×
27.11.2013
216.012.8575

Результат интеллектуальной деятельности: СПОСОБ ПРОИЗВОДСТВА ШТРИПСОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, конкретнее к прокатному производству, и может быть использовано для получения свариваемых штрипсов категории прочности X100 по стандарту API 5L-04, используемых при строительстве магистральных нефтегазопроводов высокого давления. Техническим результатом является повышение прочностных свойств штрипсов при обеспечении доли волокнистой составляющей в изломе образца не менее 90%. Для достижения технического результата после выплавки стали получают непрерывнолитые слябы, нагревают их до температуры аустенитизации, проводят многопроходную черновую и чистовую прокатку с регламентируемой температурой конца прокатки и охлаждение штрипсов водой, при этом после черновой прокатки раскаты охлаждают до температуры 720-800°C, чистовую прокатку ведут с относительными обжатиями за проход 8-25% и температурой конца прокатки, равной 740-790°C, после чего штрипсы охлаждают со скоростью не менее 17°C/с. Сталь выплавляют следующего химического состава, мас.%: 0,06-0,11 C, 0,02-0,04 Si, 1,45-1,95 Mn, 0,15-0,28 Mo, 0,01-0,06 Nb, 0,01-0,09 Ti, 0,15-0,35 Ni, 0,10-0,30 Cr, 0,002-0,009 N, не более 0,20 V, остальное Fe. 2 табл.
Основные результаты: Способ производства штрипсов, включающий выплавку низколегированной стали, изготовление непрерывнолитых слябов, их нагрев до температуры аустенитизации, многопроходную черновую и чистовую прокатку с регламентируемой температурой конца чистовой прокатки и охлаждение штрипсов водой, отличающийся тем, что выплавляют сталь следующего химического состава, мас.%: при этом после черновой прокатки раскаты охлаждают до температуры 720-800°C, а чистовую прокатку ведут с относительными обжатиями за проход 8-25% и с температурой конца прокатки, равной 740-790°C, после чего штрипсы охлаждают со скоростью не менее 17°C/с.

Изобретение относится к области металлургии, конкретнее к прокатному производству, и может быть использовано для получения свариваемых штрипсов категории прочности X100 по стандарту API 5L-04, используемых при строительстве магистральных нефтегазопроводов высокого давления.

Известен способ производства штрипсов [1], включающий изготовление слябов, их нагрев до температуры 1170-1420°C, черновую прокатку до промежуточной толщины и чистовую прокатку в температурном интервале 910-710°C с суммарным относительным обжатием 60-80%. При этом слябы изготавливают из низколегированной стали следующего состава, мас.%:

Углерод 0,06-0,12
Марганец 1,4-1,7
Кремний 0,20-0,45
Ванадий 0,06-0,10
Ниобий 0,04-0,08
Титан 0,005-0,035
Хром 0,01-0,30
Никель 0,01-0,30
Медь 0,01-0,30
Алюминий 0,02-0,05
Молибден 0,01-0,50
Сера не более 0,006
Фосфор не более 0,015
Бор не более 0,006
Азот не более 0,010
Железо Остальное

Известен также способ производства штрипсов из низколегированной стали следующего химического состава, мас.%:

Углерод 0,12-0,17
Марганец 1,3-1,6
Кремний 0,3-0,6
Алюминий 0,02-0,06
Ванадий и/или ниобий 0,01-0,05
Хром не более 0,3
Никель не более 0,3
Медь не более 0,3
Фосфор не более 0,015
Сера не более 0,006
Азот не более 0,010
Кальций не более 0,02
Железо Остальное

Способ включает нагрев слябов до температуры аустенитизации, многопроходную черновую прокатку, затем многопроходную чистовую прокатку с температурой конца прокатки 820-880°C, и ускоренное охлаждение штрипсов водой до температуры 580-660°C [2].

Недостатки известных способов [1, 2] состоят в том, штрипсы имеют низкую прочность и недостаточную долю волокнистой составляющей в изломе образца.

