×
10.12.2013
216.012.88d0

Результат интеллектуальной деятельности: СПОСОБ ДИСПЕРГИРОВАНИЯ НАНОЧАСТИЦ В ЭПОКСИДНОЙ СМОЛЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области нанотехнологии и может применяться в отраслях машиностроения, транспорта, строительства, энергетики для повышения прочности и ресурса конструкций из металлических, композиционных полимерных и металлополимерных материалов. Способ диспергирования заключается в воздействии на смесь наночастиц с жидкой смолой несколькими короткими импульсами ультразвуковых колебаний общей длительностью, не превышающей 100 секунд. После воздействия каждого импульса смесь охлаждают до комнатной температуры, либо воздействуют на смесь одним импульсом с измерением температуры. Смесь охлаждают в процессе воздействия импульса так, чтобы температура смеси не превышала температуру смеси, при которой воздействие ультразвуковых колебаний приводит к уменьшению прочности при сдвиге клеевого соединения на основе клея, изготовленного с применением полученной при диспергировании наноэпоксидной дисперсии. Изобретение позволяет обеспечить повышение прочности клеевых соединений и стабильность этих свойств с течением времени, повысить прочность элементов конструкции. 2 з.п. ф-лы, 6 ил.

Изобретение относится к области нанотехнологии и является применимым в различных отраслях машиностроения, транспорта, строительства, энергетики для повышения прочности и ресурса конструкций из металлических, композиционных полимерных и металлополимерных материалов, для клеевых и клеемеханических соединений различных элементов конструкций, а так же композиций, упрочняющих зоны концентрации напряжений (в виде отверстий, вырезов, галтелей, перепадов толщин) в конструкциях, для залечивания дефектов, микротрещин и других повреждений, возникающих при изготовлении и в процессе эксплуатации конструкций, для устранения и герметизации зазоров в отверстиях и стыках болтовых и заклепочных соединений.

Наиболее эффективным, с точки зрения значительного повышения прочности и ресурса конструкций при малых материальных и денежных затратах, является использование наномодифицированных эпоксидных клеевых композиций в указанных выше применениях.

Известен способ диспергирования упрочнителя в синтетической смоле, в котором частицы упрочнителя и смолу помещают в сосуд и перемешивают их с помощью установленного в сосуде лопастно-шнекового механизма (Патент США №4049244, 20 сентября 1977 г., класс 259/185). Недостатком известного способа в случае его применения для диспергирования наночастиц, в смеси их со смолой является неравномерность распределения наночастиц в смоле, которая может быть связана с недостаточно интенсивным механическим перемешиванием наночастиц со смолой, а так же с наличием зазоров между рабочими поверхностями лопастно-шнекового механизма и поверхностями стенки сосуда, размеры которых значительно превышают размеры наночастиц.

Известен способ диспергирования наночастиц в смоле (Заявка РФ 2005105685, МПК C09J /00, дата публ. заявки 10.12.2005) с использованием механических или ультразвуковых колебании, при котором жидкую смесь нагревают перед диспергированием или во время диспергирования и охлаждают после диспергирования.

Недостатками данного способа являются:

- отсутствие охлаждения жидкой смеси наночастиц со смолой во время диспергирования, вследствие чего нагрев смеси во время диспергирования может приводить к изменению структуры молекул смолы, что приводит к уменьшению прочности наномодифицированного клеевого соединения;

- отсутствие контроля адгезионной составляющей прочности клеевого соединения путем испытаний на прочность при сдвиге образца клеевого соединения, изготовленного с применением полученной при диспергировании наноэпоксидной дисперсии.

Известен способ диспергирования наночастиц в эпоксидной смоле, (Э.Г. Раков. Нанотрубки и фуллерены., М., Университетская книга, Логос, 2006, стр.161-167,297-298), в котором наночастицы предварительно диспергируют в растворителе с применением ультразвуковых колебаний, полученную дисперсию смещивают со смолой, а затем из полученной смеси испаряют растворитель.

Данный способ позволяет получить при диспергировании равномерное распределение наночастиц в смоле. Однако у него имеются недостатки:

- трудно обеспечить полное удаление растворителя из смеси его со смолой и наночастицами, некоторое его количество остается и способствует образованию пористого клеевого шва, что уменьшает прочность и герметичность наномодифицированого клеевого соединения;

- операция предварительного диспергирования наночастиц в растворителе и операция удаления растворителя усложняют и удорожают способ;

- отсутствует контроль адгезионной составляющей прочности клеевого соединения путем испытаний на прочность при сдвиге образца, изготовленного с применением полученной при диспергировании наноэпоксидной дисперсии.

