×
10.12.2013
216.012.88d0

Результат интеллектуальной деятельности: СПОСОБ ДИСПЕРГИРОВАНИЯ НАНОЧАСТИЦ В ЭПОКСИДНОЙ СМОЛЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области нанотехнологии и может применяться в отраслях машиностроения, транспорта, строительства, энергетики для повышения прочности и ресурса конструкций из металлических, композиционных полимерных и металлополимерных материалов. Способ диспергирования заключается в воздействии на смесь наночастиц с жидкой смолой несколькими короткими импульсами ультразвуковых колебаний общей длительностью, не превышающей 100 секунд. После воздействия каждого импульса смесь охлаждают до комнатной температуры, либо воздействуют на смесь одним импульсом с измерением температуры. Смесь охлаждают в процессе воздействия импульса так, чтобы температура смеси не превышала температуру смеси, при которой воздействие ультразвуковых колебаний приводит к уменьшению прочности при сдвиге клеевого соединения на основе клея, изготовленного с применением полученной при диспергировании наноэпоксидной дисперсии. Изобретение позволяет обеспечить повышение прочности клеевых соединений и стабильность этих свойств с течением времени, повысить прочность элементов конструкции. 2 з.п. ф-лы, 6 ил.

Изобретение относится к области нанотехнологии и является применимым в различных отраслях машиностроения, транспорта, строительства, энергетики для повышения прочности и ресурса конструкций из металлических, композиционных полимерных и металлополимерных материалов, для клеевых и клеемеханических соединений различных элементов конструкций, а так же композиций, упрочняющих зоны концентрации напряжений (в виде отверстий, вырезов, галтелей, перепадов толщин) в конструкциях, для залечивания дефектов, микротрещин и других повреждений, возникающих при изготовлении и в процессе эксплуатации конструкций, для устранения и герметизации зазоров в отверстиях и стыках болтовых и заклепочных соединений.

Наиболее эффективным, с точки зрения значительного повышения прочности и ресурса конструкций при малых материальных и денежных затратах, является использование наномодифицированных эпоксидных клеевых композиций в указанных выше применениях.

Известен способ диспергирования упрочнителя в синтетической смоле, в котором частицы упрочнителя и смолу помещают в сосуд и перемешивают их с помощью установленного в сосуде лопастно-шнекового механизма (Патент США №4049244, 20 сентября 1977 г., класс 259/185). Недостатком известного способа в случае его применения для диспергирования наночастиц, в смеси их со смолой является неравномерность распределения наночастиц в смоле, которая может быть связана с недостаточно интенсивным механическим перемешиванием наночастиц со смолой, а так же с наличием зазоров между рабочими поверхностями лопастно-шнекового механизма и поверхностями стенки сосуда, размеры которых значительно превышают размеры наночастиц.

Известен способ диспергирования наночастиц в смоле (Заявка РФ 2005105685, МПК C09J /00, дата публ. заявки 10.12.2005) с использованием механических или ультразвуковых колебании, при котором жидкую смесь нагревают перед диспергированием или во время диспергирования и охлаждают после диспергирования.

Недостатками данного способа являются:

- отсутствие охлаждения жидкой смеси наночастиц со смолой во время диспергирования, вследствие чего нагрев смеси во время диспергирования может приводить к изменению структуры молекул смолы, что приводит к уменьшению прочности наномодифицированного клеевого соединения;

- отсутствие контроля адгезионной составляющей прочности клеевого соединения путем испытаний на прочность при сдвиге образца клеевого соединения, изготовленного с применением полученной при диспергировании наноэпоксидной дисперсии.

Известен способ диспергирования наночастиц в эпоксидной смоле, (Э.Г. Раков. Нанотрубки и фуллерены., М., Университетская книга, Логос, 2006, стр.161-167,297-298), в котором наночастицы предварительно диспергируют в растворителе с применением ультразвуковых колебаний, полученную дисперсию смещивают со смолой, а затем из полученной смеси испаряют растворитель.