Ближайшим аналогом к предлагаемому изобретению является способ производства штрипсов [3], включающий изготовление слябов, их нагрев до температуры аустенитизации, многопроходную черновую и чистовую прокатки с регламентируемой температурой конца прокатки 700-880°C, и охлаждение штрипсов водой, согласно которому чистовую прокатку ведут с суммарным относительным обжатием не менее 50%, а охлаждение штрипсов водой осуществляют со скоростью не менее 10°C/с до температуры не выше 580°C. Причем слябы изготавливают из стали следующего химического состава, мас.%:

Углерод 0,05-0,10
Кремний 0,20-0,40
Марганец 1,50-1,90
Молибден 0,15-0,40
Ниобий 0,02-0,06
Титан 0,01-0,03
Бор не более 0,01
Алюминий не более 0,05
Хром не более 0,30
Никель не более 0,50
Медь не более 0,30
Фосфор не более 0,010
Сера не более 0,004
Железо Остальное

Недостаток известного способа состоит в том, что он не обеспечивает получения требуемых прочностных свойств σв=890-950 МПа при сохранении доли волокнистой составляющей в изломе образца ИНГ-20 не менее 90%, что является необходимыми условиями для штрипсов с категорией прочности, соответствующей X100 по стандарту API 5L-04.

Техническая задача, решаемая изобретением, состоит в повышении прочностных свойств штрипсов при обеспечении доли волокнистой составляющей в изломе образца не менее 90%.

Для решения технической задачи в известном способе производства штрипсов, включающем изготовление непрерывно литых слябов из низколегированной стали, их нагрев до температуры аустенитизации, многопроходную черновую и чистовую прокатку с регламентируемой температурой конца прокатки и охлаждение штрипсов водой, согласно изобретению после черновой прокатки раскаты охлаждают до температуры 720-800°c, температуру конца прокатки поддерживают равной 740-790°C, а чистовую прокатку ведут с относительными обжатиями за проход 8-25%, после чего штрипсы охлаждают со скоростью не менее 17°C/с, при этом слябы изготавливают из стали следующего химического состава, мас.%:

Углерод 0,06-0,11
Кремний 0,02-0,04
Марганец 1,45-1,95
Молибден 0,15-0,28
Ниобий 0,01-0,06
Титан 0,01-0,09
Никель 0,15-0,35
Медь 0,10-0,30
Азот 0,002-0,009
Ванадий не более 0,20
Железо Остальное

Сущность предложенного изобретения состоит в следующем. Повышение прочностных свойств при одновременном сохранении волокнистости излома, как показали эксперименты, может быть достигнуто за счет одновременной оптимизации деформационно-термических режимов чистовой прокатки штрипсов и химического состава стали. Причем повышение степени легированности ограничено требованиями к высокой свариваемости штрипсов. Многопроходная черновая прокатка при температуре нагрева слябов (температуре аустенитизации) обеспечивает эффективное разрушение их изначально литой структуры за счет максимальных частных обжатиях. Охлаждение раскатов до температуры 720-800°C замедляет процесс полигонизации в процессе чистовой прокатки стали предложенного состава. Благодаря этому при относительных обжатиях в каждом из чистовых проходов 8-25% достигается деформационное диспергирование микроструктурных составляющих, стимулируется выпадение мелкодсперсных карбонитридных частиц, упрочняющих сталь, а также накопление от прохода к проходу петлевых дислокации. Охлаждение прокатанных штрипсов водой со скоростью не менее 17°C/с от температуры конца прокатки 740-790°C позволяет исключить появление в структуре стали перлита и бейнита. В этом случае деформированный аустенит превращается в игольчатый (закаленный) феррит с равномерно распределенными по его объему включениями мартенсита в количестве 6-8% по объему. Двухфазный ферритно-мартенситный состав закаленного феррита стали предложенного состава после высокотемпературной термомеханической обработки в процессе чистовой прокатки обеспечивает достижение значения σв=850-950 МПа при доле волокнистой составляющей в изломе образца ИПГ-20 не менее 90%.

