×
20.12.2013
216.012.8c86

Результат интеллектуальной деятельности: ДВУХСЛОЙНАЯ, СТОЙКАЯ К ДИНАМИЧЕСКОМУ ВОЗДЕЙСТВИЮ, ЛИСТОВАЯ СТАЛЬ ВЫСОКОЙ ПРОЧНОСТИ И СПОСОБ ЕЕ ПРОИЗВОДСТВА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области производства материалов для броневых изделий и конструкций, подвергающихся воздействию динамических нагрузок. Способ производства листовой стали включает сварку взрывом тыльного и лицевого слоев стали. Затем осуществляют отпуск двухслойного листа при температуре 600-650°С. Затем осуществляют нагрев листов в печи до температуры 1050-1150°С и прокатку в интервале температур 1150-800°С с суммарным обжатием 30-40%. Далее производят закалку в масло или воду при температуре 900-950°С и двойной отпуск при температуре 170-200°С с охлаждением на воздухе. Техническим результатом изобретения является повышение бронестойкости от пуль двухслойной, стойкой к динамическому воздействию, листовой стали. 2 н. и 1 з.п. ф-лы, 1 табл., 1 пр., 1 ил.

Изобретение относится к области производства материалов для броневых конструкций транспортных средств и стационарных объектов.

Известен ряд технических решении, относящихся к области свирки взрывом. Практически во всех технических решениях процесс сварки металлов в твердой фазе предусматривает последовательное создание физического контакта двух материалов; при котором в результате пластической деформации контактирующих поверхностей возможно их прочное соединение при применении нагрузок, превышающих предел текучести материалов.

Элементами сварки взрывом являются: неподвижная деталь, метаемая пластина, заряд (ВВ), детонатор, жесткая опора для установки описанного устройства и набор противооткольных и противоразгрузочных приспособлений, обеспечивающих сохранность свариваемых деталей при воздействии взрыва.

Известно техническое решение по патенту RU №2243871 [1], заключающееся в получении посредством сварки взрывом биметаллических и многослойных материалов с любым сочетанием металлов и сплавов, при этом в предлагаемом способе предварительно производится обработка поверхностей свариваемых пластин до шероховатостей Rz=8,0-18,0 мкм. Сварку осуществляют давлением продуктов детонации, при этом в зазоре между соединяемыми пластинами создается воздушная волна, энергия которой предварительно разогревает и расплавляет поверхностный слой свариваемых пластин. Процесс производится при глубине проплавления свариваемых поверхностей более 3 мкм. В этом способе важно путем сложных расчетов создать условия контакта расплавов пластин с последующим охлаждением ниже температуры плавления до прихода волн разрежения.

Известно техническое решение, описанное в статье P.Nesvadba. Explosive Welding for Preparation of Multilayer Materials [2], заключающееся в сварке взрывом броневой композиции, состоящей из лицевого слоя инструментальной стали, тыльного слоя из брони и межслоя из никеля или сплава никеля. Толщины броневой стали менялись от 2,7 до 6,5 мм, толщины лицевых слоев изменялись от 3 до 4 мм, толщина межслоя достигала 2 мм. После сварки взрывом многослойный материал подвергался термообработке.

Основной недостаток указанного аналога заключается в послойной сварке броневой конструкции, что вызывает большой расход листового заряда (ВВ), большую трудоемкость при производстве брони, а также увеличение общей массы бронепакета на 15-20% за счет веса межслоя, толщина которого составляет 2 мм при общей толщине 8-10 мм.

Известно техническое решение по патенту RU №2340434 [3], заключающееся в получении посредством сварки взрывом и последующей закалки компактных броневых композиций с повышенной пулестойкостыо. В предлагаемом способе многослойная броневая композиция состоит из двух или более слоев брони, которые свариваются между собой за одну операцию следующим способом сварки взрывом:

пакет броневых пластин включает в себя два (или более) листа броневой стали. Перед сваркой взрывом проводят обработку свариваемых поверхностей пластин до шероховатости Rz=8,0-12,0 мкм и собирают в пакет с зазором 0,5-1,0 мм между собой. Затем на основании располагают инертную прокладку, далее пакет пластин размещают над неподвижным основанием с зазором Н=0,5-3,0 мм для обеспечения максимальных пластических деформаций. Сварку осуществляют давлением продуктов детонации при взрыве заряда взрывчатого вещества.