Данный способ позволяет получить при диспергировании равномерное распределение наночастиц в смоле. Однако у него имеются недостатки:

- трудно обеспечить полное удаление растворителя из смеси его со смолой и наночастицами, некоторое его количество остается и способствует образованию пористого клеевого шва, что уменьшает прочность и герметичность наномодифицированого клеевого соединения;

- операция предварительного диспергирования наночастиц в растворителе и операция удаления растворителя усложняют и удорожают способ;

- отсутствует контроль адгезионной составляющей прочности клеевого соединения путем испытаний на прочность при сдвиге образца, изготовленного с применением полученной при диспергировании наноэпоксидной дисперсии.

Известен способ диспергирования наночастиц в эпоксидной смоле, в котором наночастицы предварительно смешивают с этанолом, подвергают смесь в течение 2 часов ультразвуковым колебаниям, смесь смешивают со смолой и отвердителем, а затем удаляют этанол из смеси вакуумированием (Smrutisikha Bal et al. Dispersion an reinforcing mechanism of carbon nanotubes in epoxy nanocomposite. Bull. Mater. Sci. Indian Academy of Science, vol. 33, №1, 2010, p.27-31. (http://www.ias.ac.in/matersci/bmteb2010/27.pdf).

Вышеописанный способ позволяет получить при диспергировании равномерное распределение наночастиц в смоле. Однако у него имеются недостатки:

- операция предварительного диспергирования наночастиц в этаноле и операция удаления этанола вакуумированием усложняют и удорожают способ;

- отсутствует контроль адгезионной составляющей путем испытаний на прочность при сдвиге образца клеевого соединения, изготовленного с применением полученной при диспергировании наноэпоксидной дисперсии.

Известен способ диспергирования наночастиц в эпоксидной смоле, в котором наночастицы предварительно смешивают с ацетоном, подвергают смесь в течение 20-40 минут воздействию ультразвуковых колебаний, смешивают смесь с отвердителем и поверхностно активным веществом, подвергают смесь в течение 20-40 минут воздействию ультразвуковых колебаний, удаляют ацетон вакуумированием и смешивают со смолой для завершения процесса отверждения (Caio Erico Pizzutt et al. Study of epoxy /CNT nanocomposite prepared via dispersion in the hardener. Mater. Res., vol.14, №2, Cao Carlo 2011, Epub. June 03, 2011.), (http://www.sciclo.br/sciclo.php.pid=sl 516-14392011000200019&script=sci_arttext).

Известный способ позволяет получить при диспергировании равномерное распределение наночастиц в смоле. Однако у него имеются недостатки:

- операция предварительного диспергирования наночастиц в ацетоне, операция удаления ацетона вакуумированием, а так же применение двух операций, связанных с ультразвуковыми колебаниями длительностью по 20-40 минут, усложняют и удорожают способ;

- отсутствует контроль адгезионной составляющей прочности клеевого путем испытаний на прочность при сдвиге образца клеевого соединения, изготовленного с применением полученной при диспергировании наноэпоксидной дисперсии.

Наиболее близким техническим решением к предлагаемому изобретению является способ диспергирования наночастиц в жидкой эпоксидной смоле, в котором наночастицы в виде углеродных нанотрубок смешивают с эпоксидной смолой и подвергают смесь ультразвуковым колебаниям в течение 5 часов (Fawad Inam et al. Multiscale hybrid micro-nanocomposite based on carbon nanotubes and fibres. Journal Nanomaterials, vol. 2010(2010), article ID 453420 doi. 10.1155/2010/453420, (www. http://hindawi.com/Journals/jnm 2010/453420).

Этот способ позволяет получить при диспергировании равномерное распределение наночастиц в смоле. Однако у него имеются недостатки:

1. Большая продолжительность процесса диспергирования и отсутствие контроля температуры диспергируемой смеси. Согласно проведенным экспериментам и наноизмерениям (Э.Г. Раков. Нанотрубки и фуллерены. -М.: Университетская книга, Логос, 2006, стр.140) при большой длительности диспергирования может значительно (более чем в 1000 раз) уменьшаться длина нанотрубок, что должно уменьшать и когезионную, и адгезионную составляющие прочности клеевого соединения, изготовленного с применением полученной при диспергировании наноэпоксидной дисперсии. Адгезионная и когезионная составляющие прочности будет уменьшаться вследствие того, что наличие укороченных нанотрубок на молекулярном уровне снижает деформационную составляющую клеевой композиции, а также прочность сцепления на границе склеиваемых поверхностей с клеевой композицией, содержащей наноэпоксидную дисперсию с укороченными нанотрубками.

