×
20.12.2013
216.012.8e04

Результат интеллектуальной деятельности: НАДКАЛИБЕРНАЯ ПУЧКОВАЯ ГРАНАТА "ДРЕЗНА" К РУЧНОМУ ГРАНАТОМЕТУ

Вид РИД

Изобретение

Аннотация: Изобретение относится к боеприпасам, в частности к надкалиберным пучковым гранатам к ручному гранатомету. Надкалиберная пучковая граната содержит калиберную часть с метательным зарядом и средством воспламенения, расположенную впереди нее надкалиберную пучковую боевую часть с зарядом взрывчатого вещества, осколочной пластиной и траекторным взрывателем. Боевая часть выполнена в виде плоского тела, круглого или квадратного в плане, установленного на двух точках подвески в консольной раме, присоединенной к переднему торцу калиберной части. Точки подвески расположены на прямой, перпендикулярной оси снаряда. Боевая часть имеет возможность вращения вокруг оси, перпендикулярной оси снаряда под действием устройства поворота. Достигается повышение эффективности гранаты. 10 з.п. ф-лы, 11 ил.

Изобретение относится к боеприпасам, а более конкретно - к надкалиберным пучковым гранатам ручных гранатометов.

Граната, предложенная в [1] (фиг.7) и принятая в качестве прототипа изобретения, содержит калиберную часть с метательным зарядом и средством воспламенения, расположенную впереди нее надкалиберную пучковую боевую часть с зарядом взрывчатого вещества, траекторным взрывателем и осколочной пластиной.

При траекторном подрыве в упрежденной точке перед целью из осколочной пластины формируется пучок поражающих элементов (ПЭ), накрывающий цель. Количество ПЭ данной массы при заданной толщине пластины возрастает пропорционально квадрату ее диаметра. Однако чрезмерное увеличение диаметра надкалиберной части приведет к возрастанию сопротивления воздуха на полете, что в свою очередь снизит дальность стрельбы. Поэтому для известных гранатометов отношение диаметра надкалиберной части к диаметру калиберной части не превышает 3.

Например, для массового отечественного гранатомета РПГ-7 диаметр калиберной части составляет 40 мм, максимальный диаметр надкалиберной части (граната ТБГ-7В) - 105 мм, отношение диаметров 2,6.

Невозможность значительного увеличения диаметра надкалиберной части является существенным недостатком прототипа. Настоящее изобретение направлено на устранение этого недостатка.

Техническое решение состоит в том, что надкалиберная часть выполняется в виде плоского тела, причем ось, проходящая через центр тела и параллельная его большим плоскостям, расположена перпендикулярно оси снаряда, а тело выполнено с возможностью поворота вокруг оси тела на угол 90°, а сама надкалиберная часть расположена впереди калиберной, причем калиберная часть содержит метательный заряд и средство воспламенения.

До выстрела и на полете плоское тело расположено таким образом, что его большие плоскости параллельны оси снаряда, а перед подрывом производится поворот тела вокруг его оси на угол 90°, в результате чего тело устанавливается большими плоскостями перпендикулярно оси снаряда.

Тело является пучковой поворотной надкалиберной боевой частью.

Передняя часть гранаты с исполнением поворотной боевой части в виде низкого цилиндра (диска) представлена на фиг.1. К калиберной части 1 гранаты прикреплена консольная рама (кронштейн) 2. Поворотная боевая часть 3 подвешена в этой раме на двух точках подвески 4. В обращенной к раме половине боевой части установлен блок 5, в котором размещены траекторный взрыватель и устройство поворота боевой части вокруг оси 6. Блок связан со стопором 7, фиксирующим боевую часть относительно рамы. По оси симметрии боевой части установлен детонатор 8, электрически или пиротехнически связанный со взрывателем.

Варианты исполнения поворотной боевой части показаны на фиг.2, 3, 4. Боевая часть, показанная на фиг.2, содержит корпус 9, выполненный из легкого сплава или композитного материала (в том числе с применением наноструктур), заряд взрывчатого вещества (ВВ) 10, детонатор 8 и осколочную пластину 11. В данном случае осколочная пластина выполнена в виде плоского набора готовых поражающих элементов (ГПЭ) (условно показаны ГПЭ сферической формы).

