×
10.12.2013
216.012.88c5

Результат интеллектуальной деятельности: СПОСОБ ПРИГОТОВЛЕНИЯ НАНОСУСПЕНЗИИ ДЛЯ ИЗГОТОВЛЕНИЯ ПОЛИМЕРНОГО НАНОКОМПОЗИТА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области изготовления полимерных нанокомпозитов, которые могут быть использованы в качестве конструкционных материалов в космической, авиационной, строительной и других отраслях промышленности. Способ включает приготовление наносуспензии путем введения в реактопластичное связующее углеродных нанотрубок при ультразвуковом воздействии с интенсивностью в кавитационной зоне в пределах от 15 до 25 кВт/м. Причем диспергирование углеродных нанотрубок в связующем осуществляют с одновременной фоторегистрацией изменений интенсивности окраски наносуспензии. При достижении наносуспензией значений интенсивности окрашивания, соответствующих значениям нормированной степени диспергирования в диапазоне от 0,9 до 0,99, ультразвуковое воздействие прекращают. Способ позволяет оптимизировать степень диспергирования углеродных нанотрубок в связующем и сократить время изготовления нанокомпозитов, обладающих повышенной прочностью за счет равномерного распределения наночастиц в нанокомпозите. 3 ил.
Основные результаты: Способ приготовления наносуспензии для изготовления полимерного нанокомпозита путем диспергирования углеродных нанотрубок в реактопластичное связующее в процессе ультразвукового воздействия, отличающийся тем, что процесс диспергирования углеродных нанотрубок в связующем осуществляют с одновременной фоторегистрацией изменений интенсивности окраски наносуспензии, причем при достижении наносуспензией значений интенсивности окрашивания, соответствующих значениям нормированной степени диспергирования, в диапазоне от 0,9 до 0,99 ультразвуковое воздействие прекращают, при этом нормированную степень диспергирования для заданной концентрации определяют предварительно, а ультразвуковое воздействие образующейся наносуспензии ведут с интенсивностью в кавитационной зоне от 15 до 25 кВт/м.

Область техники

Изобретение относится к области изготовления полимерных нанокомпозитов на реактопластичном связующем для космических, авиационных, строительных и других конструкций (стеклопластиков, углепластиков, органопластиков и др.).

Уровень техники

Введение в состав полимерного, например полиэфирного, связующего нанокомпозита углеродных нанотрубок (УНТ), образуя таким образом наносуспензию для изготовлении нанокомпозита, существенно повышает прочностные свойства изделий. Причем оптимальная концентрация и равномерное распределение УНТ в связующем играют определяющую роль.

Известны способы приготовления наносуспензии при изготовлении нанокомпозита. Например, для равномерного распределения заранее определенного количества УНТ по объему связующего применяют специальные мешалки с лопастями и камерами прессования с применением также ионизации наночастиц (патент РФ №2301771, МПК В82В 3/00, опубликовано: 27.06.2007).

Наиболее близким техническим решением является способ изготовления композита «полимер/углеродные нанотрубки» (патент РФ №2400462, МПК С07С 1/00, В82В 1/00, опубликовано: 27.09.2010), в котором для равномерного распределения наночастиц применяют ультразвуковое (УЗ) воздействие на смесь. Ультразвуковое воздействие обеспечивает разрушение агломератов из УНТ и равномерное распределение агломератов все меньшей степени (размера) по объему наносуспензии, однако определение времени диспергирования УНТ в данном способе не предусмотрено. Недостаточное время обработки не обеспечивает равномерности распределения наночастиц, а при чрезмерно продолжительном процессе диспергирования может начаться процесс разрушения наиболее длинных УНТ, что приведет к уменьшению прочности изготавливаемого композита.

Раскрытие изобретения

Задачей изобретения является определение минимально необходимого времени диспергирования УНТ в связующем с целью достижения практически полного диспергирования УНТ.

Поставленная задача решается за счет того, что в способе приготовления наносуспензии для изготовления полимерного нанокомпозита путем диспергирования углеродных нанотрубок в реактопластичное связующее в процессе ультразвукового воздействия процесс диспергирования углеродных нанотрубок в связующем осуществляют с одновременной фоторегистрацией изменений интенсивности окраски наносуспензии, причем при достижении наносуспензией значений интенсивности окрашивания соответствующих значениям нормированной степени диспергирования в диапазоне от 0,9 до 0,99 ультразвуковое воздействие прекращают, при этом нормированную степень диспергирования для заданной концентрации определяют предварительно, а ультразвуковое воздействие образующейся наносуспензии ведут с интенсивностью в кавитационной зоне в пределах от 15 до 25 квт/м2.