Известен способ диспергирования наночастиц в эпоксидной смоле, в котором наночастицы предварительно смешивают с этанолом, подвергают смесь в течение 2 часов ультразвуковым колебаниям, смесь смешивают со смолой и отвердителем, а затем удаляют этанол из смеси вакуумированием (Smrutisikha Bal et al. Dispersion an reinforcing mechanism of carbon nanotubes in epoxy nanocomposite. Bull. Mater. Sci. Indian Academy of Science, vol. 33, №1, 2010, p.27-31. (http://www.ias.ac.in/matersci/bmteb2010/27.pdf).

Вышеописанный способ позволяет получить при диспергировании равномерное распределение наночастиц в смоле. Однако у него имеются недостатки:

- операция предварительного диспергирования наночастиц в этаноле и операция удаления этанола вакуумированием усложняют и удорожают способ;

- отсутствует контроль адгезионной составляющей путем испытаний на прочность при сдвиге образца клеевого соединения, изготовленного с применением полученной при диспергировании наноэпоксидной дисперсии.

Известен способ диспергирования наночастиц в эпоксидной смоле, в котором наночастицы предварительно смешивают с ацетоном, подвергают смесь в течение 20-40 минут воздействию ультразвуковых колебаний, смешивают смесь с отвердителем и поверхностно активным веществом, подвергают смесь в течение 20-40 минут воздействию ультразвуковых колебаний, удаляют ацетон вакуумированием и смешивают со смолой для завершения процесса отверждения (Caio Erico Pizzutt et al. Study of epoxy /CNT nanocomposite prepared via dispersion in the hardener. Mater. Res., vol.14, №2, Cao Carlo 2011, Epub. June 03, 2011.), (http://www.sciclo.br/sciclo.php.pid=sl 516-14392011000200019&script=sci_arttext).

Известный способ позволяет получить при диспергировании равномерное распределение наночастиц в смоле. Однако у него имеются недостатки:

- операция предварительного диспергирования наночастиц в ацетоне, операция удаления ацетона вакуумированием, а так же применение двух операций, связанных с ультразвуковыми колебаниями длительностью по 20-40 минут, усложняют и удорожают способ;

- отсутствует контроль адгезионной составляющей прочности клеевого путем испытаний на прочность при сдвиге образца клеевого соединения, изготовленного с применением полученной при диспергировании наноэпоксидной дисперсии.

Наиболее близким техническим решением к предлагаемому изобретению является способ диспергирования наночастиц в жидкой эпоксидной смоле, в котором наночастицы в виде углеродных нанотрубок смешивают с эпоксидной смолой и подвергают смесь ультразвуковым колебаниям в течение 5 часов (Fawad Inam et al. Multiscale hybrid micro-nanocomposite based on carbon nanotubes and fibres. Journal Nanomaterials, vol. 2010(2010), article ID 453420 doi. 10.1155/2010/453420, (www. http://hindawi.com/Journals/jnm 2010/453420).

Этот способ позволяет получить при диспергировании равномерное распределение наночастиц в смоле. Однако у него имеются недостатки:

1. Большая продолжительность процесса диспергирования и отсутствие контроля температуры диспергируемой смеси. Согласно проведенным экспериментам и наноизмерениям (Э.Г. Раков. Нанотрубки и фуллерены. -М.: Университетская книга, Логос, 2006, стр.140) при большой длительности диспергирования может значительно (более чем в 1000 раз) уменьшаться длина нанотрубок, что должно уменьшать и когезионную, и адгезионную составляющие прочности клеевого соединения, изготовленного с применением полученной при диспергировании наноэпоксидной дисперсии. Адгезионная и когезионная составляющие прочности будет уменьшаться вследствие того, что наличие укороченных нанотрубок на молекулярном уровне снижает деформационную составляющую клеевой композиции, а также прочность сцепления на границе склеиваемых поверхностей с клеевой композицией, содержащей наноэпоксидную дисперсию с укороченными нанотрубками.

2. Отсутствует контроль адгезионной составляющей прочности клеевого соединения путем испытаний на прочность при сдвиге образца, изготовленного с применением полученной при диспергировании наноэпоксидной дисперсии.