На фиг.3 показано исполнение боевой части с выпуклой осколочной пластиной 11 заданного дробления (в данном случае использовано внутреннее рифление пластины).

На фиг.4 показано исполнение боевой части, содержащей пластину с выдавленными на ней менисковыми углублениями, обращенными вершинами к заряду ВВ, и генератором 12 плоской детонационной волны. Схемы плосковолновых генераторов известны. Возможные варианты исполнения освещены в [1].

Блок 5, совмещающий траекторный взрыватель и устройство поворота, размещен в корпусе боевой части рядом со стопором 7. Устройство поворота содержит реактивный двигатель или устройство отстрела балластного груза. При этом двигатель поворота выполнен таким образом, что его импульс приблизительно равен импульсу сопротивления воздуха на наклонную поверхность диска в процессе его поворота на угол 90°, последнее обеспечивает минимальное отклонение гранаты от расчетной траектории.

На фиг.5 представлено исполнение боевой части в виде квадратного в плане прямоугольника с осью подвески, параллельной стороне квадрата, с соответствующим изменением конфигурации консольной рамы 2. Для снижения сопротивления воздуха на полете боковая сторона боевой части может быть снабжена клиновидным обтекателем 13 (фиг.6). На фиг.7 представлено исполнение боевой части в такой же форме, но ось подвески параллельна диагонали квадрата. Граната этого исполнения будет обладать наименьшим сопротивлением воздуха на полете.

Исполнение гранаты с поворотной боевой частью вида «Диск» для штатного ручного гранатомета РПГ-7 показано на фиг.8. Граната показана в состоянии после выброса из ствола гранатомета с помощью метательного порохового заряда (14 - маршевый реактивный двигатель, 15 - сопловой блок, 16 - раскрывающийся перьевой стабилизатор). Турбинка, расположенная в штатной противотанковой кумулятивной гранате на заднем конце гранаты и обеспечивающая ее подкручивание на полете, в предлагаемой конструкции может быть исключена.

Действие гранаты

Граната может комплектоваться различными типами траекторных взрывателей: временными, неконтактными, командными. В первом случае ввод полезного времени производится перед выстрелом.

При хранении и переноске гранат пучковая боевая часть находится в положении, показанном на фиг.1, что обеспечивает удобство переноски (фиг.9).

Основные элементы траектории показаны на фиг.10. При подлете гранаты в точку А взрыватель подает команду на включение устройства поворота боевой части. При этом происходит выключение стопора 7. При повороте боевой части на угол 90° (фиг.11) происходит ее подрыв (в точке В) с формированием осевого пучка ГПЭ с углом полураствора γ. Принимая величину пролета гранаты за время поворота S, оптимальную дальность подрыва U, получим соотношение для дальности включения устройства доворота

Z=S+U

Радиус накрываемого пуском ГПЭ круга составит

R=Utgγ

Средняя плотность ГПЭ в накрываемом круге

П=N/πr2

Здесь N - число ГПЭ.

Математическое ожидание числа ГПЭ, попадающих в уязвимую площадь цели Sц

<n>=ПSц

Экспоненциальный закон падения скорости ГПЭ на полете

V=Voexp[-AU]

А - баллистический коэффициент ГПЭ

Vo - начальная скорость ГПЭ.

Вероятность поражения цели пучком ГПЭ

W1=1-exp[-<n>po].

Оптимальные пропорции поворотной боевой части при заданной массе выстрела находятся по критерию максимума вероятности поражения заданной цели. Расчеты проводились для гранат к гранатомету РПГ-7 (диаметр ствола dств=40 мм). В качестве опорной конструкции принята надкалиберная термобарическая граната ТБГ-7В [2] со следующими характеристиками:

диаметр надкалиберной части d 105 мм
отношение диаметров d/dств 2,6
лобовая площадь гранаты (мидель) S 86,5 см2
масса выстрела 4,5 кг
максимальная дальность стрельбы 550 м

Принята масса поворотной боевой части типа «диск» 3 кг, осколочная пластина выполнена в виде однослойной укладки готовых поражающих элементов (ГПЭ), материал ГПЭ - сплав на основе вольфрама (плотность γо=16 г/см3), взрывчатое вещество с плотностью ρo=17 г/см3. Скоростью детонации 8000 м/с, угол полураствора пучка ГПЭ γ=20°, цель с уязвимой площадью 0,5 м2, кинетическая энергия ГПЭ при достоверном поражении 1000 Дж.