Известна гетерогенная стальная броня, выполненная в виде бронепластины, и способ ее изготовления по патенту US №4,645,720 [4].

Данное решение изготовления броневой композиции, как наиболее близкое по технической сущности и достигаемому результату, выбрано в качестве прототипа.

Бронепластина по указанному патенту представляет собой двухслойный плакированный материал и содержит лицевой и тыльный слой.

Лицевой слой выполнен из стали, содержащей, масс.%: С=0,30-0,80; Mn=0,40-1,20; Si=0,10-0.80; Cr=0,20-2,80; Mo=0,05-1,00; Al=0,01-0,05; Ni до 0,44; Р - до 0,015; S - до 0,015; Fe - остальное.

Тыльный слой выполнен из стали, содержащей, масс.%: С=0,17-0,40; Mn=0,40-2,00; Si=0,10-0,80; Cr=0,10-1,50; Mo=0,05-1,50; Al=0,01-0,05; Р - до 0,025: S - до 0,025; Fe - остальное.

Твердость тыльного слоя не менее HRC=41,5. Твердость лицевого слоя отличается от твердости основного слоя не менее, чем на НВ=130 и не более, чем на НВ=300. Соотношение толщины верхнего слоя к основному от 30/70 до 70/30.

Способ получения гетерогенной стальной брони включает совместную горячую прокатку (или сварку взрывом) для соединения слоев и получения конечной толщины, а также последующую термообработку полученной двухслойной пластины, включая нагрев под закалку до температуры в интервале 880-980°С, выдержку при этой температуре и охлаждение. Затем возможно проведение отпуска при температуре в интервале 170-230°С с охлаждением до комнатной температуры на воздухе.

Широкие пределы содержания легирующих элементов в сталях лицевого и тыльного слоев бронепластины по данному патенту не обеспечивают стабильности свойств получаемого изделия, так как включают комбинации, относящиеся к сталям от ферритного до мартенснтного классов, твердость (HRC) которых изменяется в пределах от 45 до 65.

Известно, что при высоком (выше 0,5%) содержании углерода в стали металл становится очень хрупким. Кроме того, повышение хрупкости тыльного слоя вызывает указанное высокое содержание в нем серы и фосфора.

Нестабильность прочностных характеристик и повышенная хрупкость слоев бронепластины приводит к образованию трещин и осколков при пробитии гетерогенной стали.

Технический результат изобретения - повышение бронестойкости от пуль и малокалиберных снарядов заявляемой гетерогенной стальной композиции.

Технический результат достигается за счет того, что двухслойная, стойкая к динамическому воздействию листовая сталь, состоящая из лицевого и тыльного слоев сталей, соединенных между собой на молекулярном уровне, причем лицевой слой выполнен из стали следующего химического состава (масс.%): С=0,45-0,50; Мл=0,60-0,80; Si=0,17-0,40; Cr=1,0-1,3; Ni=1,20-1,5; Mo=0,25-0,35; V=0,08-0,15; S=0,005-0,01; P=0,003-0,01; Cu=0,1-0,2; Zr=0,0005-0,01; W=0,01-0,05; Fe - остальное, и имеет аи - не менее 2300 Н/мм2, HRG - не менее 60, а тыльный слой - из стали следующего химического состава (масс.%): С=0,32-0,38; Mn=0,60-0,80; Si=0,17-0,40; Cr=1,0-1,3; Ni=1,0-1,5; Mo=0,25-0,35; V=0,08-0,15; Al=0,02-0,04; Nb=0,01-0,05; Cu=0,l-0,2; W=0,01-0,05; S=0,005-0,01; P=0,010-0,015; Fe - остальное, и имеет σв - не менее 2150 Н/мм2, HRC - не менее 48, причем соотношение толщин лицевого и тыльного слоев оставляет 0,4 и 0,6, соответственно, относительно общей толщины двухслойной стали.