Задачей предлагаемого изобретения является создание клеевых и клеемеханических соединений различных элементов конструкций повышенной прочности.

Техническим результатом является повышение прочности клеевых соединений, выполненных с применением наномодифицированных композиций на основе жидких смол и повышение прочности элементов конструкции с упрочненными наномодифицированными клеевыми композициями зонами концентрации напряжений, а так же обеспечение стабильности повышенных прочностных свойств с течением времени.

Технический результат достигается тем, что в предлагаемом способе диспергирования воздействуют на смесь наночастиц с жидкой смолой несколькими короткими импульсами ультразвуковых колебаний общей длительностью, не превышающей 100 секунд, или воздействуют на смесь одним импульсом такой же длительности с измерением температуры и охлаждением смеси в процессе воздействия, а после окончания диспергирования производят контроль его качества.

Технический результат достигается тем, что при воздействии на смесь нескольких коротких импульсов ультразвуковых колебаний после воздействия каждого импульса охлаждают смесь до комнатной температуры, а после воздействия на смесь одним импульсом длительностью, не превышающей 100 секунд, охлаждают смесь в процессе воздействия импульса так, чтобы температура смеси не превышала температуру смеси, при которой воздействие ультразвуковых колебаний приводит к уменьшению прочности при сдвиге клеевого соединения на основе клея, изготовленного с применением полученной при диспергировании наноэпоксидной дисперсии.

Технический результат достигается также тем, что для контроля качества диспергирования наночастиц в смеси со смолой испытывают на прочность при сдвиге контрольный образец клеевого соединения на основе клея, изготовленного с применением полученной при диспергировании наноэпоксидной дисперсии, и сравнивают полученное значение прочности с полученной на стадии отработки предложенного способа диспергирования максимальной прочностью при сдвиге образца клеевого соединения, изготовленного на основе клея с применением полученной на указанной стадии наноэпоксидной дисперсии.

Фиг.1. Влияние концентрации наночастиц в клее на предел прочности при сдвиге клеевого соединения.

Фиг.2. Образец из углепластика, моделирующий фрагмент стенки нервюры крыла при испытаниях на потерю устойчивости при сдвиге.

Фиг.3. Дефекты на поверхности и кромках отверстия образца после механической обработки.

Фиг.4. Вид кромки отверстия, упрочненной наноклеевой композицией.

Фиг.5. Исходный образец после испытаний на сдвиг.

Фиг.6. Образец с упрочненным наноклеевой композицией отверстием после испытаний на сдвиг.

Достижение значительного повышения прочности и ресурса клеевых соединений и других элементов конструкций с концентраторами напряжений возможно лишь при высококачественном диспергировании наночастиц в смеси с жидкой смолой, например, эпоксидной, которое определяется равномерным распределением наночастиц в смоле, минимальным их повреждением и минимальным повреждением структуры молекул смолы. Трудности обеспечения равномерности распределения наночастиц в смоле связаны со склонностью наночастиц к взаимному притяжению, приводящему к их слипанию и агрегированию. Поэтому способы и режимы диспергирования, а так же методы контроля качества диспергирования наночастиц в смоле имеют решающее значение для эффективного применения наномодифицированных эпоксидных клеевых композиций.

Одним из способов контроля качества, наиболее полно отражающих качество диспергирования, является испытание на прочность при сдвиге образца клеевого соединения на основе клея, изготовленного с применением полученной при диспергировании наноэпоксидной дисперсии. В этих - испытаниях автоматически, в отличие от аналогов и прототипа контролируется две составляющие прочности клеевого слоя - когезионная составляющая (отражающая прочность наномодифицированного клеевого слоя) и адгезионная составляющая (отражающая прочность сцепления наномодифицированного клеевого слоя с поверхностями склеиваемых элементов конструкции). В связи с этим контроль качества диспергирования наночастиц в смеси их со смолой только по когезионной прочности материала, изготовленного с применением полученной при диспергировании наноэпоксидной дисперсии, является недостаточным.

Для осуществления предлагаемого способа воздействуют на смесь несколькими короткими импульсами ультразвуковых колебаний общей -длительностью, не превышающей 100 секунд, или воздействуют на смесь одним импульсом такой же длительности с измерением температуры в процессе воздействия и с охлаждением смеси, а после окончания диспергирования производят контроль его качества путем определения прочности клеевых соединении.