Накладывалось условие на величину отношения Sб/S (Sб - площадь проекции боковой поверхности диска), а именно Sб/S≤0,8.

Оптимальные расчетные параметры боевой части находятся в диапазонах:

диаметр диска d=120…160 мм (d/dств=3…4);

отношение массы ВВ к массе осколочной пластины (коэффициент нагрузки β)β=0,6…0,8;

масса одного ГПЭ 1,5…2,5 г;

дальность подрыва 15…25 м.

Ниже приводится пример исполнения боевой части надкалиберной гранаты

диаметр боевой части типа «диск» 150 мм
толщина диска 45 мм
площадь проекции боковой поверхности диска 67,5 см2
отношение площадей Sб/S 0,78

(условие выполнено)

суммарная масса поворотной боевой части 3 кг

В том числе:

масса заряда ВВ 0,95 кг
масса осколочной пластины (слоя ГПЭ) 1,4 кг
масса корпуса с взрывателем 0,65 кг
масса ГПЭ (куб 5×5×5 мм) 2 г
баллистический коэффициент ГПЭ 0,016 1/м
количество ГПЭ 700
время поворота боевой части на угол 90° 0,05 с
средняя скорость гранаты на траектории 200 м/с
пролет S гранаты за время доворота 10 м
оптимальная дальность подрыва U 20 м
радиус r накрываемого круга 7,28 м
площадь накрываемого круга 166 м2
плотность ГПЭ в круге 4,2 1/м2
количество ГПЭ, попадающих в уязвимую площадь цели 2,1
коэффициент нагрузки β 0,68
начальная скорость ГПЭ 1600 м/с
скорость ГПЭ у цели 1160 м/с
кинетическая энергия ГПЭ у цели 1345 Дж
вероятность ро ~0,99
вероятность W1 0,86

Надкалиберные пучковые гранаты с поворотной боевой частью могут найти применение и в других классах оружия, в первую очередь в подствольных гранатометах. При этом снимается требование на изменение конструкции гранатомета для увеличения расстояния между осями пулевого и гранатного стволов, возникающее при использовании обычных пучковых гранат с большим диаметром надкалиберной части.

Технический результат: увеличение боевой эффективности ручных гранатометов.

Литература

1. RU №2118788.

2. Стрелковое оружие и средства ближнего боя. «Военный парад», 2005, стр.53.


НАДКАЛИБЕРНАЯ ПУЧКОВАЯ ГРАНАТА
НАДКАЛИБЕРНАЯ ПУЧКОВАЯ ГРАНАТА
НАДКАЛИБЕРНАЯ ПУЧКОВАЯ ГРАНАТА
НАДКАЛИБЕРНАЯ ПУЧКОВАЯ ГРАНАТА
НАДКАЛИБЕРНАЯ ПУЧКОВАЯ ГРАНАТА
НАДКАЛИБЕРНАЯ ПУЧКОВАЯ ГРАНАТА
НАДКАЛИБЕРНАЯ ПУЧКОВАЯ ГРАНАТА
НАДКАЛИБЕРНАЯ ПУЧКОВАЯ ГРАНАТА
НАДКАЛИБЕРНАЯ ПУЧКОВАЯ ГРАНАТА
НАДКАЛИБЕРНАЯ ПУЧКОВАЯ ГРАНАТА
НАДКАЛИБЕРНАЯ ПУЧКОВАЯ ГРАНАТА
Источник поступления информации: Роспатент

Показаны записи 71-75 из 75.
27.08.2016
№216.015.4fef

Устройство для хранения тромбоцитосодержащих трансфузионных сред

Изобретение относится к области медицинской техники. Устройство для хранения тромбоцитосодержащих трансфузионных сред содержит теплоизолированный корпус, систему управления, связанную с датчиками температуры, размещенными в имитаторах полимерных контейнеров с тромбоцитосодержащими...
Тип: Изобретение
Номер охранного документа: 0002595851
Дата охранного документа: 27.08.2016
13.01.2017
№217.015.7a33

