения пинкового...
Тип: Изобретение
Номер охранного документа: 0002534875
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0e6c

Способ получения нанопорошков металлов с повышенной запасенной энергией

Изобретение относится к порошковой металлургии, в частности к получению нанопорошков металлов с повышенной запасенной энергией. Может использоваться для повышения реакционной способности нанопорошков при спекании, горении, в энергосберегающих технологиях. Образец нанопорошка металла облучают...
Тип: Изобретение
Номер охранного документа: 0002535109
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0e8b

Композиция с антиоксидантной и антибактериальной активностью

Изобретение относится к области медицины и представляет собой композицию, обладающую антиоксидантной и антибактериальной активностью, включающую аскорбат лития, отличающуюся тем, что дополнительно содержит бензоат лития при следующем соотношении компонентов, мас.%: аскорбат лития - 50; бензоат...
Тип: Изобретение
Номер охранного документа: 0002535140
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0f28

Способ защиты электродвигателей от коротких замыканий

Изобретение относится к электротехнике, а именно к технике релейной защиты, и может быть использовано для защиты электродвигателей. Технический результат - повышение чувствительности к токам двухфазных коротких замыканий. Способ защиты электродвигателей от коротких замыканий заключается в том,...
Тип: Изобретение
Номер охранного документа: 0002535297
Дата охранного документа: 10.12.2014
Показаны записи 51-60 из 237.
20.10.2013
№216.012.75ac

Способ управления погружением подводного объекта и устройство для его осуществления

Группа изобретений относится к автоматическому управлению подводными объектами с использованием судовых спускоподъемных устройств. Способ заключается в изменении длины частей гибкой механической связи между подводным объектом и судном-носителем. Основное перемещение подводного объекта по...
Тип: Изобретение
Номер охранного документа: 0002495784
Дата охранного документа: 20.10.2013
27.10.2013
№216.012.78a8

Способ предварительной подготовки нефти на промыслах при многоступенчатой сепарации

Изобретение относится к области промысловой подготовки нефти. Способ предварительной подготовки нефти на промыслах при многоступенчатой сепарации, включающий закачку реагента-деэмульгатора в трубопровод, подачу на вход первого сепаратора воды, нагретой до 100°С тепловой энергией, выделяемой...
Тип: Изобретение
Номер охранного документа: 0002496550
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.78bc

Способ получения сорбента для очистки воды от ионов железа и марганца

Изобретение относится к получению неорганических сорбентов. Способ получения сорбента включает обработку диоксида титана, состоящего из кристаллических фаз анатаза и рутила, ультразвуком в 0,2 н. растворе NaOH или НСl в течение 10 мин. Сорбент промывают декантацией не менее 3 раз и сушат при...
Тип: Изобретение
Номер охранного документа: 0002496570
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.79b5

Травитель для титана

Изобретение предназначено для подготовки поверхности титана перед нанесением биоактивных покрытий на поверхность имплантата. Травитель для титановых имплантатов содержит фосфорную кислоту, окислитель и воду при следующих количественных соотношениях компонентов, мас.%: фосфорная кислота 23-65,...
Тип: Изобретение
Номер охранного документа: 0002496819
Дата охранного документа: 27.10.2013
10.11.2013
№216.012.7eed

Устройство для индивидуального теплоснабжения

Изобретение относится к теплоэнергетике, а именно к устройствам газификации твердого топлива, используемым для обеспечения потребителя теплом и горячим водоснабжением. Устройство содержит бункер для твердого топлива с расположенными в нем колосниковой решеткой и загрузочным люком,...
Тип: Изобретение
Номер охранного документа: 0002498166
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.7f60

Термоэлектрический способ неразрушающего контроля качества поверхностного слоя металла

Использование: для неразрушающего контроля качества поверхностного слоя металла. Сущность: заключается в том, что используют две группы одинаково нагретых электродов из одного материала, устанавливают одну группу нагреваемых электродов на контролируемое изделие, а другую па эталонный образец,...
Тип: Изобретение
Номер охранного документа: 0002498281
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.7f61

Способ определения содержания водорода в титане

Изобретение может быть использовано для контроля материалов, изначально свободных и защищенных от водорода для космических аппаратов, активных зон водоохлаждаемых ядерных энергетических установок (ЯЭУ), вентиляторов двигателей самолетов, дисков турбин высокого и низкого давления, их планетарных...
Тип: Изобретение
Номер охранного документа: 0002498282
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.7f68

Способ определения платины в рудах по пику селективного электроокисления сu из интерметаллического соединения ptcu методом инверсионной вольтамперометрии

Изобретение может быть использовано в различных геологических разработках при поиске и разведке в случае анализа руд, рудных концентратов и пород. Способ определения платины в рудах по пику селективного электроокисления Cu из интерметаллического соединения PtCu методом инверсионной...
Тип: Изобретение
Номер охранного документа: 0002498289
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.7f69

Способ определения родия в водных растворах методом инверсионной вольтамперометрии по пику селективного электроокисления меди из rhcu

Изобретение относится к аналитической химии, а именно к способам определения содержания ионов металлов для определения в питьевых и природных водах методом инверсионной вольтамперометрии (ИВ). Способ определения родия в водных растворах методом инверсионной вольтамперометрии по пику...
Тип: Изобретение
Номер охранного документа: 0002498290
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.7f8b

Способ определения наличия гармонических составляющих и их частот в дискретных сигналах

Изобретение относится к области цифровой обработки сигналов и может быть использовано для определения наличия гармонических составляющих и их частот в сигналах различного происхождения при решении задач неразрушающего контроля и диагностики оборудования на основе корреляционного анализа....
Тип: Изобретение
Номер охранного документа: 0002498324
Дата охранного документа: 10.11.2013
+ добавить свой РИД