В процессе воздействия каждого короткого импульса ультразвуковых колебаний охлаждают смесь до комнатной температуры, а после воздействия на смесь одним импульсом длительностью, не превышающей 100 секунд, охлаждают смесь в процессе воздействия импульса таким образом, чтобы ее температура не превышала температуру смеси, при которой воздействие ультразвуковых колебаний приводит к уменьшению прочности при сдвиге клеевого соединения на основе клея, изготовленного с применением полученной при диспергировании наноэпоксидной дисперсии.

Для контроля качества диспергирования наночастиц в смеси их со смолой испытывают на прочность при сдвиге контрольный образец клеевого соединения на основе клея, изготовленного с применением полученной при диспергировании наноэпоксидной дисперсии, и сравнивают полученное значение прочности с полученной на стадии отработки предложенного способа диспергирования максимальной прочностью при сдвиге образца клеевого соединения, изготовленного на основе клея с применением полученной на указанной стадии наноэпоксидной дисперсии.

При отработке предлагаемого способа диспергирования производят диспергирование наночастиц, например, углеродного наноматериала "Таунит" в эпоксидной смоле, например, ЭД-20 с применением нескольких коротких импульсов ультразвуковых колебаний общей длительностью, не превышающей 100 секунд, охлаждают смесь после воздействия каждого импульса ультразвуковых колебаний до комнатной температуры, изготавливают образцы клеевых соединений на основе клея, изготовленного с применением полученной при диспергировании наноэпоксидной дисперсии, и испытывают их на прочность при сдвиге. Форма и размеры образцов и методика испытаний образцов соответствуют ГОСТ 14759.

С применением наноэпоксидной дисперсии, полученной при воздействии при диспергировании на смесь наночастиц со смолой трех импульсов ультразвуковых колебаний общей длительностью до 100 секунд с охлаждением после каждого импульса до комнатной температуры и при воздействии при диспергировании на смесь наночастиц со смолой одного импульса ультразвуковых колебаний длительностью до 100 секунд без охлаждения до комнатной температуры, были изготовлены и испытаны образцы клеевых соединений из сплава Д16АТ, которые показали, что предел прочности при сдвиге образцов клеевого соединения на основе клея, изготовленного с применением полученной при диспергировании наноэпоксидной дисперсии, во втором случае уменьшается ~ на 8% при увеличении температуры смеси наночастиц со смолой в конце диспергирования ~ в 1,5 раза по сравнению с конечной температурой смеси в конце воздействия кратковременных импульсов первого случая диспергирования. Одной из причин такого уменьшения прочности является возможное начало деструкции эпоксидной смолы, вызванное повышенной температурой при одновременном воздействии на смолу ультразвуковых колебаний. Основываясь на данных проведенных исследований, для того, чтобы температура при изготовлении наноэпоксидной дисперсии не приводила к уменьшению предела прочности при сдвиге образцов клеевого соединения на основе клея, изготовленного с применением полученной при диспергировании наноэпоксидной дисперсии, необходимо охлаждать смесь до комнатной температуры после воздействия каждого из нескольких коротких импульсов ультразвуковых колебаний с общей длительностью, не превышающей 100 секунд, или при воздействии одного импульса ультразвуковых колебаний длительностью не более 100 секунд осуществлять охлаждение с измерением температуры в процессе воздействия импульса и при этом производят охлаждение смеси так, чтобы ее температура была не выше 95°С в зависимости от вида смолы и объема приготавливаемой смеси.

Первый вариант охлаждения смеси при диспергировании использован при доведении предложенного способа до практической реализации.

С применением наноэпоксидной дисперсии, полученной при воздействии при диспергировании на смесь наночастиц со смолой нескольких коротких импульсов ультразвуковых колебаний общей длительностью до 100 секунд с охлаждением после каждого импульса до комнатной температуры были изготовлены и испытаны образцы клеевых соединений из сплава Д16АТ и из стеклопластика с титановым сплавом ВТ-6, которые показали (фиг.1, 1 - среднее значение предела прочности; 2 -минимальное значение предела прочности) существенное (до 26%) повышение минимального значения предела прочности при сдвиге наномодифицированного клеевого соединения по сравнению с пределом прочности при сдвиге исходного клеевого соединения.