Экспериментально установлено, что охлаждение раската после черновой прокатки до температуры выше 800°C замедляет процесс выделения из твердого раствора аустенита карбонитридных частиц, что приводит к снижению прочностных свойств штрипсов. Охлаждение раската до температуры ниже 720°C приводит к снижению пластических и вязкостных свойств штрипсов.

Чистовая прокатка с относительными обжатиями за проход менее 8% приводит к полигонизации деформируемой микроструктры, снижению прочности и ударной вязкости готовых штрипсов. Увеличение относительных обжатий более 25% вызывает формирование нежелательной кристаллографической текстуры и анизотропии механических свойств, что недопустимо.

При температуре конца прокатки Tкп выше 790°C прочность штрипсов ниже допустимой, а при Tкп ниже 740°C имеет место снижение доли волокнистой составляющей в изломе при ИПГ-20 менее 90%.

Снижение скорости охлаждения штрипсов водой менее 17°C/с от температуры конца прокатки приводит к появлению в структуре стали перлитных колоний и включений бейнита. Это приводит к снижению прочности штрипсов и доли волокнистой составляющей в изломе.

Углерод определяет прочностные свойства стали и ее свариваемость. Уменьшение содержания углерода менее 0,06% приводит к снижению прочности ниже допустимого уровня. Увеличение содержания углерода сверх 0,11% ухудшает свариваемость и пластичность штрипсов.

Кремний, располагаясь по границам зерен, приводит к их ослаблению. Поэтому увеличение содержания кремния более 0,04% приводит к снижению значения ИПГ-20, что недопустимо. При содержании кремния менее 0,02% увеличивается окисленность стали, снижается прочность и пластичность.

Марганец повышает прочности стали и температурную устойчивость аустенита. При содержании марганца менее 1,45% снижается прочность стали, доля вязкой составляющей в изломе и вязкость при отрицательных температурах. Повышение концентрации марганца сверх 1,95% ухудшает свариваемость штрипсов.

Молибден упрочняет ферритную матрицу стали. Уменьшение содержания молибдена менее 0,15% снижает прочностные свойства штрипсов ниже допустимого уровня. Увеличение содержания молибдена более 0,28% ухудшает свариваемость штрипсов.

Карбиды ниобия располагаются по границам зерен и субзерен, упрочняют сталь. При содержании ниобия менее 0,01% его влияние на прочностные свойства недостаточно. При содержании ниобия более 0,06% ухудшаются вязкостные свойства и свариваемость штрипсов.

Уменьшение содержания титана менее 0,01% снижает прочность и пластичность штрипсов. При сварке титан полностью выгорает, поэтому его концентрация в стали не должна быть выше 0,09%.

Никель при концентрации 0,15-0,35% обеспечивает исключение образования перлита и бейнита в процессе охлаждения прокатанных штрипсов. При содержании никеля менее 0,15% в структуре стали появляется перлит, что снижает прочность. Увеличение концентрации никеля более 0,35% снижает показатель ИПГ-20, что недопустимо.

Медь, кристаллизуясь в последнюю очередь на границах зерен, способствует их пластификации. При содержании меди менее 0,10% снижается доля волокнистой составляющей в изломе образца. Увеличение содержания меди более 0,30% приводит к потере прочностных и вязкостных свойств штрипсов.

Азот в химических соединениях с титаном, ванадием и другими легирующими элементами упрочняет сталь по механизму дисперсионного твердения. При содержании азота менее 0,002% снижается прочность штрипсов, что требует увеличения количества других легирующих элементов, что ухудшает свариваемость штрипсов. Увеличение содержания азота более 0,009% снижает пластичность стали и долю волокнистой составляющей ниже 90%.

Ванадий способствует повышению прочности штрипсов, однако увеличение его концентрации сверх 0,20% снижает долю волокнистой составляющей в изломе, а также ухудшает свариваемость штрипсов.

Примеры реализации способа

В кислородном конвертере выплавляют низколегированные стали (табл.1) для производства штрипсов категории X100. Выплавленные низколегированные стали после доводки подвергают непрерывной разливке в слябы толщиной 270 мм.