2. Отсутствует контроль адгезионной составляющей прочности клеевого соединения путем испытаний на прочность при сдвиге образца, изготовленного с применением полученной при диспергировании наноэпоксидной дисперсии.

Задачей предлагаемого изобретения является создание клеевых и клеемеханических соединений различных элементов конструкций повышенной прочности.

Техническим результатом является повышение прочности клеевых соединений, выполненных с применением наномодифицированных композиций на основе жидких смол и повышение прочности элементов конструкции с упрочненными наномодифицированными клеевыми композициями зонами концентрации напряжений, а так же обеспечение стабильности повышенных прочностных свойств с течением времени.

Технический результат достигается тем, что в предлагаемом способе диспергирования воздействуют на смесь наночастиц с жидкой смолой несколькими короткими импульсами ультразвуковых колебаний общей длительностью, не превышающей 100 секунд, или воздействуют на смесь одним импульсом такой же длительности с измерением температуры и охлаждением смеси в процессе воздействия, а после окончания диспергирования производят контроль его качества.

Технический результат достигается тем, что при воздействии на смесь нескольких коротких импульсов ультразвуковых колебаний после воздействия каждого импульса охлаждают смесь до комнатной температуры, а после воздействия на смесь одним импульсом длительностью, не превышающей 100 секунд, охлаждают смесь в процессе воздействия импульса так, чтобы температура смеси не превышала температуру смеси, при которой воздействие ультразвуковых колебаний приводит к уменьшению прочности при сдвиге клеевого соединения на основе клея, изготовленного с применением полученной при диспергировании наноэпоксидной дисперсии.

Технический результат достигается также тем, что для контроля качества диспергирования наночастиц в смеси со смолой испытывают на прочность при сдвиге контрольный образец клеевого соединения на основе клея, изготовленного с применением полученной при диспергировании наноэпоксидной дисперсии, и сравнивают полученное значение прочности с полученной на стадии отработки предложенного способа диспергирования максимальной прочностью при сдвиге образца клеевого соединения, изготовленного на основе клея с применением полученной на указанной стадии наноэпоксидной дисперсии.

Фиг.1. Влияние концентрации наночастиц в клее на предел прочности при сдвиге клеевого соединения.

Фиг.2. Образец из углепластика, моделирующий фрагмент стенки нервюры крыла при испытаниях на потерю устойчивости при сдвиге.

Фиг.3. Дефекты на поверхности и кромках отверстия образца после механической обработки.

Фиг.4. Вид кромки отверстия, упрочненной наноклеевой композицией.

Фиг.5. Исходный образец после испытаний на сдвиг.

Фиг.6. Образец с упрочненным наноклеевой композицией отверстием после испытаний на сдвиг.

Достижение значительного повышения прочности и ресурса клеевых соединений и других элементов конструкций с концентраторами напряжений возможно лишь при высококачественном диспергировании наночастиц в смеси с жидкой смолой, например, эпоксидной, которое определяется равномерным распределением наночастиц в смоле, минимальным их повреждением и минимальным повреждением структуры молекул смолы. Трудности обеспечения равномерности распределения наночастиц в смоле связаны со склонностью наночастиц к взаимному притяжению, приводящему к их слипанию и агрегированию. Поэтому способы и режимы диспергирования, а так же методы контроля качества диспергирования наночастиц в смоле имеют решающее значение для эффективного применения наномодифицированных эпоксидных клеевых композиций.

Одним из способов контроля качества, наиболее полно отражающих качество диспергирования, является испытание на прочность при сдвиге образца клеевого соединения на основе клея, изготовленного с применением полученной при диспергировании наноэпоксидной дисперсии. В этих - испытаниях автоматически, в отличие от аналогов и прототипа контролируется две составляющие прочности клеевого слоя - когезионная составляющая (отражающая прочность наномодифицированного клеевого слоя) и адгезионная составляющая (отражающая прочность сцепления наномодифицированного клеевого слоя с поверхностями склеиваемых элементов конструкции). В связи с этим контроль качества диспергирования наночастиц в смеси их со смолой только по когезионной прочности материала, изготовленного с применением полученной при диспергировании наноэпоксидной дисперсии, является недостаточным.