При концентрации наночастиц в клее, изменяющейся в диапазоне от 0 до 2% коэффициент вариации предела прочности изменяется в пределах от 7,5 до 5,0. Повышение прочности клеевого соединения за счет наноэпоксидной дисперсии происходит без уменьшения предельных деформаций клеевого слоя, т.е. охрупчивания клеевого слоя в проведенных экспериментах не наблюдалось.

Для контроля стабильности повышения прочности клеевых соединений за счет применения получаемой при диспергировании наноэпоксидной дисперсии были испытаны контрольные образцы клеевых соединений из алюминиевого сплава Д16АТ и контрольные образцы клеевых соединений из стеклопластика с титановым сплавом ВТ-6, изготовленные на основе клея с применением наноэпоксидной дисперсии, полученной с перерывом в 1,5 года после получения при отработке предложенного способа данных, приведенных на фиг.1. Результаты испытаний показали, что значения прочности при сдвиге контрольных образцов на 2-5% выше полученных раньше значений прочности.

С использованием клея, изготовленного с применением полученной при диспергировании наноэпоксидной дисперсии, было выполнено упрочнение поверхности и кромок отверстия диаметром 80 мм в образце из углепластика, моделирующего фрагмент стенки нервюры крыла самолета и были проведены испытания образца на потерю устойчивости при сдвиге (фиг.2). Дефекты на поверхности и кромках отверстия в образце после механической обработки, вид кромки отверстия, упрочненной наноклеевой композицией, и характер разрушения панелей показаны на фиг.3-6.

Нагружение образца при испытаниях вызывает потерю устойчивости и расслоение углепластика в сжатой зоне (фиг.5), сопровождающиеся разрушением образца на кромках отверстия в зоне максимальной концентрации растягивающих напряжений. Упрочнение поверхности отверстия и заполнение содержащей наноэпоксидную дисперсию наноклеевой композицией микротрещин и микродефектов на кромках отверстия образца (фиг.6) сдвигает зону начала расслоения и разрушения от кромок отверстия и повышает значение нагрузки начала потери устойчивости образца на 32%.

Таким образом, предложенным способом диспергирования наночастиц в эпоксидной смоле обеспечивается повышение прочности клеевых соединений, выполненных с применением наномодифицированных композиций на основе эпоксидных смол, повышается прочность элементов конструкции за счет упрочнения наномодифицированными клеевыми композициями зон концентрации напряжений, а так же обеспечивается стабильность повышенных прочностных свойств с течением времени.


СПОСОБ ДИСПЕРГИРОВАНИЯ НАНОЧАСТИЦ В ЭПОКСИДНОЙ СМОЛЕ
СПОСОБ ДИСПЕРГИРОВАНИЯ НАНОЧАСТИЦ В ЭПОКСИДНОЙ СМОЛЕ
СПОСОБ ДИСПЕРГИРОВАНИЯ НАНОЧАСТИЦ В ЭПОКСИДНОЙ СМОЛЕ
СПОСОБ ДИСПЕРГИРОВАНИЯ НАНОЧАСТИЦ В ЭПОКСИДНОЙ СМОЛЕ
СПОСОБ ДИСПЕРГИРОВАНИЯ НАНОЧАСТИЦ В ЭПОКСИДНОЙ СМОЛЕ
СПОСОБ ДИСПЕРГИРОВАНИЯ НАНОЧАСТИЦ В ЭПОКСИДНОЙ СМОЛЕ
Источник поступления информации: Роспатент

Показаны записи 181-190 из 292.
09.06.2018
№218.016.5a22

Гидросамолёт

Изобретение относится к авиации и касается гидросамолетов с подрессоренными поплавками. Гидросамолет содержит фюзеляж, поплавки, соединенные с ним носовой и основной стойками, оснащенными упругодемпфирующими элементами и системой управления ими. Система управления содержит пульт управления,...
Тип: Изобретение
Номер охранного документа: 0002655572
Дата охранного документа: 28.05.2018
09.06.2018
№218.016.5aaa

Узел стыка отсеков фюзеляжа с сетчатой и традиционной конструктивно-силовыми схемами

Изобретение относится к области авиационных конструкций с различными конструктивно-силовыми схемами (КСС), в частности к сетчатой силовой конструкции отсека фюзеляжа гражданского самолета. Узел стыка отсеков фюзеляжа с сетчатой и традиционной КСС содержит спиральные ребра и торцевое кольцевое...
Тип: Изобретение
Номер охранного документа: 0002655585
Дата охранного документа: 28.05.2018
09.06.2018
№218.016.5b77