Сляб из стали с составом 3 (табл.1) подвергают нагреву до температуры аустенитизации Та=1150°C. Нагретый сляб выдают на рольганг толстолистового реверсивного стана кварто 5000 и подвергают многопроходной черновой прокатке с разбивкой ширины в раскат с промежуточной толщиной 47 мм. Затем раскат охлаждают на рольганге в режиме качания до температуры Тн=760°C и производят чистовую прокатку с обжатиями за проход ε=16% в штрипс толщиной 20 мм. Температуру конца прокатки поддерживают равной Tкп=765°C.

Прокатанный штрипс подвергают контролируемому охлаждению (закалке) водой со скоростью Vo=20°C/с от температуры Ткп=765°C до температуры 500°C.

В табл.2 приведены варианты реализации способа производства штрипсов категории прочности X100 из низколегированных сталей различного состава, а также показатели их качества.

Из данных, представленных в табл.1 и табл.2, следует, что при реализации предложенного способа (варианты №2-4) достигается повышение прочностных свойств штрипсов из низколегированной стали. Доля волокнистой составляющей в изломе превышает 90%. В результате они полностью соответствуют требованиям, предъявляемым к штрипсам категории прочности X100.

В случае запредельных значений заявленных параметров (варианты №1 и №5) прочностные свойства штрипсов снижаются, уменьшается доля волокнистой составляющей в изломе образца. Штрипсы, произведенные по известному способу [3] (вариант №6), также не соответствуют категории прочности X100.

Технико-экономические преимущества предложенного способа заключаются в том, что нагрев слябов из низколегированной стали предложенного состава до температуры аустенитизации, последующая их многопроходная черновая прокатка, охлаждение до температуры 720-800°C и многопроходная чистовая прокатка с Tкп=740-790°C с относительным обжатием за проход 8-25%, и закалка штрипсов водой со скоростью не менее 17°C/с обеспечивает формирование ферритной матрицы, упрочненной мартенситом с реечной морфологией, карбо-нитридными частицами наноразмеров, а также волокнистый излом по всей поверхности образца, подвергнутого испытанию падающим грузом при температуре - 20°C (ИПГ-20). Благодаря этому штрипсы имеют повышенную прочность, и по своему качеству полностью соответствуют категории прочности X100, что позволяет повысить давление и удельный расход перекачиваемой среды без увеличения толщины стенки трубопровода.

Предложенный способ явился результатом развития известного способа [3]. Его использование обеспечит повышение рентабельности производства штрипсов повышенной прочности для труб магистральных нефтегазопроводов на 10-20%.

Источники информации

1. Патент Российской Федерации №2241769, МПК C21D 8/02, C22C 38/58, B21B 1/26, 2004 г.

2. Патент Российской Федерации №2262537, МПК C21D 8/02, C22C 38/46, 2005 г.

3. Патент Российской Федерации №2358024, МПК C21D 8/02, C22C 28/22, C22C 38/42, 2009 г.

Способ производства штрипсов, включающий выплавку низколегированной стали, изготовление непрерывнолитых слябов, их нагрев до температуры аустенитизации, многопроходную черновую и чистовую прокатку с регламентируемой температурой конца чистовой прокатки и охлаждение штрипсов водой, отличающийся тем, что выплавляют сталь следующего химического состава, мас.%: при этом после черновой прокатки раскаты охлаждают до температуры 720-800°C, а чистовую прокатку ведут с относительными обжатиями за проход 8-25% и с температурой конца прокатки, равной 740-790°C, после чего штрипсы охлаждают со скоростью не менее 17°C/с.
Источник поступления информации: Роспатент

Показаны записи 61-70 из 266.
20.09.2013
№216.012.6aa0

Способ дрессировки стальных отожженных полос

Изобретение предназначено для снижения энергозатрат прокатного производства и может быть использовано при дрессировке стальных холоднокатаных отожженных полос в клети с по меньшей мере одним приводным валком. Способ включает заправку полосы в стан с помощью электроприводных рабочих валков при...
Тип: Изобретение
Номер охранного документа: 0002492947
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6aa1

