×
27.11.2013
216.012.8617

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ГОЛОГРАФИЧЕСКИХ ИНТЕРФЕРОГРАММ ФАЗОВОГО ОБЪЕКТА

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано при измерении малых разностей хода (менее 0,1λ длины волны) слабых оптических неоднородностей в прозрачных средах, например, при обтекании тел в потоках малой плотности, распыливании топлива из форсунок в разреженное пространство, изучении процессов смешения, воспламенения и горения топлив, обнаружении диффузных пограничных слоев. Способ включает последовательную запись на регистрирующей среде опорного пучка и объектного пучка, прошедшего сквозь фазовый объект. Объектный пучок перед записью разлагают с помощью дифракционного элемента на дифрагированные пучки нулевого и высших порядков дифракции и используют нулевой порядок дифракции, который пропускают сквозь фазовый объект как в прямом, так и в обратном ходе дифрагированных световых пучков на дифракционном элементе. Пучки N-х порядков дифракции, образованные в обратном ходе лучей через дифракционный элемент, возвращают одновременно в плоскость дифракционного элемента. Для регистрации объектного и опорного пучков регистрирующую среду устанавливают в одном из N сопряженных обратных пучков N-го порядка дифракции противоположного знака обратного хода лучей. Коэффициент чувствительности измерения определяют по формуле Ч=(N+1)·2, где N - (0, +1; +2; +3, +4…) - порядок дифракции. Технический результат - повышение коэффициента чувствительности измерения. 3 ил.
Основные результаты: Способ получения голографических интерферограмм фазового объекта путем последовательной записи на регистрирующей среде опорного пучка и объектного пучка, прошедшего сквозь фазовый объект, при этом объектный пучок перед записью формируют с помощью дифракционного элемента, отличающийся тем, чтопри формировании объектного пучка посредством дифракционного элемента объектный пучок разлагают на дифрагированные пучки нулевого и высших порядков дифракции, используют нулевой порядок дифракции, причем нулевой порядок дифракции пропускают сквозь фазовый объект как в прямом, так и в обратном ходе дифрагированных световых пучков на дифракционном элементе, при этом пучки N-х порядков дифракции, образованные в обратном ходе лучей через дифракционный элемент, возвращают одновременно в плоскость дифракционного элемента, а для регистрации объектного и опорного пучков регистрирующую среду устанавливают в одном из N сопряженных обратных пучков N-го порядка дифракции противоположного знака обратного хода лучей, при этом коэффициент чувствительности измерения определяют по формуле Ч=(N+1)·2, где N - (0, +1; +2; +3, +4…) - порядок дифракции.

Изобретение относится к способам получения голографических интерферограмм и может быть использовано при измерении малых разностей хода слабых оптических неоднородностей в прозрачных средах (разность хода лучей менее 0,1λ длины световой волны).

Слабые оптические неоднородности имеют место при изучении обтекания тел в потоках малой плотности (давление равно 10-5-10-7 мм рт.ст.), распыливании топлив из форсунок в разреженное пространство, изучении процессов смешения, воспламенения и горения топлив, обнаружении диффузных пограничных слоев и других задач экспериментальной газовой динамики, физики горения и плазмы.

Известен способ получения голографических интерферограмм фазового объекта (см. В.Т.Черных, И.Н.Зелинский. Способ получения многочастотного голограммного элемента и его использование в голографической интерферометрии трехмерных фазовых объектов. - Оптика и спектроскопия, т.46, в.4, с.795-799, 1979 г.), реализованный в голографическом интерферометре, путем последовательной регистрации объектного пучка, сформированного в виде набора дискретных когерентных световых пучков, прошедших сквозь фазовый объект, и опорного пучка.

Основным недостатком известного способа получения голографических интерферограмм фазового объекта является низкий коэффициент чувствительности измерения. Для увеличения коэффициента чувствительности необходимо проводить пространственную фильтрацию объектных пучков, формирование специального когерентного опорного пучка, а также учитывать погрешность измерений за счет поперечного смещения объектного светового пучка.