Устройство для измерения аэродинамических характеристик планирующего парашюта в аэродинамической трубе, модель планирующего парашюта для испытаний в аэродинамической трубе, способ измерения аэродинамических характеристик планирующего парашюта в аэродинамической трубе

Изобретение относится к авиационной технике и предназначено для измерения аэродинамических сил и моментов, действующих на купол планирующего парашюта (ПП) в потоке аэродинамической трубы (АДТ) при различных углах атаки и скольжения. Устройство используется следующим образом. После ввода в поток...
Тип: Изобретение
Номер охранного документа: 0002655713
Дата охранного документа: 29.05.2018
11.06.2018
№218.016.610b

Адаптивная аэродинамическая поверхность

Изобретение относится к области аэро- и гидродинамики. Адаптивная аэродинамическая поверхность содержит панель, включающую сегменты профиля и соединенный с ними механизм преобразования профиля, который состоит из звеньев, соединенных в цепь. Звенья n и n+2 дополнительно связаны механической...
Тип: Изобретение
Номер охранного документа: 0002657062
Дата охранного документа: 08.06.2018
14.06.2018
№218.016.61af

Устройство для измерения составляющих векторов аэродинамической силы и момента

Изобретение относится к области аэромеханических измерений и может быть использовано для измерения компонентов векторов аэродинамической силы и момента, действующих на модели воздушных винтов самолетов, несущих винтов вертолетов и гребных винтов судов, испытываемых в аэродинамических трубах,...
Тип: Изобретение
Номер охранного документа: 0002657340
Дата охранного документа: 13.06.2018
25.06.2018
№218.016.659e

Оптическое устройство для объемного восприятия плоского изображения

Устройство относится к области когнитивного восприятия и может использоваться для наблюдения статических и подвижных изображений на средствах вывода плоского изображения от телевизоров и дисплеев до планшетов и смартфонов, а также фотографий и другой печатной продукции, в компьютерной графике,...
Тип: Изобретение
Номер охранного документа: 0002658579
Дата охранного документа: 21.06.2018
06.07.2018
№218.016.6c9a

Способ управления положением модели в аэродинамической трубе

Изобретение относится к области экспериментальной аэродинамики, в частности, к автоматическим системам управления положением модели в аэродинамических трубах. Модель размещают таким образом, что ее ось вращения находится на равном расстоянии от узлов крепления державки, положение узлов...
Тип: Изобретение
Номер охранного документа: 0002660225
Дата охранного документа: 05.07.2018
21.07.2018
№218.016.7335

Устройство для управления положением модели в аэродинамической трубе

Изобретение относится к области экспериментальной аэродинамики и предназначено для определения аэродинамических характеристик модели самолетов, ракет и др. в трансзвуковых аэродинамических трубах. Устройство содержит державку, серповидную стойку, привод и станину, привод выполнен в виде трех...
Тип: Изобретение
Номер охранного документа: 0002661746
Дата охранного документа: 19.07.2018
24.07.2018
№218.016.7442

Устройство для крепления композиционных стрингерных панелей

Изобретение относится к области испытаний летательных аппаратов на прочность, в частности к средствам испытаний на сжатие стрингерных панелей из слоистых полимерных композиционных материалов. Устройство содержит жесткие обоймы, соединенные стяжными болтами, распорные комплекты призматических...
Тип: Изобретение
Номер охранного документа: 0002662054
Дата охранного документа: 23.07.2018
24.07.2018
№218.016.744f

Способ визуализации пространственного обтекания моделей в аэродинамической трубе

Изобретение относится к экспериментальной аэродинамике летательных аппаратов, в частности к изучению картины пространственного обтекания моделей летательных аппаратов в аэродинамической трубе, и может быть использовано при статических и динамических испытаниях моделей летательных аппаратов в...
Тип: Изобретение
Номер охранного документа: 0002662057
Дата охранного документа: 23.07.2018
Показаны записи 181-190 из 199.
09.05.2019
№219.017.4e87

Способ модификации пористой структуры неорганической мембраны углеродным наноматериалом

Изобретение относится к технологии получения фильтрующих элементов для баромембранных процессов, используемых в различных отраслях промышленности: нефтехимической, фармацевтической, пищевой и других. Способ модификации пористой структуры неорганической мембраны углеродным наноматериалом...
Тип: Изобретение
Номер охранного документа: 0002411069
Дата охранного документа: 10.02.2011
16.05.2019
№219.017.5235