Для осуществления предлагаемого способа воздействуют на смесь несколькими короткими импульсами ультразвуковых колебаний общей -длительностью, не превышающей 100 секунд, или воздействуют на смесь одним импульсом такой же длительности с измерением температуры в процессе воздействия и с охлаждением смеси, а после окончания диспергирования производят контроль его качества путем определения прочности клеевых соединении.

В процессе воздействия каждого короткого импульса ультразвуковых колебаний охлаждают смесь до комнатной температуры, а после воздействия на смесь одним импульсом длительностью, не превышающей 100 секунд, охлаждают смесь в процессе воздействия импульса таким образом, чтобы ее температура не превышала температуру смеси, при которой воздействие ультразвуковых колебаний приводит к уменьшению прочности при сдвиге клеевого соединения на основе клея, изготовленного с применением полученной при диспергировании наноэпоксидной дисперсии.

Для контроля качества диспергирования наночастиц в смеси их со смолой испытывают на прочность при сдвиге контрольный образец клеевого соединения на основе клея, изготовленного с применением полученной при диспергировании наноэпоксидной дисперсии, и сравнивают полученное значение прочности с полученной на стадии отработки предложенного способа диспергирования максимальной прочностью при сдвиге образца клеевого соединения, изготовленного на основе клея с применением полученной на указанной стадии наноэпоксидной дисперсии.

При отработке предлагаемого способа диспергирования производят диспергирование наночастиц, например, углеродного наноматериала "Таунит" в эпоксидной смоле, например, ЭД-20 с применением нескольких коротких импульсов ультразвуковых колебаний общей длительностью, не превышающей 100 секунд, охлаждают смесь после воздействия каждого импульса ультразвуковых колебаний до комнатной температуры, изготавливают образцы клеевых соединений на основе клея, изготовленного с применением полученной при диспергировании наноэпоксидной дисперсии, и испытывают их на прочность при сдвиге. Форма и размеры образцов и методика испытаний образцов соответствуют ГОСТ 14759.

С применением наноэпоксидной дисперсии, полученной при воздействии при диспергировании на смесь наночастиц со смолой трех импульсов ультразвуковых колебаний общей длительностью до 100 секунд с охлаждением после каждого импульса до комнатной температуры и при воздействии при диспергировании на смесь наночастиц со смолой одного импульса ультразвуковых колебаний длительностью до 100 секунд без охлаждения до комнатной температуры, были изготовлены и испытаны образцы клеевых соединений из сплава Д16АТ, которые показали, что предел прочности при сдвиге образцов клеевого соединения на основе клея, изготовленного с применением полученной при диспергировании наноэпоксидной дисперсии, во втором случае уменьшается ~ на 8% при увеличении температуры смеси наночастиц со смолой в конце диспергирования ~ в 1,5 раза по сравнению с конечной температурой смеси в конце воздействия кратковременных импульсов первого случая диспергирования. Одной из причин такого уменьшения прочности является возможное начало деструкции эпоксидной смолы, вызванное повышенной температурой при одновременном воздействии на смолу ультразвуковых колебаний. Основываясь на данных проведенных исследований, для того, чтобы температура при изготовлении наноэпоксидной дисперсии не приводила к уменьшению предела прочности при сдвиге образцов клеевого соединения на основе клея, изготовленного с применением полученной при диспергировании наноэпоксидной дисперсии, необходимо охлаждать смесь до комнатной температуры после воздействия каждого из нескольких коротких импульсов ультразвуковых колебаний с общей длительностью, не превышающей 100 секунд, или при воздействии одного импульса ультразвуковых колебаний длительностью не более 100 секунд осуществлять охлаждение с измерением температуры в процессе воздействия импульса и при этом производят охлаждение смеси так, чтобы ее температура была не выше 95°С в зависимости от вида смолы и объема приготавливаемой смеси.

Первый вариант охлаждения смеси при диспергировании использован при доведении предложенного способа до практической реализации.

С применением наноэпоксидной дисперсии, полученной при воздействии при диспергировании на смесь наночастиц со смолой нескольких коротких импульсов ультразвуковых колебаний общей длительностью до 100 секунд с охлаждением после каждого импульса до комнатной температуры были изготовлены и испытаны образцы клеевых соединений из сплава Д16АТ и из стеклопластика с титановым сплавом ВТ-6, которые показали (фиг.1, 1 - среднее значение предела прочности; 2 -минимальное значение предела прочности) существенное (до 26%) повышение минимального значения предела прочности при сдвиге наномодифицированного клеевого соединения по сравнению с пределом прочности при сдвиге исходного клеевого соединения.