Инкубатор тромбоцитосодержащих трансфузионных сред

Изобретение относится к области медицинской техники. Инкубатор тромбоцитосодержащих трансфузионных сред содержит теплоизолированный корпус, систему управления, связанную с датчиками температуры, размещенными в имитаторах полимерных контейнеров с тромбоцитосодержащими трансфузионными средами в...
Тип: Изобретение
Номер охранного документа: 0002599032
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.84b3

Быстродействующий синтезатор частот

Изобретение относится к радиотехнике и может использоваться в синтезаторе частоты с импульсной фазовой автоподстройкой частоты. Достигаемый технический результат - повышение быстродействия при смене рабочей частоты. Быстродействующий синтезатор частоты содержит опорный генератор,...
Тип: Изобретение
Номер охранного документа: 0002602991
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.89f9

Способ определения стойкости полупроводниковых приборов свч к воздействию ионизирующих излучений

Использование: для отбраковки полупроводниковых приборов. Сущность изобретения заключается в подаче на каждый прибор из группы однотипных приборов неизменные напряжения питания, приложении последовательности циклов ионизирующего излучения, доза которого накапливается в каждом цикле с тем, чтобы...
Тип: Изобретение
Номер охранного документа: 0002602416
Дата охранного документа: 20.11.2016
25.08.2017
№217.015.9fc5

Способ определения стойкости к радиационным и температурным воздействиям наноэлектронного резонансно-туннельного диода (ртд) на основе многослойных algaas (алюминий, галлий, арсеникум) полупроводниковых гетероструктур

Использование: для определения стойкости к радиационным и температурным воздействиям наноэлектронного резонансно-туннельного диода. Сущность изобретения заключается в том, что способ определения стойкости к радиационным и температурным воздействиям наноэлектронного резонансно-туннельного диода...
Тип: Изобретение
Номер охранного документа: 0002606174
Дата охранного документа: 10.01.2017
Показаны записи 71-75 из 75.
27.08.2016
№216.015.4fef

Устройство для хранения тромбоцитосодержащих трансфузионных сред

Изобретение относится к области медицинской техники. Устройство для хранения тромбоцитосодержащих трансфузионных сред содержит теплоизолированный корпус, систему управления, связанную с датчиками температуры, размещенными в имитаторах полимерных контейнеров с тромбоцитосодержащими...
Тип: Изобретение
Номер охранного документа: 0002595851
Дата охранного документа: 27.08.2016
13.01.2017
№217.015.7a33

Инкубатор тромбоцитосодержащих трансфузионных сред

Изобретение относится к области медицинской техники. Инкубатор тромбоцитосодержащих трансфузионных сред содержит теплоизолированный корпус, систему управления, связанную с датчиками температуры, размещенными в имитаторах полимерных контейнеров с тромбоцитосодержащими трансфузионными средами в...
Тип: Изобретение
Номер охранного документа: 0002599032
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.84b3

Быстродействующий синтезатор частот

Изобретение относится к радиотехнике и может использоваться в синтезаторе частоты с импульсной фазовой автоподстройкой частоты. Достигаемый технический результат - повышение быстродействия при смене рабочей частоты. Быстродействующий синтезатор частоты содержит опорный генератор,...
Тип: Изобретение
Номер охранного документа: 0002602991
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.89f9

Способ определения стойкости полупроводниковых приборов свч к воздействию ионизирующих излучений

Использование: для отбраковки полупроводниковых приборов. Сущность изобретения заключается в подаче на каждый прибор из группы однотипных приборов неизменные напряжения питания, приложении последовательности циклов ионизирующего излучения, доза которого накапливается в каждом цикле с тем, чтобы...
Тип: Изобретение
Номер охранного документа: 0002602416
Дата охранного документа: 20.11.2016
25.08.2017
№217.015.9fc5

Способ определения стойкости к радиационным и температурным воздействиям наноэлектронного резонансно-туннельного диода (ртд) на основе многослойных algaas (алюминий, галлий, арсеникум) полупроводниковых гетероструктур

Использование: для определения стойкости к радиационным и температурным воздействиям наноэлектронного резонансно-туннельного диода. Сущность изобретения заключается в том, что способ определения стойкости к радиационным и температурным воздействиям наноэлектронного резонансно-туннельного диода...
Тип: Изобретение
Номер охранного документа: 0002606174
Дата охранного документа: 10.01.2017
+ добавить свой РИД