Перечень чертежей

На фиг.1 приведен пример графической зависимости НСД УНТ от времени обработки. На фиг.2 показаны фото УНТ в исходном состоянии (агломерированном) и после диспергирования.

На фиг.3 приведена зависимость прочности изготовленных образцов из полиэфирной смолы от концентрации УНТ и нормированной степени диспергирования.

Осуществление изобретения

Установлено, что степень диспергирования наночастиц УНТ при заданной концентрации УНТ соответствует интенсивности окраски наносуспензиии, изменяющейся по мере проведения процесса диспергирования при УЗ воздействии. Наилучшие прочностные свойства композит получает в том случае, когда разрушены все агломераты и УНТ равномерно распределены по объему связующего. В этом случае интенсивность окраски наносуспензии принимает максимальное установившееся значение для конкретного соотношения УНТ и связующего, и при дальнейшем воздействии ультразвука не меняется. Определим, что в этом случае наносуспензия имеет нормированную степень диспергирования (НСД) равную 1 (единице). Введение параметра НСД (пропорциональной интенсивности окраски наносуспензии) позволяет оценивать и сравнивать степень диспергирования наносуспензии с самыми разными концентрациями УНТ, поскольку конкретные значения интенсивностей окраски будут различаться, и, порой, весьма существенно. Сразу после введении УНТ в связующее степень диспергирования равна нулю, поскольку вводятся УНТ в виде агломерата, и при смешивании со связующим в условиях УЗ воздействия НСД изменяется от нуля до определенного значения.

По мере деагломерирования и равномерного распределения частиц в связующем происходит изменение интенсивности окраски наносуспензии от прозрачного состояния, через постепенное помутнение до достижения интенсивностью окрашивания установившегося значения. Установившийся уровень интенсивности достигается при определенном времени обработки, при превышении которого уже либо не происходит разрушения остающихся агломератов, либо все наночастицы УНТ распределены равномерно (агломераты в наносуспензии в этом случае отсутствуют). Продолжение процесса УЗ воздействия сверх этого значения бесполезно с точки зрения достижения лучшего диспергирования и вредно с точки зрения сохранности УНТ, которые при длительном УЗ воздействии могут нарушать свою целостность.

Указанный способ реализуют следующим образом. После предварительно полученной оптимальной концентрации УНТ в связующем, в качестве которого выбрана полиэфирная смола, необходимое количество УНТ вводят в жидкотекучее реактопластичное связующее нанокомпозита. После предварительного ручного (или механического) перемешивания УНТ со связующим в смесь вводят УЗ излучатель, подают напряжение на УЗ генератор. УЗ обработка образующейся наносуспензии происходит с интенсивностью в кавитационной зоне в пределах не менее 15…20 квт/м2.

При этом ведут фотосъемку (или видеосъемку) направленной камерой через прозрачную стенку сосуда, в котором проводят процесс смешивания УНТ. Обработку изображений по интенсивности окраски и вычисление значений НСД ведут с помощью компьютерной программы «Image Analysis - Media Cybernetics - Image Pro Plus 6.0». Кадры фоторегистрации выбирают с периодичностью 1…4 секунды для того, чтобы полученные значения НСД позволяли построить кривую их изменения достаточно адекватно, учитывая, что время диспергирования наносуспензии, как показывает практика, составляет примерно от 10 сек до нескольких минут в зависимости от вязкости жидкой фазы. Дальнейшая обработка приводит к крайне незначительному увеличению НСД, что практически не влияет на прочность изготавливаемого нанокомпозита (см. фиг.1).

По мере диспергирования УНТ интенсивность окраски (цвет - серо-черный) наносуспензии возрастает, стремясь к определенному установившемуся значению, соответствующему полному диспергированию нанотрубок в связующем. Это состояние характеризуется полным отсутствием агломератов и на графике зависимости НСД наночастиц от времени обработки соответствует НСД=1.

Все промежуточные значения НСД лежат в пределах от 0 до 1. Графики строят для параметра НСД, поскольку конкретные значения интенсивности окрашивания для каждой наносуспензии будут индивидуальны, и анализировать график таких индивидуальных интенсивностей будет значительно сложнее.