При концентрации наночастиц в клее, изменяющейся в диапазоне от 0 до 2% коэффициент вариации предела прочности изменяется в пределах от 7,5 до 5,0. Повышение прочности клеевого соединения за счет наноэпоксидной дисперсии происходит без уменьшения предельных деформаций клеевого слоя, т.е. охрупчивания клеевого слоя в проведенных экспериментах не наблюдалось.

Для контроля стабильности повышения прочности клеевых соединений за счет применения получаемой при диспергировании наноэпоксидной дисперсии были испытаны контрольные образцы клеевых соединений из алюминиевого сплава Д16АТ и контрольные образцы клеевых соединений из стеклопластика с титановым сплавом ВТ-6, изготовленные на основе клея с применением наноэпоксидной дисперсии, полученной с перерывом в 1,5 года после получения при отработке предложенного способа данных, приведенных на фиг.1. Результаты испытаний показали, что значения прочности при сдвиге контрольных образцов на 2-5% выше полученных раньше значений прочности.

С использованием клея, изготовленного с применением полученной при диспергировании наноэпоксидной дисперсии, было выполнено упрочнение поверхности и кромок отверстия диаметром 80 мм в образце из углепластика, моделирующего фрагмент стенки нервюры крыла самолета и были проведены испытания образца на потерю устойчивости при сдвиге (фиг.2). Дефекты на поверхности и кромках отверстия в образце после механической обработки, вид кромки отверстия, упрочненной наноклеевой композицией, и характер разрушения панелей показаны на фиг.3-6.

Нагружение образца при испытаниях вызывает потерю устойчивости и расслоение углепластика в сжатой зоне (фиг.5), сопровождающиеся разрушением образца на кромках отверстия в зоне максимальной концентрации растягивающих напряжений. Упрочнение поверхности отверстия и заполнение содержащей наноэпоксидную дисперсию наноклеевой композицией микротрещин и микродефектов на кромках отверстия образца (фиг.6) сдвигает зону начала расслоения и разрушения от кромок отверстия и повышает значение нагрузки начала потери устойчивости образца на 32%.

Таким образом, предложенным способом диспергирования наночастиц в эпоксидной смоле обеспечивается повышение прочности клеевых соединений, выполненных с применением наномодифицированных композиций на основе эпоксидных смол, повышается прочность элементов конструкции за счет упрочнения наномодифицированными клеевыми композициями зон концентрации напряжений, а так же обеспечивается стабильность повышенных прочностных свойств с течением времени.


СПОСОБ ДИСПЕРГИРОВАНИЯ НАНОЧАСТИЦ В ЭПОКСИДНОЙ СМОЛЕ
СПОСОБ ДИСПЕРГИРОВАНИЯ НАНОЧАСТИЦ В ЭПОКСИДНОЙ СМОЛЕ
СПОСОБ ДИСПЕРГИРОВАНИЯ НАНОЧАСТИЦ В ЭПОКСИДНОЙ СМОЛЕ
СПОСОБ ДИСПЕРГИРОВАНИЯ НАНОЧАСТИЦ В ЭПОКСИДНОЙ СМОЛЕ
СПОСОБ ДИСПЕРГИРОВАНИЯ НАНОЧАСТИЦ В ЭПОКСИДНОЙ СМОЛЕ
СПОСОБ ДИСПЕРГИРОВАНИЯ НАНОЧАСТИЦ В ЭПОКСИДНОЙ СМОЛЕ
Источник поступления информации: Роспатент

Показаны записи 51-60 из 292.
10.02.2014
№216.012.9f8f

Устройство для согласования приводных рядов гибких стенок сопла аэродинамической трубы

Изобретение касается систем управления в экспериментальной аэродинамике, в частности к аэродинамическим трубам с регулируемыми соплами. Устройство содержит контроллер управления приводами ведомых рядов гибких стенок сопла, приводы управления гибкими стенками сопла, цифровые датчики обратной...
Тип: Изобретение
Номер охранного документа: 0002506555
Дата охранного документа: 10.02.2014
10.02.2014
№216.012.9f90