Известен способ получения голографических интерферограмм фазового объекта (см. В.Т.Черных «Голографическая интерферометрия фазовых объектов». - Л.: «Наука», Ленинград, отд-ие, 1979 г. / А.К.Бекетова, А.Ф.Белозеров, А.Н.Березкин и др., с.34-37) путем последовательной записи на регистрирующей среде объектной волны, прошедшей сквозь исследуемый фазовый объект, и опорной волны.

Известен также способ получения голографических интерферограмм (см. В.Т.Черных «Голографическая интерферометрия фазовых объектов». - Л.: «Наука», Ленинград, отд-ие, 1979 г. / А.К.Бекетова, А.Ф.Белозеров, А.Н.Березкин и др., с.87-88), в котором последовательная регистрация объектной и опорной волн производится при выполнении нелинейных условий регистрации голограммы.

Наиболее близким техническим решением является способ получения голографических интерферограмм фазового объекта, реализованный в голографическом интерферометре (см. В.Т.Черных, А.Ф.Белозеров. Авторское свидетельство SU №469882, МПК G01B 9/02, 05.05.1975), содержащем источник когерентного излучения, светоделительную пластину, оптическую систему для формирования опорного и объектного пучков, дифракционный элемент перед объектом и узел регистрации голограммы.

Согласно известному способу голографическую интерферограмму получают путем последовательной записи на регистрирующей среде опорного пучка и объектного пучка, прошедшего сквозь фазовый объект, при этом объектный пучок перед записью формируют с помощью дифракционного элемента.

Основным недостатком известных способов получения голографических интерферограмм фазового объекта является то, что их невозможно использовать при измерении слабых оптических неоднородностей в прозрачных средах (разность хода лучей менее 0,1 λ длины световой волны) из-за низкого коэффициента чувствительности измерения.

Задача, на решение которой направлено предлагаемое изобретение, заключается в создании способа получения голографических интерферограмм фазового объекта, позволяющего его использовать при измерении слабых оптических неоднородностей в прозрачных средах за счет повышения коэффициента чувствительности измерения.

Технический результат достигается в способе получения голографических интерферограмм фазового объекта путем последовательной записи на регистрирующей среде опорного пучка и объектного пучка, прошедшего сквозь фазовый объект, при этом объектный пучок перед записью формируют посредством дифракционного элемента, согласно заявляемому изобретению при формировании объектного пучка посредством дифракционного элемента, объектный пучок разлагают на дифрагированные пучки нулевого и высших порядков дифракции, используют нулевой порядок дифракции, причем нулевой порядок дифракции пропускают сквозь фазовый объект как в прямом, так и в обратном ходе дифрагированных световых пучков на дифракционном элементе, при этом пучки N-х порядков дифракции, образованные в обратном ходе лучей через дифракционный элемент, возвращают одновременно в плоскость дифракционного элемента, а для регистрации объектного и опорного пучков регистрирующую среду устанавливают в одном из N сопряженных обратных пучков N-го порядка дифракции противоположного знака обратного хода лучей, при этом коэффициент чувствительности измерения определяют по формуле Ч=(N+1)·2, где N - (0, +1; +2; +3, +4…) - порядок дифракции.

Сущность изобретения поясняется чертежами, где на фиг.1 представлена принципиальная оптическая схема голографического интерферометра, реализующего предлагаемый способ получения голографических интерферограмм фазового объекта, на фиг.2 приведена голографическая интерферограмма неоднородностей факела пламени, полученная способом-прототипом, на фиг.3 приведена голографическая интерферограмма неоднородностей факела пламени, полученная предлагаемым способом.

Цифрами на чертеже (фиг.1) обозначены:

1 - источник когерентного излучения (лазер),

2 - коллиматор,

3 - светоделительная пластина,

4 - дифракционный элемент,

5 - фазовый объект,

6 - зеркало объектного пучка,

7, 8, 9, 10, … N - зеркала, выполненные с возможностью одновременного возврата объектных пучков в прямом ходе в плоскость дифракционного элемента и образования объектных дифрагированных пучков,

11, 12 - зеркала опорного пучка,

13 - узел регистрации голограммы с регистрирующей средой в плоскости регистрации голограммы.