Технический результат достигается и за счет того, что в способе производства двухслойной, стойкой к динамическому воздействию, листовой стали, включающем сварку взрывом стальных листов и термообработку, состоящую из закалки и отпуска, в соответствии с изобретением, после сварки двухслойный лист подвергают отпуску при температуре 600-650°С, нагреву под прокатку до температуры 1050-1150°С, прокатке при температуре 1150-800°С с суммарным обжатием 30-40%, а после закалки с отпуском - дополнительному отпуску при температуре 170-200°С. Согласно заявляемой технологии между сваренными листами стали образуется зона соединения, которая служит локализатором трещин при процессе пробития, при этом обеспечивается достаточная энергоемкость многослойной преграды, чтобы получить вынучину определенного размера без хрупкого разрушения. В предлагаемой технологии упрочнение достигается за счет высокоскоростной деформации металла при сварке взрывом, деформации с уплотнением при прокатке и последующей закалке на мартенсит.

Применение термомеханического цикла, состоящего в использовании трех разных методов (взрыв, прокатка, термическая обработка) позволяет добиться максимального эффекта повышения бронестойкости от пуль и малокалиберных снарядов.

Осуществление метода сварки взрывом поясняется чертежом (фиг.1); на опорном стальном фундаменте 9 через буфер 8 располагают плакируемую пластину 7, отделенную от плакирующей пластины 5 фиксаторами 6, создающими зазор (ho) между ними. Сварка осуществляется давлением продуктов детонации при взрыве заряда взрывчатого вещества 2 и 3 (расположенного в контейнере 4), инициирующего электродетонатором I. Установка свариваемых пластин производится па подушку из песка или гранитной крошки 10. Заявляемое изобретение осуществляется следующим образом: перед сваркой взрывом поверхность заготовок плакирующего металла (лицевой слой) и заготовок плакируемого металла (тыльный слой), толщиной 0,4 и 0,6, соответственно, относительно суммарной толщины двухслойной стали, подвергается механической обработке до полного удаления черновин, окалины и ржавчины путем дробеструйной обработки или шлифования.

Процесс сварки взрывом осуществляется за счет действия теплового потока ударно-сжатого воздуха, который разогревает и оплавляет поверхности свариваемых пластин. Время действия продуктов детонации должно превышать время остывания поверхностных слоев пластин.

После этого броневую композицию подвергают отпуску при температуре 600-650°С для снятия внутренних напряжений, затем нагревают до температуры 1050-1150°С в печи с газообразным азотом, выдерживают и прокатывают при температуре 1150-800°С на стане горячей прокатки, суммарное обжатие составляет 30-40% с последующим охлаждением па воздухе. Заготовки подвергаются закалке в воду с температуры 900-950°С и двойному отпуску при температуре 170-200°С с охлаждением на воздухе.

Заявляемый способ используется для получения гетерогенной биметаллической стальной брони толщиной 4-15 мм.

Пример реализации заявленного способа.

Для получения двухслойной бронепанели был подготовлен лицевой слой из листовой стали следующего состава, масс.%: С=0,48; Mn=0,65; Si=0,30; Cr=1,2; Ni=1,35; Mo=0,25; V=0,10; S=0,008; Р=0,005; Cu=0,1; Zr=0,008; W=0,07; Fe - остальное (марка 47ХП-12МФА), толщиной 6 мм, и тыльный слон из листовой стали следующего состава, масс.%: С=0,35; Mn=0,60; Si=0,17; Cr=1,3; Ni=1,0; Mo=0,30; V=0,10; AI=0,03;. Nb=0,03; Cu=0,10; W=0,03; S=0,007; Р=0,010; Fe - остальное (марка 35ХГН2МФА), толщиной 9 мм.

Шероховатость поверхности листов после зачистки по параметру Rz составляла 10 мкм (по ГОСТ 2789), отклонение от плоскостности исходных пластин под плакирование не превышало 1 мм на 1 м длины, припуск на сварку взрывом для толщины плакирующего слоя - 8 мм, т.е. не менее 100 мм по периметру листа. Зазор между пластинами - 8±0,3 мм.

Затем, на основании между плакируемой заготовкой и стальным опорным фундаментом расположили буфер (например, асбестовые плиты) толщиной 10 мм во избежание приваривания к нему броневого пакета.

Подготовленные листы были сварены методом сварки взрывом в биметаллические заготовки размером 300×300 мм.

Сварка взрывом осуществлялась давлением продуктов детонации при взрыве заряда взрывчатого вещества, в качестве которого использовалась механическая смесь аммонита и аммиачной селитры. Для размещения заряда взрывчатого вещества использовался специальный контейнер. После заполнения формы для заряда взрывчатым веществом определялся геометрический центр для установки инициирующего заряда чистого аммонита. Далее производилась проверка электрической сети, которая подсоединялась к взрывной машине типа КПМ-1 и проводился подрыв заряда.