Устройство для управления гибкими стенками сопла аэродинамической трубы

Изобретение относится к области экспериментальной аэродинамики, в частности к аэродинамическим трубам с регулируемыми соплами. Устройство состоит из силового механизма, изменяющего его контур по заданной программе, и командного устройства, управляющего этой программой. В контур управления...
Тип: Изобретение
Номер охранного документа: 0002506556
Дата охранного документа: 10.02.2014
10.05.2014
№216.012.c0e2

Стенд для определения вращательных производных аэродинамических сил и моментов модели в аэродинамической трубе

Изобретение относится к экспериментальному оборудованию для определения вращательных производных аэродинамических сил и моментов модели в аэродинамической трубе, в том числе вблизи экрана. Стенд содержит модель с тензовесами, установленную на стойке со штоком, и механизм ее перемещений. Также...
Тип: Изобретение
Номер охранного документа: 0002515127
Дата охранного документа: 10.05.2014
20.05.2014
№216.012.c33b

Способ контроля работоспособности многоточечной измерительной системы с входной коммутацией датчиков

Изобретение относится к измерительной технике и может применяться для исследования измерительных характеристик и контроля точности работы измерительного устройства многоточечных измерительных систем с входной коммутацией датчиков. Предлагается способ контроля работоспособности многоточечной...
Тип: Изобретение
Номер охранного документа: 0002515738
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c665

Способ получения углерод-металлического материала каталитическим пиролизом этанола

Изобретение относится к химической промышленности. Углерод-металлический материал в виде смеси углеродных волокон и капсулированных в неструктурированном углероде частиц никеля диаметром от 10 до 150 нанометров получают каталитическим пиролизом этанола при атмосферном давлении. Катализатор в...
Тип: Изобретение
Номер охранного документа: 0002516548
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c720

Гиперзвуковой прямоточный воздушно-реактивный двигатель и способ организации горения

Гиперзвуковой прямоточный воздушно-реактивный двигатель содержит воздухозаборник, топливную форсунку, расположенную в носовой части перед воздухозаборником по его оси и соединенную с ним пилонами, камеру сгорания, воспламенитель и сопло. Топливная форсунка выполнена в виде газоструйного...
Тип: Изобретение
Номер охранного документа: 0002516735
Дата охранного документа: 20.05.2014
10.06.2014
№216.012.cbc8

Способ поверки датчика силы и устройство для его осуществления

Изобретения относятся к области измерительной техники и могут быть использованы для поверки датчиков силы, используемых для испытаний авиационных конструкций. Способ позволяет проводить поверку датчика силы непосредственно на месте его использования. Устройство для осуществления способа...
Тип: Изобретение
Номер охранного документа: 0002517939
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.cf9d

Электротеплоаккумулирующий нагреватель

Изобретение относится к энергетике и может быть использовано для отопления и терморегулирования. Изобретение позволит снизить энергетические потери и повысить эффективность регулирования мощности нагрева. Электротеплоаккумулирующий нагреватель содержит корпус, теплоаккумулирующее вещество и...
Тип: Изобретение
Номер охранного документа: 0002518920
Дата охранного документа: 10.06.2014
20.06.2014
№216.012.d4bd

Способ разработки метангидратов и устройство для его реализации

Изобретение относится к техническим средствам освоения ресурсов Мирового океана и может быть применено для добычи метангидратов. Способ разработки залежей метангидратов основан на их дроблении струями воды при температуре выше 285К со скоростью более 1 м/с в пульсирующем режиме с частотой в...
Тип: Изобретение
Номер охранного документа: 0002520232
Дата охранного документа: 20.06.2014
27.06.2014
№216.012.d6de

Способ организации детонационного режима горения в камере сгорания гиперзвукового прямоточного воздушно-реактивного двигателя

Способ организации детонационного режима горения в камере сгорания гиперзвукового прямоточного воздушно-реактивного двигателя включает сжатие воздуха в системе внешних и внутренних скачков уплотнения, возникающих на фиксированных и регулируемых элементах фюзеляжа и силовой установки, подачу...
Тип: Изобретение
Номер охранного документа: 0002520784
Дата охранного документа: 27.06.2014
Показаны записи 51-60 из 199.
20.10.2014
№216.012.ff19