Способ эксплуатации валков листопрокатного стана

Изобретение относится к прокатному производству и может быть использовано при прокатке в листопрокатных и дрессировочных клетях с рабочими валками, имеющими различные диаметры бочек, с индивидуальным и групповым приводом валков. Способ включает шлифование валков, насечку поверхностей их бочек,...
Тип: Изобретение
Номер охранного документа: 0002492948
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6aaf

Способ производства броневых листов

Изобретение относится к области металлургии и может быть использовано при производстве стальных листов бронезащитного назначения для легкобронированных боевых машин, летательных аппаратов, средств индивидуальной защиты. Способ включает выплавку стали мартенситного класса, разливку в изложницы,...
Тип: Изобретение
Номер охранного документа: 0002492962
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6ae1

Запирающая прокладка для многопуансонного устройства высокого давления и высоких температур

Изобретение относится к области изготовления синтетических алмазов с использованием многопуансонных аппаратов высокого давления. Запирающая прокладка, размещаемая между пуансонами многопуансонного устройства высокого давления и температуры, имеет форму трапеции и состоит из трех слоев, один из...
Тип: Изобретение
Номер охранного документа: 0002493012
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6b5c

Способ получения композиционных материалов из кубического нитрида бора

Изобретение относится к области производства различных видов металлообрабатывающих инструментов: резцов, фрез, притиров, в частности, к получению спеченного композиционного материала, изготовленного из порошков кубического нитрида бора. Способ заключается в формовании порошков кубического...
Тип: Изобретение
Номер охранного документа: 0002493135
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6be0

Способ производства круглого сортового проката из автоматной стали

Изобретение относится к области металлургии, конкретно к производству круглого сортового проката с повышенной обрабатываемостью резанием, используемого для изготовления крепежных изделий. Техническим результатом изобретения является повышение качества и выхода годного круглого сортового...
Тип: Изобретение
Номер охранного документа: 0002493267
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6be3

Способ производства гетерогенной листовой стали

Изобретение относится к области металлургии, конкретно к производству двухслойного стального листового проката толщиной 4-20 мм для бронезащитных конструкций с классом защиты не ниже 6a по ГОСТ P5 0963-96 для легкобронированных боевых машин, летательных аппаратов, бронированных сооружений. Для...
Тип: Изобретение
Номер охранного документа: 0002493270
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6bed

Способ переработки молибденитовых концентратов

Изобретение относится к металлургии редких металлов, в частности молибдена, и может быть использовано для переработки молибденитовых концентратов с получением соединений молибдена. Способ переработки молибденитовых концентратов включает хлорирование концентрата при температуре не более 450°C,...
Тип: Изобретение
Номер охранного документа: 0002493280
Дата охранного документа: 20.09.2013
27.09.2013
№216.012.6e70

Способ производства тонкой горячекатаной листовой стали

Изобретение предназначено для повышения вытяжных свойств горячекатаной листовой стали толщиной 1,0 мм и менее из низкоуглеродистых и сверхнизкоуглеродистых (IF) сталей. Способ включает аустенитизирующий нагрев слябов, многопроходную черновую прокатку полос, чистовую прокатку и смотку в рулоны....
Тип: Изобретение
Номер охранного документа: 0002493923
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.6e71

Способ производства холоднокатаной листовой стали

Изобретение относится к прокатному производству и может быть использовано при прокатке холоднокатаных полос из низкоуглеродистой стали на непрерывных станах с последующим отжигом в садочных печах. Способ включает завалку в последнюю клеть непрерывного стана насеченных рабочих валков с...
Тип: Изобретение
Номер охранного документа: 0002493924
Дата охранного документа: 27.09.2013
Показаны записи 61-70 из 294.
20.09.2013
№216.012.6aa1