Голографический интерферометр содержит источник 1 когерентного излучения, коллиматор 2, светоделительную пластину 3, оптическую систему для формирования опорного пучка, которая имеет зеркала 11, 12, и объектного пучка, дифракционный элемент 4, установленный перед фазовым объектом 5, и узел 13 регистрации голограммы.

В оптической системе голографического интерферометра для формирования объектного пучка дополнительно установлены зеркало 6 объектного пучка и зеркала 7, 8, 9, 10, … N.

Зеркало 6 объектного пучка установлено после фазового объекта 5, перпендикулярно оптической оси дифракционного элемента 4.

Зеркало 6 выполнено с возможностью возврата объектного пучка в обратном ходе и формирования, совместно с дифракционным элементом 4, на его выходе дифрагированных пучков ; ; ; порядков дифракции.

Зеркала 7, 8, 9, 10, … N установлены в пучках ; ; ; порядков дифракции перпендикулярно оптической оси.

Зеркала 7, 8, 9, 10, … N выполнены с возможностью одновременного возврата объектных пучков в прямом ходе в плоскость дифракционного элемента 4 и образования объектных дифрагированных пучков, проходящих через фазовый объект 5 в направлении зеркала 6 объектного пучка.

Узел 13 регистрации голограммы установлен в одном из N сопряженных пучков ; ; ; порядков дифракции обратного хода лучей.

Способ получения голографических интерферограмм фазового объекта осуществляют следующим образом.

На регистрирующей среде узла 13 регистрации последовательно записывают опорный пучок WОП и объектный пучок WОБ, прошедший сквозь фазовый объект 5.

Объектный пучок WОБ перед записью формируют посредством дифракционного элемента 4.

Отличием предлагаемого способа получения голографических интерферограмм фазового объекта является то, что при формировании объектного пучка WОБ посредством дифракционного элемента 4 объектный пучок WОБ разлагают на дифрагированные пучки нулевого ( ) и высших ( ; ; ) порядков дифракции.

Далее используют только нулевой порядок дифракции.

Нулевой порядок дифракции пропускают сквозь фазовый объект 5, как в прямом, так и в обратном ходе дифрагированных световых пучков на дифракционном элементе 4.

Пучки N-х порядков дифракции, образованные в обратном ходе лучей через дифракционный элемент 4, возвращают одновременно в плоскость дифракционного элемента 4.

Для регистрации объектного и опорного пучков регистрирующую среду узла 13 регистрации устанавливают в одном из N сопряженных обратных пучков N-го порядка дифракции противоположного знака обратного хода лучей.

Коэффициент чувствительности измерения определяют по формуле:

Ч=(N+1)·2, где N - (0, +1; +2; +3, +4…) - порядок дифракции.

Таким образом, предлагаемый способ получения голографических интерферограмм фазового объекта осуществляют следующим образом.

Излучение от лазера 1 поступает в коллиматор 2, на выходе которого формируется коллимированный пучок световых лучей. Далее с помощью светоделительной пластины 3 коллимированный пучок делится на два пучка. Прошедший пучок является объектным пучком WОБ, а отраженный - опорным пучком WОП.

Объектный пучок WОБ, распространяясь в прямом направлении, поступает на дифракционный элемент 4, на выходе которого образуются дифрагированные пучки нулевого и высших порядков ( ; ; …).

В качестве объектного пучка WОБ далее выбирают пучок нулевого порядка, который пропускают сквозь исследуемый фазовый объект 5.

Затем объектный пучок W′ОБ посредством зеркала 6 возвращают в обратном ходе.

Пройдя при этом сквозь фазовый объект 5, пучок W′ОБ поступает в плоскость дифракционного элемента 4.