На фиг.1 показан график изменения НСД реального процесса диспергирования, причем линия 1 соответствует экспериментальным данным, полученным на основе фоторегистрации, а линия 2 - сглаженная аппроксимация экспериментальной кривой. Исходя из вышеизложенного, для данного примера необходимое время УЗ обработки, при котором значение НСД наночастиц достигает значения, близкого к единице, соответствует 12…14 сек, а время начала массового деагломерирования УНТ составляет 6,4 сек. Отсюда следует вывод, что можно достаточно точно задать время У3-обработки, соответствующее достижению интенсивностью заранее заданного значения. Для производственных целей определены пределы таких значений в интервале 0,9…0,99. Учитывая большое разнообразие свойств УНТ и связующих, время диспергирования может различаться для разных сочетаний многократно. Поэтому определение времени диспергирования с использованием заявляемого способа позволит существенно сократить время разработки технологических процессов изготовления нанокомпозитов.

Для подтверждения зависимости прочностных характеристик от концентрации УНТ и НСД проведены эксперименты. Использовались многослойные углеродные нанотрубки (МУНТ), обладающие следующими индивидуальными характеристиками: внешний диаметр 15,0÷40,0 нм, длина ≥2 мкм, количество слоев 5÷8, удельная площадь поверхности 200÷250 м2/г.Перед введением в связующее УНТ подвергали термической обработке в сушильном шкафу при температуре ~200°C в течение 5 минут. Взвешивание каждой вводимой дозы УНТ производили на электронных весах фирмы "KERN-770-60" (ФРГ) (класс точности по ГОСТ 24104-88 - 1). Первые образцы были получены без введения УНТ. Затем были изготовлены образцы с введением первой дозы УНТ в размере 0,001% и т.д. После добавления очередной дозы УНТ в наносуспензию в количестве ~0,001% (на 1000 г связующего 0,01 г УНТ) и перемешивания в емкости с воздействием ультразвука путем погружения ультразвукового диспергатора ЛУЗД-1,5/21-3,0. Время ультразвуковой обработки определяли по достижению НСД величины 0,95(для различных концентраций время обработки менялось от 10 до 18 сек). В качестве матрицы была выбрана ненасыщенная изофталиевая неопентильгликолиевая полиэфирная смола B71731AL производства фирмы «Cray Valley». В качестве катализатора отверждения смолы использовался пероксид метилэтилкетона (производитель «Бутанокс»). Катализатор добавлялся в количестве 1% от массы смолы. Смола с катализатором перемешивалась вручную в течение 30÷40 секунд. Приготовленную композицию вакуумировали в вакуумной камере при 700 мм. рт.ст. (0,92 кг/см2) примерно 4 минуты до полного удаления газовых включений, потом заливали в формы и проводили дополнительно вибрационную обработку в форме примерно 10÷15 минут. Размер образцов составил 200×25×5 мм, что соответствует общепринятым правилам изготовления образцов для испытаний.

Отверждение полиэфирной смолы проводили при комнатной температуре. Заготовки прошли термообработку (постотверждение) при 80°C в течение 3 часов. Испытания образцов на изгиб проводили на испытательной машине FP 100/1. По полученным экспериментальным значениям строили график зависимости прочности на изгиб образцов от концентрации УНТ при различных значениях НСД (фиг.3).

Необходимо отметить, что данный способ позволяет нивелировать параметры УЗ воздействия, которые могут менять форму графика и смещать его по времени.

Для иллюстрации на фиг.2(а) показаны углеродные нанотрубки в исходном состоянии (агломерированные) (НСД=0), и на фиг.2(б) - нанотрубки, равномерно распределенные в жидкотекучем связующем, здесь НСД практически очень близка единице.

Способ приготовления наносуспензии для изготовления полимерного нанокомпозита путем диспергирования углеродных нанотрубок в реактопластичное связующее в процессе ультразвукового воздействия, отличающийся тем, что процесс диспергирования углеродных нанотрубок в связующем осуществляют с одновременной фоторегистрацией изменений интенсивности окраски наносуспензии, причем при достижении наносуспензией значений интенсивности окрашивания, соответствующих значениям нормированной степени диспергирования, в диапазоне от 0,9 до 0,99 ультразвуковое воздействие прекращают, при этом нормированную степень диспергирования для заданной концентрации определяют предварительно, а ультразвуковое воздействие образующейся наносуспензии ведут с интенсивностью в кавитационной зоне от 15 до 25 кВт/м.
СПОСОБ ПРИГОТОВЛЕНИЯ НАНОСУСПЕНЗИИ ДЛЯ ИЗГОТОВЛЕНИЯ ПОЛИМЕРНОГО НАНОКОМПОЗИТА
СПОСОБ ПРИГОТОВЛЕНИЯ НАНОСУСПЕНЗИИ ДЛЯ ИЗГОТОВЛЕНИЯ ПОЛИМЕРНОГО НАНОКОМПОЗИТА
СПОСОБ ПРИГОТОВЛЕНИЯ НАНОСУСПЕНЗИИ ДЛЯ ИЗГОТОВЛЕНИЯ ПОЛИМЕРНОГО НАНОКОМПОЗИТА
Источник поступления информации: Роспатент