Заготовки были подвергнуты высокому отпуску при температуре 650°С с охлаждением на воздухе, нагреты до температуры 1100±10°С и прокатаны на стане горячей прокатки с суммарным обжатием 33% на листы толщиной 10±0,5 мм. Далее листы подвергались закалке в воду с температуры 900-920°С (выдержке при температуре закалки 1 час) и двойному отпуску при температуре 170-200°С (с выдержкой 3 часа) с охлаждением на воздухе.

Изготовленный заявленным способом биметаллический лист имеет уровень свойств:

- лицевой слой (47ХГН2МФА) - σв=2300 Н/мм2, HRC=60;

- тыльный слой (35ХГН2МФА) - σв=2150 Н/мм2, HRC=50.

Результаты испытаний заявляемой и известной двухслойной брони приведены в таблице.

Таблица
Образцы двухслойной стали, вариант Твердость, HRC (лицевой/тыльный) Средство испытаний (патрон, пуля) Скорость пули, Vз, м/с Оценка испытаний Балл поражения по ГОСТ В 21967-90, 6А класс
Заявляемый 60/50 Б-32 825 Непробитие образца 2
820 Непробитие образца 2
831 Непробитие образца 2
Известный 43,6-64,5/41,5 - - - -

ИСТОЧНИКИ ИНФОРМАЦИИ

1. Способ сварки взрывом.

Патент на изобретение RU №2243871 C1, B23K 20/08, 2005 г.

2. P. Nesvadba. Explosive Welding for Preparation of Multilayer Materials, Sockl assisted Synthesis and Modification of Materials. - Moscow: TORUS PRESS Ltd., 2006, p.82-92.

3. Способ изготовления многослойной броневой композиции.

Патент на изобретение RU №2340434 C1, B23K 20/08, F41H 5/04, 2008 г.

4. Гетерогенная стальная броня, выполненная в виде бронепластины, и способ ее изготовления.

Патент на изобретение US №4,645,720 F41H 5/04, C21D 9/42, 1987 г.


ДВУХСЛОЙНАЯ, СТОЙКАЯ К ДИНАМИЧЕСКОМУ ВОЗДЕЙСТВИЮ, ЛИСТОВАЯ СТАЛЬ ВЫСОКОЙ ПРОЧНОСТИ И СПОСОБ ЕЕ ПРОИЗВОДСТВА
Источник поступления информации: Роспатент

Показаны записи 221-230 из 255.
29.05.2019
№219.017.69bd

Измерительное устройство

Изобретение относится к области измерительной техники и может быть использовано для измерения неэлектрических величин при помощи тензометрических мостовых датчиков с инструментальными усилителями, запитанных постоянным током. Техническим результатом изобретения является повышение точности...
Тип: Изобретение
Номер охранного документа: 0002469341
Дата охранного документа: 10.12.2012
29.05.2019
№219.017.69c3

Измерительное устройство

Изобретение относится к области измерительной техники и может быть использовано для измерения неэлектрических величин при помощи тензометрических мостовых датчиков, подключенных к инструментальному усилителю и запитанных постоянным током. Техническим результатом является исключение аддитивных...
Тип: Изобретение
Номер охранного документа: 0002469338
Дата охранного документа: 10.12.2012
29.05.2019
№219.017.69c6

Способ коррекции результатов измерения тензометрическим мостовым датчиком с инструментальным усилителем

Изобретение относится к области измерительной техники и может быть использовано для измерения неэлектрических величин при помощи тензометрических мостовых датчиков с инструментальными усилителями, запитанных постоянным током. Техническим результатом изобретения является исключение...
Тип: Изобретение
Номер охранного документа: 0002469340
Дата охранного документа: 10.12.2012
01.06.2019
№219.017.7268

Способ выплавки никеле-титановых сплавов

Изобретение относится к области металлургии, в частности к получению никеле-титановых сплавов в вакуумных индукционных плавильных печах с холодным тиглем. В способе осуществляют укладку подготовленной шихты, при этом в нижнюю часть тигля укладывают титан около 20% высоты, затем равномерно...
Тип: Изобретение
Номер охранного документа: 0002690130
Дата охранного документа: 30.05.2019
04.06.2019
№219.017.730a