Пучок W′ОБ, дифрагируя на дифракционном элементе 4, формирует в обратном ходе набор объектных пучков, как изображено на фиг.1.

При этом пучки, в данном конкретном примере дифрагированные в положительные порядки ( ; ; …), вновь возвращают в плоскость дифракционного элемента 4. Каждый из этих объектных пучков, дифрагируя на элементе 4, посылает в прямом направлении объектный пучок, по направлению совпадающий с нулевым порядком. За счет этого получают увеличение разности хода объектного светового пучка, определяемого формулой:

К=(N+1)·2, где

К - коэффициент чувствительности измерений,

N - порядок дифракции (0, +1; +2; +3, +4…).

Объектный пучок записывают на регистрирующей среде узла 13 в порядке дифракции противоположного знака, например в -4-м, соответствующего дифракции в обратном ходе световых лучей.

На голографическом интерферометре голограмму регистрируют по методу двух экспозиций. При первой экспозиции в объектном пучке WОБ присутствует фазовый объект 5. При второй экспозиции в плоскости регистрации голограммы интерферируют два плоских пучка WОБ и WОП.

Пример конкретного осуществления предлагаемого способа получения голографических интерферограмм фазового объекта.

Когерентное излучение от лазера 1 (источника когерентного излучения) поступает в коллиматор 2. На выходе коллиматора формируется пучок параллельных световых лучей. Далее коллимированный пучок поступает на светоделительную пластину 3, посредством которой делится на два пучка. Отраженный от светоделителя опорный пучок WОП поступает в опорную ветвь, образованную элементами 3, 11, 12 и 13.

Оптические элементы 3, 4, 5, 6, и 7, 8, 9, 10, … N образуют объектную ветвь голографического интерферометра.

Прошедший сквозь светоделительную пластину 3 пучок - объектный пучок WОБ - далее поступает в прямом ходе на дифракционный элемент 4. Дифракционный элемент 4 разлагает этот пучок на ряд дифрагированных пучков: нулевой и высшие порядки дифракции ( ; ; ; ).

Далее используют только объектный пучок WОБ нулевого порядка, который, распространяясь в прямом направлении, просвечивает фазовый объект 5 и попадает на зеркало 6 объектного пучка.

Зеркало 6 объектного пучка установлено после фазового объекта 5 перпендикулярно оптической оси и выполнено с возможностью возврата объектного пучка W′ОБ в обратном ходе в плоскость дифракционного элемента 4. Объектный пучок, дифрагируя на элементе 4, в обратном ходе также образует нулевой и высшие порядки дифракции ( ; ±1; ±2; ).

В данном конкретном примере в пучках положительных порядков дифракции ; ; …+N объектного пучка перпендикулярно оптической оси дополнительно установлены зеркала 7, 8, 9, 10, … N, которые выполнены с возможностью одновременного возврата пучков W7, W8, W9, W10, … WN в прямом ходе в плоскость дифракционного элемента 4.

Далее каждый из этих пучков, дифрагируя на элементе 4, формирует объектный пучок, идущий в прямом ходе к зеркалу 6, просвечивая при этом фазовый объект 5.

Отраженный от зеркала 6 объектный пучок, вновь просвечивает в обратном ходе фазовый объект 5 и поступает в плоскость дифракционного элемента 4. Дифрагированные объектные пучки в обратном ходе распространяются в направлениях как положительных, так и отрицательных порядков.

Для регистрации объектного и опорного пучков регистрирующая среда узла 13 установлена в одном из N сопряженных пучков противоположного знака обратного хода лучей (в данном конкретном примере ; ; ; порядков дифракции обратного хода лучей), а более конкретно в пучке порядка обратного хода лучей.

Коэффициент Ч чувствительности измерений определяется по формуле: Ч=(N+1)·2, где N - (0, +1; +2; +3, +4…) - порядок дифракции.

Так, например, при использовании только нулевого порядка дифракции (N=0) коэффициент чувствительности измерения будет равен 2, а при N, равном +4, коэффициент чувствительности измерения будет равен 10, т.е. на порядок больше измеряемой величины (в сравнении с 0,1λ).