Осесимметричное сопло ракетного двигателя

Изобретение относится к области ракетной техники. В сверхзвуковой части осесимметричного сопла ракетного двигателя установлена вставка, которая имеет длину, выходной диаметр и степень расширения, меньшие, чем соответствующие геометрические параметры стенки сверхзвуковой части сопла. Вставка...
Тип: Изобретение
Номер охранного документа: 0002531161
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.ff23

Дисперсия углеродных нанотрубок

Изобретение может быть использовано при изготовлении композитов, содержащих органические полимеры. Дисперсия углеродных нанотрубок содержит 1 мас.ч. окисленных углеродных нанотрубок и 0,25-10 мас.ч. продукта взаимодействия органического амина, содержащего в молекуле по крайней мере одну...
Тип: Изобретение
Номер охранного документа: 0002531171
Дата охранного документа: 20.10.2014
20.12.2014
№216.013.1148

Система очистки воздуха

Изобретение относится к транспортному машиностроению, в частности к системам очистки воздуха на входе судовых газотурбинных двигателей. Система очистки воздуха включает сепаратор с конфузором, горловиной, диффузором и капле-пылеуловителем, установленные в воздуховоде, и устройство для сбора и...
Тип: Изобретение
Номер охранного документа: 0002535847
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.1381

Способ изготовления упругоподобных моделей летательных аппаратов на станках с чпу

Изобретение относится к авиационной технике и касается экспериментальных исследований проблем аэроупругости летательных аппаратов (ЛА) в аэродинамических трубах. При изготовлении упругоподобных моделей ЛА на станках с ЧПУ производят предварительный и поверочный расчеты математической модели...
Тип: Изобретение
Номер охранного документа: 0002536416
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.1384

Комбинированная противооблединительная система

Изобретение относится к оборудованию для борьбы с обледенением аэродинамической поверхности летательного аппарата. Комбинированная противообледенительная система состоит из теплового устройства, расположенного под обшивкой передней кромки крыла, и отклоняемого щитка. Щиток установлен на...
Тип: Изобретение
Номер охранного документа: 0002536419
Дата охранного документа: 20.12.2014
27.12.2014
№216.013.1614

Устройство для повышения несущих свойств летательного аппарата

Изобретение относится к авиационной технике. Устройство для повышения несущих свойств летательного аппарата выполнено в виде плоского гребня со скругленной передней кромкой, углом стреловидности передней кромки вблизи фюзеляжа 40÷50°. Посредством плавного скругления передняя кромка переходит в...
Тип: Изобретение
Номер охранного документа: 0002537076
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.18b4

Способ нагружения сжатым воздухом фюзеляжа летательного аппарата при испытаниях на выносливость

Изобретение относится к области испытательной техники, в частности к установкам для прочностных испытаний фюзеляжей летательных аппаратов на выносливость циклическим приложением внутреннего избыточного давления, создаваемого сжатым воздухом. В процессе реализации предложенного способа...
Тип: Изобретение
Номер охранного документа: 0002537752
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.18b5

Лопасть аэродинамической модели воздушного винта и способ ее изготовления

Изобретение относится к конструкции и способу изготовления лопастей аэродинамических моделей воздушных винтов, применяющихся для испытаний в аэродинамических трубах. Конструкция лопасти включает в себя регулярную часть, имеющую постоянный вес и геометрическую форму, и различные сменные концевые...
Тип: Изобретение
Номер охранного документа: 0002537753
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.18b6

Способ изготовления датчиков температуры и теплового потока (варианты)

Изобретение относится к измерительной технике и может быть использовано в авиационной и космической технике. Предложено формирование датчика температуры и теплового потока осуществить непосредственно на поверхности модели разной степени кривизны без морщин и без нарушения целостности модели и...
Тип: Изобретение
Номер охранного документа: 0002537754
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.19d7

Установка для испытаний фюзеляжа летательного аппарата на выносливость

Изобретение относится к области испытательной техники, в частности к установкам для прочностных испытаний фюзеляжа летательных аппаратов на выносливость циклическим нагружением внутренним давлением сжатого воздуха. Техническим результатом предлагаемого изобретения является повышение точности...
Тип: Изобретение
Номер охранного документа: 0002538043
Дата охранного документа: 10.01.2015
+ добавить свой РИД