Показаны записи 51-60 из 86.
20.05.2014
№216.012.c6b9

Способ получения алмазоподобных покрытий комбинированным лазерным воздействием

Изобретение относится к технологиям повышения износостойких, прочностных и антифрикционных свойств металлорежущего инструмента, внешних поверхностей обшивки авиационных и космических летательных аппаратов, оптических приборов и нанотехнологиям. Алмазоподобные покрытия получают в вакууме путем...
Тип: Изобретение
Номер охранного документа: 0002516632
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c716

Устройство обогащения всасываемого воздуха кислородом для двигателя внутреннего сгорания

Изобретение может быть использовано для регулирования количества кислорода в топливовоздушной смеси. Устройство обогащения всасываемого воздуха кислородом для двигателя внутреннего сгорания содержит обогатитель с камерой обогащения (КО). Обогатитель установлен во впускном коллекторе за...
Тип: Изобретение
Номер охранного документа: 0002516725
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c7a8

Надкалиберная пучковая граната "елешня" к ручному гранотомету, собираемая перед выстрелом

Изобретение относится к боеприпасам, в частности к надкалиберным пучковым гранатам к ручным гранатометам. Надкалиберная пучковая граната к ручному гранатомету собирается перед подрывом. Граната состоит из калиберной части и надкалиберной боевой части. Калиберная часть содержит реактивный...
Тип: Изобретение
Номер охранного документа: 0002516871
Дата охранного документа: 20.05.2014
10.06.2014
№216.012.cf94

Способ фокусировки прожектора с разрядной лампой

Изобретение относится к осветительной технике и может быть использовано для фокусировки прожекторов различного назначения с разрядной лампой в качестве источника излучения и отражателем параболоидальной или сфероидальной формы. Техническим результатом от использования способа является...
Тип: Изобретение
Номер охранного документа: 0002518911
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.d035

Способ разрушения речного ледяного покрова и устройство для его реализации

Изобретение относится к области взрывных работ, в частности к разрушению ледяного покрова на реках. Способ разрушения речного ледяного покрова включает подачу под ледяной покров взрывчатой газовой смеси в эластичной газонепроницаемой оболочке с последующим инициированием взрыва в ней. С помощью...
Тип: Изобретение
Номер охранного документа: 0002519072
Дата охранного документа: 10.06.2014
20.06.2014
№216.012.d494

Легкий снаряд орудия ближнего действия (горного, пехотного)

Изобретение относится к боеприпасам, а более конкретно к снарядам легких артиллерийских мобильных орудий внутренних, пограничных, воздушно-десантных войск. Легкий снаряд мобильного орудия содержит корпус снаряда с головным взрывателем и зарядом взрывчатого вещества. Снаряд выполнен из двух...
Тип: Изобретение
Номер охранного документа: 0002520191
Дата охранного документа: 20.06.2014
10.07.2014
№216.012.dce1

Микроэлектромеханический взрыватель

Изобретение относится к микроэлектромеханическим взрывателям. Микроэлектромеханическая структура выполнена из расположенных последовательно и соосно кристалла кремния, в котором сформирована кантилевер-игла, кристалла кремния с допированными водородом и окислителем с областью пористого слоя...
Тип: Изобретение
Номер охранного документа: 0002522323
Дата охранного документа: 10.07.2014
20.07.2014
№216.012.defe

Способ азотирования деталей машин с получением наноструктурированного приповерхностного слоя и состав слоя

Изобретение относится к машиностроению, в частности к способу азотирования деталей узлов трения скольжения с получением наноструктурированного приповерхностного слоя. Проводят предварительную термообработку деталей путем закалки при температуре 920-940°C, последующего высокого отпуска с...
Тип: Изобретение
Номер охранного документа: 0002522872
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.df0a

Способ получения наномодифицированного связующего

Изобретение относится к области получения композиционных материалов на основе смол, диспергированных наномодификатором - углеродными нанотрубками (УНТ), которые могут быть использованы для введения в высоковязкие основы при получении полимерных композиционных материалов широкого спектра...
Тип: Изобретение
Номер охранного документа: 0002522884
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e129

Способ формирования компактного плазмоида

Изобретение относится к области физики плазмы и систем ядерного синтеза, в частности к альтернативным способам удержания горячей плотной плазмы. В заявленном способе формирования компактного плазмоида возбуждение тороидального тока производят индуктивным аккумулятором (основной соленоид с...
Тип: Изобретение
Номер охранного документа: 0002523427
Дата охранного документа: 20.07.2014
Показаны записи 51-60 из 121.
20.05.2014
№216.012.c6b9