На голографическом интерферометре голограмму регистрируют по методу двух экспозиций. При первой экспозиции в объектном пучке WОБ присутствует фазовый объект 5. При второй экспозиции в плоскости регистрации голограммы интерферируют два плоских пучка WОБ и WОП. Опорный пучок WОП с помощью системы зеркал 11 и 12 вводят в плоскость регистрации голограммы под некоторым углом 9.

Работоспособность предлагаемого способа получения голографических интерферограмм фазового объекта экспериментально подтверждена на макете голографического интерферометра. В эксперименте использовался дифракционный элемент (решетка), формирующий нулевой и «±» 4-е порядки дифракции.

На фиг.2 изображена голографическая интерферограмма неоднородностей факела пламени, полученная способом-прототипом (коэффициент чувствительности способа не превышает 0,1λ длины световой волны).

На фиг.3 изображена голографическая интерферограмма, полученная согласно предлагаемому способу.

Из снимка (фиг.3) видно, что деформация полос в области границы неоднородности в десять раз больше, чем на снимке, показанном на фиг.2, т.е. при использовании четвертого порядка дифракции достигнуто десятикратное увеличение коэффициента чувствительности измерений.

Из снимка (фиг.3) также видно, что полосы настройки вне возмущенной зоны сохраняют строгую прямолинейность (при достигнутом увеличении чувствительности), что позволяет проводить количественную расшифровку интерферограммы, показанной на фиг.3.

Таким образом, использование предлагаемого изобретения позволит повысить коэффициент чувствительности измерений, что обеспечит количественное измерение слабых оптических неоднородностей.

Способ получения голографических интерферограмм фазового объекта путем последовательной записи на регистрирующей среде опорного пучка и объектного пучка, прошедшего сквозь фазовый объект, при этом объектный пучок перед записью формируют с помощью дифракционного элемента, отличающийся тем, чтопри формировании объектного пучка посредством дифракционного элемента объектный пучок разлагают на дифрагированные пучки нулевого и высших порядков дифракции, используют нулевой порядок дифракции, причем нулевой порядок дифракции пропускают сквозь фазовый объект как в прямом, так и в обратном ходе дифрагированных световых пучков на дифракционном элементе, при этом пучки N-х порядков дифракции, образованные в обратном ходе лучей через дифракционный элемент, возвращают одновременно в плоскость дифракционного элемента, а для регистрации объектного и опорного пучков регистрирующую среду устанавливают в одном из N сопряженных обратных пучков N-го порядка дифракции противоположного знака обратного хода лучей, при этом коэффициент чувствительности измерения определяют по формуле Ч=(N+1)·2, где N - (0, +1; +2; +3, +4…) - порядок дифракции.
СПОСОБ ПОЛУЧЕНИЯ ГОЛОГРАФИЧЕСКИХ ИНТЕРФЕРОГРАММ ФАЗОВОГО ОБЪЕКТА
СПОСОБ ПОЛУЧЕНИЯ ГОЛОГРАФИЧЕСКИХ ИНТЕРФЕРОГРАММ ФАЗОВОГО ОБЪЕКТА
СПОСОБ ПОЛУЧЕНИЯ ГОЛОГРАФИЧЕСКИХ ИНТЕРФЕРОГРАММ ФАЗОВОГО ОБЪЕКТА
Источник поступления информации: Роспатент

Показаны записи 151-160 из 166.
13.01.2017
№217.015.83ad

Установка подготовки твердого топлива к сжиганию

Изобретение относится к теплоэнергетике и может быть использовано для подготовки твердого топлива к сжиганию на тепловых электрических станциях (ТЭС). Установка подготовки твердого топлива к сжиганию содержит технологически соединенные между собой тракт сырого топлива, бункер сырого топлива,...
Тип: Изобретение
Номер охранного документа: 0002601399
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8c9e