Способ получения композиционного материала биотехнологического назначения

Предложен способ получения композиционного материала биотехнологического назначения, обладающего антимикробным действием, включающий синтез композиционного материала, состоящий из смешения наночастиц серебра с нулевой валентностью и стабилизатора наночастиц, поддержания температуры и...
Тип: Изобретение
Номер охранного документа: 0002687283
Дата охранного документа: 14.05.2019
24.05.2019
№219.017.5ec8

Наномодифицированная электропроводящая клеевая композиция холодного отверждения

Изобретение относится к токопроводящим эластичным клеевым композициям, которые могут использоваться в качестве датчика, передающего электрический сигнал от одного склеиваемого материала к другому, применяемых в авиации и машинах специального назначения обороны, локального нагревателя,...
Тип: Изобретение
Номер охранного документа: 0002688573
Дата охранного документа: 21.05.2019
30.05.2019
№219.017.6b98

Способ изготовления маркёра горюче-смазочных материалов

Изобретение описывает способ изготовления маркера для горюче-смазочных материалов путем введения концентрата в минеральное моторное масло, отличающийся тем, что приготовление концентрата проводят путем введения в минеральное моторное масло УНМ «Таунит-М» с последующим перемешиванием в мешалке в...
Тип: Изобретение
Номер охранного документа: 0002689420
Дата охранного документа: 28.05.2019
31.05.2019
№219.017.7199

Способ сорбционной очистки водных сред от органических веществ и ионов тяжелых металлов

Изобретение относится к способам интенсификации сорбционных процессов путем воздействия внешних электромагнитных полей, а именно к способу электроуправляемой сорбции органических загрязнений, нефтепродуктов, пестицидов, ядохимикатов, солей тяжелых металлов, нитратов, нитритов и т.п. Указанный...
Тип: Изобретение
Номер охранного документа: 0002689616
Дата охранного документа: 28.05.2019
20.06.2019
№219.017.8d14

Способ непрерывного весового дозирования сыпучего материала и устройство для его осуществления

Изобретение предназначено для непрерывного весового дозирования сыпучих материалов. Сущность: устройство содержит основание (1), состоящее из неподвижной платформы, на которой шарнирно закреплена подвижная платформа (2). На подвижной платформе (2) установлены лоток (4) и вибратор (7),...
Тип: Изобретение
Номер охранного документа: 0002691786
Дата охранного документа: 18.06.2019
27.06.2019
№219.017.98d5

Способ диспергирования углеродных нанотрубок ультразвуком

Изобретение относится к диспергированию углеродных нанотрубок (УНТ) и может быть использовано для получения стабильных дисперсий, содержащих углеродные наноматериалы, диспергированные в органических растворителях. Способ включает введение в жидкую среду нанотрубок в виде порошка и воздействие...
Тип: Изобретение
Номер охранного документа: 0002692541
Дата охранного документа: 25.06.2019
06.07.2019
№219.017.a6f5

Способ получения графенового материала

Изобретение относится к нанотехнологии и химической промышленности и может быть использовано при изготовлении полимерных композиционных материалов. Сначала графит обрабатывают раствором персульфата аммония в серной кислоте, не содержащей свободной воды. Интеркалированный графит...
Тип: Изобретение
Номер охранного документа: 0002693755
Дата охранного документа: 04.07.2019
10.07.2019
№219.017.aa19

Слоистый композиционный материал и изделие, выполненное из него

Изобретение относится к слоистому алюмополимерному материалу для изготовления или ремонта силовых элементов планера самолета: обшивок, перегородок, стрингеров фюзеляжа и крыла, панелей пола, а также для наземного транспорта. Предложен слоистый композиционный материал, состоящий из чередующихся...
Тип: Изобретение
Номер охранного документа: 0002270098
Дата охранного документа: 20.02.2006
01.09.2019
№219.017.c4f4

Способ получения композиционного материала с противомикробными свойствами на основе оксида графена и наночастиц оксида меди

Изобретение относится к способу получения композиционного материала с противомикробными свойствами на основе оксида графена и наночастиц оксида меди и может найти применение главным образом в области нанобиотехнологий и наномедицины для изготовления препаратов, подавляющих жизнедеятельность...
Тип: Изобретение
Номер охранного документа: 0002698713
Дата охранного документа: 29.08.2019
+ добавить свой РИД