Способ получения алмазоподобных покрытий комбинированным лазерным воздействием

Изобретение относится к технологиям повышения износостойких, прочностных и антифрикционных свойств металлорежущего инструмента, внешних поверхностей обшивки авиационных и космических летательных аппаратов, оптических приборов и нанотехнологиям. Алмазоподобные покрытия получают в вакууме путем...
Тип: Изобретение
Номер охранного документа: 0002516632
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c716

Устройство обогащения всасываемого воздуха кислородом для двигателя внутреннего сгорания

Изобретение может быть использовано для регулирования количества кислорода в топливовоздушной смеси. Устройство обогащения всасываемого воздуха кислородом для двигателя внутреннего сгорания содержит обогатитель с камерой обогащения (КО). Обогатитель установлен во впускном коллекторе за...
Тип: Изобретение
Номер охранного документа: 0002516725
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c7a8

Надкалиберная пучковая граната "елешня" к ручному гранотомету, собираемая перед выстрелом

Изобретение относится к боеприпасам, в частности к надкалиберным пучковым гранатам к ручным гранатометам. Надкалиберная пучковая граната к ручному гранатомету собирается перед подрывом. Граната состоит из калиберной части и надкалиберной боевой части. Калиберная часть содержит реактивный...
Тип: Изобретение
Номер охранного документа: 0002516871
Дата охранного документа: 20.05.2014
10.06.2014
№216.012.cf94

Способ фокусировки прожектора с разрядной лампой

Изобретение относится к осветительной технике и может быть использовано для фокусировки прожекторов различного назначения с разрядной лампой в качестве источника излучения и отражателем параболоидальной или сфероидальной формы. Техническим результатом от использования способа является...
Тип: Изобретение
Номер охранного документа: 0002518911
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.d035

Способ разрушения речного ледяного покрова и устройство для его реализации

Изобретение относится к области взрывных работ, в частности к разрушению ледяного покрова на реках. Способ разрушения речного ледяного покрова включает подачу под ледяной покров взрывчатой газовой смеси в эластичной газонепроницаемой оболочке с последующим инициированием взрыва в ней. С помощью...
Тип: Изобретение
Номер охранного документа: 0002519072
Дата охранного документа: 10.06.2014
20.06.2014
№216.012.d494

Легкий снаряд орудия ближнего действия (горного, пехотного)

Изобретение относится к боеприпасам, а более конкретно к снарядам легких артиллерийских мобильных орудий внутренних, пограничных, воздушно-десантных войск. Легкий снаряд мобильного орудия содержит корпус снаряда с головным взрывателем и зарядом взрывчатого вещества. Снаряд выполнен из двух...
Тип: Изобретение
Номер охранного документа: 0002520191
Дата охранного документа: 20.06.2014
10.07.2014
№216.012.dce1

Микроэлектромеханический взрыватель

Изобретение относится к микроэлектромеханическим взрывателям. Микроэлектромеханическая структура выполнена из расположенных последовательно и соосно кристалла кремния, в котором сформирована кантилевер-игла, кристалла кремния с допированными водородом и окислителем с областью пористого слоя...
Тип: Изобретение
Номер охранного документа: 0002522323
Дата охранного документа: 10.07.2014
20.07.2014
№216.012.defe

Способ азотирования деталей машин с получением наноструктурированного приповерхностного слоя и состав слоя

Изобретение относится к машиностроению, в частности к способу азотирования деталей узлов трения скольжения с получением наноструктурированного приповерхностного слоя. Проводят предварительную термообработку деталей путем закалки при температуре 920-940°C, последующего высокого отпуска с...
Тип: Изобретение
Номер охранного документа: 0002522872
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.df0a

Способ получения наномодифицированного связующего

Изобретение относится к области получения композиционных материалов на основе смол, диспергированных наномодификатором - углеродными нанотрубками (УНТ), которые могут быть использованы для введения в высоковязкие основы при получении полимерных композиционных материалов широкого спектра...
Тип: Изобретение
Номер охранного документа: 0002522884
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e129

Способ формирования компактного плазмоида

Изобретение относится к области физики плазмы и систем ядерного синтеза, в частности к альтернативным способам удержания горячей плотной плазмы. В заявленном способе формирования компактного плазмоида возбуждение тороидального тока производят индуктивным аккумулятором (основной соленоид с...
Тип: Изобретение
Номер охранного документа: 0002523427
Дата охранного документа: 20.07.2014
+ добавить свой РИД