Установка для производства пиролизного топлива

Изобретение относится к области низкотемпературного быстрого пиролиза и может быть использовано для производства топлива из биомассы мелкораздробленной древесины. Установка содержит технологически связанные между собой накопительный бункер исходного дисперсного сырья (ИДС) (25), камеру горения...
Тип: Изобретение
Номер охранного документа: 0002604845
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.9a79

Способ оптического контроля состояния изолирующей конструкции

Изобретение относится к электрическим измерениям и предназначено для выявления дефектной изолирующей конструкции, например гирлянды изоляторов высоковольтной линии электропередачи, при осуществлении дистанционного контроля. заявленный способ оптического контроля состояния изолирующей...
Тип: Изобретение
Номер охранного документа: 0002609823
Дата охранного документа: 06.02.2017
25.08.2017
№217.015.a26f

Устройство адсорбционно-биологической очистки сточных вод промышленных предприятий

Изобретение относится к биологической очистке сточных вод и может быть использовано на очистных сооружениях промышленных предприятий. Устройство адсорбционно-биологической очистки сточных вод промышленных предприятий содержит технологически связанные между собой линию подачи сточных вод 12,...
Тип: Изобретение
Номер охранного документа: 0002606989
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.ba9c

Установка для получения нагретых газов из углеродсодержащего материала

Изобретение относится к области получения нагретых газов из твердых углеродсодержащих веществ и может быть использовано в энергетике. Установка для получения нагретых газов из углеродсодержащего материала содержит реактор кипящего слоя 1 для конверсии углерода с трубопроводом 6 подачи...
Тип: Изобретение
Номер охранного документа: 0002615690
Дата охранного документа: 06.04.2017
25.08.2017
№217.015.bb61

Радиантный змеевик печи для этиленового крекинга

Изобретение относится к радиантному змеевику печи для этиленового крекинга. Змеевик содержит первую впускную трубу, вторую трубу, третью трубу и четвертую выпускную трубу, которые соединены последовательно по движению входного потока газовой смеси с помощью отводов, причем первая впускная труба...
Тип: Изобретение
Номер охранного документа: 0002615753
Дата охранного документа: 11.04.2017
25.08.2017
№217.015.c07a

Способ периодического тестирования цифровой подстанции

Изобретение относится к электроэнергетике. Способ периодического тестирования цифровой подстанции заключается в том, что цифровые терминалы релейной защиты периодически формируют тестовые последовательности для контроля работоспособности каждой защиты. Формируют тестовые сигналы, которые...
Тип: Изобретение
Номер охранного документа: 0002616497
Дата охранного документа: 17.04.2017
25.08.2017
№217.015.c756

Способ защиты трубопроводов от аварийных ситуаций, вызванных карстовыми провалами

Изобретение относится к строительству и эксплуатации магистральных трубопроводов и может быть использовано для предотвращения возникновения аварийных ситуаций в трубопроводах, вызванных карстовыми провалами. Способ защиты трубопроводов от аварийных ситуаций, вызванных карстовыми провалами, при...
Тип: Изобретение
Номер охранного документа: 0002618802
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.d255

Способ определения пространственного положения пучка инфракрасного излучения

Изобретение относится к области лазерного приборостроения и касается способа определения пространственного положения пучка инфракрасного излучения. Способ включает в себя формирование инфракрасного пучка с помощью первой оптической системы, содержащей инфракрасный лазер, прозрачный в...
Тип: Изобретение
Номер охранного документа: 0002621477
Дата охранного документа: 06.06.2017
26.08.2017
№217.015.df09

Голографический способ изучения нестационарных процессов

Голографический способ изучения нестационарных процессов, в котором используют когерентный источник излучения, коллиматор и первый, второй и третий светоделители, а также зеркала, при помощи которых формируют три опорных и один объектный пучки. В процессе реализации способа указанные три...
Тип: Изобретение
Номер охранного документа: 0002624981
Дата охранного документа: 11.07.2017
Показаны записи 151-160 из 181.
10.02.2016
№216.014.c2a5