Сплав на основе титана

Изобретение относится к области металлургии, а именно к титановым сплавам, предназначенным для использования в качестве конструкционного высокопрочного высокотехнологичного материала для изготовления силовых конструкций судостроительной, авиационной и космической техники, энергетических...
Тип: Изобретение
Номер охранного документа: 0002690257
Дата охранного документа: 31.05.2019
04.06.2019
№219.017.731d

Симметричный кабель для передачи данных

Заявляемое изобретение относится к кабельной технике, более конкретно, к симметричным экранированным кабелям круглой формы, совместимым с цилиндрическими высокочастотными соединителями. Симметричный кабель для передачи данных содержит сердечник, представляющий собой, по меньшей мере, одну пару...
Тип: Изобретение
Номер охранного документа: 0002690160
Дата охранного документа: 31.05.2019
19.06.2019
№219.017.89f4

Способ летного моделирования ручной визуальной посадки самолета на объект

Изобретение относится к области исследований устойчивости, управляемости и динамики посадки самолетов и может быть использовано в приборном оборудовании летательных аппаратов. Предложенный способ включает измерение параметров движения самолета и его положения относительно земли, формирование на...
Тип: Изобретение
Номер охранного документа: 0002450246
Дата охранного документа: 10.05.2012
19.06.2019
№219.017.8b3a

Устройство для экспериментального определения комплексов вращательных и нестационарных производных

Изобретение относится к экспериментальной аэродинамике летательных аппаратов и может быть использовано при динамических испытаниях моделей различных летательных аппаратов в аэродинамической трубе. Устройство содержит державку для крепления модели летательного аппарата, измеритель...
Тип: Изобретение
Номер охранного документа: 0002441214
Дата охранного документа: 27.01.2012
19.06.2019
№219.017.8b75

Композиционный слоистый резинотканевый материал

Изобретение относится к средствам защиты, а именно к композиционным слоистым резинотканевым материалам, и может быть использовано для защиты от отравляющих и химических веществ. Композиционный слоистый резинотканевый материал выполнен трехслойным и состоит из среднего армирующего слоя, с двух...
Тип: Изобретение
Номер охранного документа: 0002469867
Дата охранного документа: 20.12.2012
06.07.2019
№219.017.a8d0

Способ спекания при лазерном послойном порошковом синтезе объемных деталей

Изобретение относится к порошковой металлургии, в частности к производству изделий с применением технологии лазерного послойного синтеза. Может применяться в различных отраслях машино- и авиастроения. Способ послойного лазерного синтеза объемных порошковых деталей включает дозированную...
Тип: Изобретение
Номер охранного документа: 0002423203
Дата охранного документа: 10.07.2011
Показаны записи 211-213 из 213.
29.06.2019
№219.017.9c65

Способ производства штрипса для труб магистральных трубопроводов

Изобретение относится к области металлургии, в частности к производству штрипса толщиной 15- 28 мм ответственного назначения. Для повышения прочности, хладостойкости и низкотемпературной вязкости в зоне термического влияния при сварке штрипса получают сталь, содержащую, мас.%: С - 0,03-0,07, Мn...
Тип: Изобретение
Номер охранного документа: 0002397254
Дата охранного документа: 20.08.2010
29.06.2019
№219.017.9c6e

Способ производства толстолистового проката

Изобретение относится к области металлургии, в частности к производству проката ответственного назначения. Для получения проката ответственного назначения с повышенными показателями прочности, при одновременном повышении хладостойкости и низкотемпературной вязкости в зоне термического влияния...
Тип: Изобретение
Номер охранного документа: 0002393236
Дата охранного документа: 27.06.2010
10.07.2019
№219.017.ad15

Способ производства штрипса для труб магистральных трубопроводов

Изобретение относится к области металлургии, конкретнее к производству штрипсовой стали для магистральных трубопроводов диаметром до 1420 мм, толщиной не менее 20 мм и не более 40 мм. Для повышения прочностных свойств и сопротивляемости хрупким разрушениям при температуре до -20°С при...
Тип: Изобретение
Номер охранного документа: 0002383633
Дата охранного документа: 10.03.2010
+ добавить свой РИД