Способ эксплуатации валков листопрокатного стана

Изобретение относится к прокатному производству и может быть использовано при прокатке в листопрокатных и дрессировочных клетях с рабочими валками, имеющими различные диаметры бочек, с индивидуальным и групповым приводом валков. Способ включает шлифование валков, насечку поверхностей их бочек,...
Тип: Изобретение
Номер охранного документа: 0002492948
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6aaf

Способ производства броневых листов

Изобретение относится к области металлургии и может быть использовано при производстве стальных листов бронезащитного назначения для легкобронированных боевых машин, летательных аппаратов, средств индивидуальной защиты. Способ включает выплавку стали мартенситного класса, разливку в изложницы,...
Тип: Изобретение
Номер охранного документа: 0002492962
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6ae1

Запирающая прокладка для многопуансонного устройства высокого давления и высоких температур

Изобретение относится к области изготовления синтетических алмазов с использованием многопуансонных аппаратов высокого давления. Запирающая прокладка, размещаемая между пуансонами многопуансонного устройства высокого давления и температуры, имеет форму трапеции и состоит из трех слоев, один из...
Тип: Изобретение
Номер охранного документа: 0002493012
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6b5c

Способ получения композиционных материалов из кубического нитрида бора

Изобретение относится к области производства различных видов металлообрабатывающих инструментов: резцов, фрез, притиров, в частности, к получению спеченного композиционного материала, изготовленного из порошков кубического нитрида бора. Способ заключается в формовании порошков кубического...
Тип: Изобретение
Номер охранного документа: 0002493135
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6be0

Способ производства круглого сортового проката из автоматной стали

Изобретение относится к области металлургии, конкретно к производству круглого сортового проката с повышенной обрабатываемостью резанием, используемого для изготовления крепежных изделий. Техническим результатом изобретения является повышение качества и выхода годного круглого сортового...
Тип: Изобретение
Номер охранного документа: 0002493267
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6be3

Способ производства гетерогенной листовой стали

Изобретение относится к области металлургии, конкретно к производству двухслойного стального листового проката толщиной 4-20 мм для бронезащитных конструкций с классом защиты не ниже 6a по ГОСТ P5 0963-96 для легкобронированных боевых машин, летательных аппаратов, бронированных сооружений. Для...
Тип: Изобретение
Номер охранного документа: 0002493270
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6bed

Способ переработки молибденитовых концентратов

Изобретение относится к металлургии редких металлов, в частности молибдена, и может быть использовано для переработки молибденитовых концентратов с получением соединений молибдена. Способ переработки молибденитовых концентратов включает хлорирование концентрата при температуре не более 450°C,...
Тип: Изобретение
Номер охранного документа: 0002493280
Дата охранного документа: 20.09.2013
27.09.2013
№216.012.6e70

Способ производства тонкой горячекатаной листовой стали

Изобретение предназначено для повышения вытяжных свойств горячекатаной листовой стали толщиной 1,0 мм и менее из низкоуглеродистых и сверхнизкоуглеродистых (IF) сталей. Способ включает аустенитизирующий нагрев слябов, многопроходную черновую прокатку полос, чистовую прокатку и смотку в рулоны....
Тип: Изобретение
Номер охранного документа: 0002493923
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.6e71

Способ производства холоднокатаной листовой стали

Изобретение относится к прокатному производству и может быть использовано при прокатке холоднокатаных полос из низкоуглеродистой стали на непрерывных станах с последующим отжигом в садочных печах. Способ включает завалку в последнюю клеть непрерывного стана насеченных рабочих валков с...
Тип: Изобретение
Номер охранного документа: 0002493924
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.6e7e

Способ получения нанопорошка карбида кремния

Изобретение относится к области порошковой металлургии, в частности к технологии получения нанопорошка карбида кремния. Может применяться для изготовления абразивных и режущих материалов, конструкционной керамики и кристаллов для микроэлектроники, катализаторов и защитных покрытий. Исходную...
Тип: Изобретение
Номер охранного документа: 0002493937
Дата охранного документа: 27.09.2013
+ добавить свой РИД