Способ изготовления светодиода

Изобретение относится к электронной полупроводниковой промышленности и может быть использовано в производстве светодиодных источников света. Согласно способу изготовления светодиода,полупроводниковый излучатель и прозрачный световыводящий элемент соединяют в единый излучающий элемент, на...
Тип: Изобретение
Номер охранного документа: 0002574424
Дата охранного документа: 10.02.2016
10.03.2016
№216.014.ccab

Способ измерения сопротивления участка тела человека

Изобретение относится к медицинской технике. Способ измерения сопротивления участка тела человека по двум каналам реализуют с помощью реографа, содержащего два четырехконтактных датчика (1, 2), генератор высокочастотных сигналов (4) и блок обработки и отображения (5). При этом используют первый...
Тип: Изобретение
Номер охранного документа: 0002577178
Дата охранного документа: 10.03.2016
20.02.2016
№216.014.cd9b

Способ работы тепловой электрической станции

Изобретение относится к области энергетики. В способе работы тепловой электрической станции, по которому отработавший пар поступает из первой паровой турбины в паровое пространство конденсатора, внутри конденсаторных трубок которого протекает охлаждающая жидкость, а пар отопительных параметров...
Тип: Изобретение
Номер охранного документа: 0002575247
Дата охранного документа: 20.02.2016
20.02.2016
№216.014.cedc

Способ работы тепловой электрической станции

Изобретение относится к области энергетики. В способе работы тепловой электрической станции, по которому отработавший пар поступает из первой паровой турбины в паровое пространство конденсатора, внутри конденсаторных трубок которого протекает охлаждающая жидкость, а пар отопительных параметров...
Тип: Изобретение
Номер охранного документа: 0002575216
Дата охранного документа: 20.02.2016
20.02.2016
№216.014.e911

Способ работы тепловой электрической станции

Изобретение относится к области энергетики. В способе работы тепловой электрической станции в паровой турбине используют систему маслоснабжения подшипников паровой турбины с маслоохладителем, утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара и утилизацию...
Тип: Изобретение
Номер охранного документа: 0002575252
Дата охранного документа: 20.02.2016
10.04.2016
№216.015.2e8a

Способ розжига топки котла

Изобретение относится к области энергомашиностроения и может быть использовано при автоматическом розжиге топки котлов тепловых электростанций, работающих на газообразном топливе. Способ розжига топки котла импульсным лазерным разрядом включает нагрев и воспламенение газообразного топлива путем...
Тип: Изобретение
Номер охранного документа: 0002580241
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2f56

Способ изготовления оптического модуля светодиодного светильника

Изобретение относится к области светотехнического приборостроения и может быть использовано в осветительных приборах. Технический результат, заключающийся в расширении области применения, достигается тем, что в способе изготовления оптического модуля светодиодного светильника, по которому...
Тип: Изобретение
Номер охранного документа: 0002580178
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3029

Сигнатурное цифровое сглаживающее устройство

Изобретение относится к автоматике и вычислительной технике и может быть использовано в цифровых системах и устройствах для сглаживания стационарных и медленно меняющихся случайных процессов. Техническим результатом является существенное упрощение устройства и повышение эффективности...
Тип: Изобретение
Номер охранного документа: 0002580452
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3151

Способ изготовления светодиода

Изобретение относится к светодиодным источникам света и может быть использовано в оптико-механическом, оптико-электронном и голографическом приборостроении, когда осветительную часть прибора необходимо оснащать источником с повышенной концентрацией светового потока. Согласно изобретению в...
Тип: Изобретение
Номер охранного документа: 0002580215
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.316d

Устройство и способ испытания изделий на случайные вибрации

Изобретение относится к области испытаний изделий на случайную вибрацию и может быть использовано при определении вибронадежности машин, приборов и аппаратуры. Устройство содержит цепи формирования, каждая из которых включает первый генератор шума (ГШ), подключенный к его выходу первый фильтр...
Тип: Изобретение
Номер охранного документа: 0002580182
Дата охранного документа: 10.04.2016
+ добавить свой РИД