×
20.11.2013
216.012.837f

Результат интеллектуальной деятельности: МУЛЬТИБАРЬЕРНАЯ ГЕТЕРОСТРУКТУРА ДЛЯ ГЕНЕРАЦИИ МОЩНОГО ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ СУБ- И ТЕРАГЕРЦОВОГО ДИАПАЗОНОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к приборным структурам для генерации мощного электромагнитного излучения суб- и терагерцового диапазонов, которые применяются в компактных и мощных импульсных генераторах, детекторах и смесителях субтерагерцового и терагерцового диапазона частот. Изобретение обеспечивает увеличение мощности и расширение частотного диапазона компактных генераторов терагерцового излучения. В мультибарьерной гетероструктуре для генерации мощного электромагнитного излучения субтерагерцового и терагерцового частотного диапазонов, представляющей собой многослойную гетероструктуру из чередующихся слоев узкозонного и широкозонного полупроводников, где слой широкозонного полупроводника является энергетическим барьером ΔE для электронов из узкозонного слоя, согласно изобретению, толщины d гетерослоев выбираются из условия где D - коэффициент диффузии электронов, а τ - время релаксации избыточной тепловой энергии электронов в решетку; широкозонные (барьерные) слои не легированы, а концентрация доноров N в узкозонных слоях удовлетворяет условию 10 см≤Nd≤10 см; высота энергетического барьера ΔE>6kT; количество чередующихся пар узкозонных и широкозонных слоев n>4, причем материал широкозонного барьерного слоя в первой паре отличается от всех остальных, последующих, и выбирается обеспечивающим пониженную по сравнению с последующими высоту первого энергетического барьера. 1 з.п. ф-лы, 3 ил.

Предлагаемое устройство относится к приборным структурам микроэлектронной техники для генерации мощного электромагнитного излучения суб- и терагерцового диапазонов, которые применяются в компактных и мощных импульсных генераторах, детекторах и смесителях субтерагерцового и терагерцового диапазона частот.

Разработка физических принципов генерации электромагнитного излучения субтерагерцового и терагерцового диапазонов частот является актуальной стратегической задачей, так как определяет уровень развития твердотельной электроники в области сверхвысоких частот. Освоение этого частотного диапазона имеет важное прикладное значение, как например, для бесконтактных методов диагностики в медицине и биологии, систем широкополосной связи и информатики, так и для устройств высокоточной локации объектов.

Терагерцовый диапазон является промежуточным между радиочастотным и оптическим диапазонами и сложен для практической реализации. В настоящее время частоты эффективных применений известных в области СВЧ активных элементов, таких, как лавинно-пролетные диоды, гетеропереходные диоды и диоды Ганна на основе твердых растворов A3B5 не превышают нескольких десятков гигагерц, где - постоянная Планка, a m - масса электрона.

Известна [1] трехслойная гетероструктура, в которой центральный узкозонный слой (квантовая яма) отделен от контактов достаточно тонкими (туннельно-прозрачными) слоями широкозонного материала - так называемый туннельно-резонансный диод (ТРД), N - образная вольтамперная характеристика которого обладает участком отрицательного дифференциального сопротивления. В принципе, ТРД позволяет усиливать электромагнитные колебания в терагерцовом диапазоне частот, нижняя граница которого определяется энергетической шириной резонансного уровня δ, а верхняя граница - энергетическим зазором между уровнями размерного квантования

Как известно, для обеспечения малых значений ширины уровня необходимо снижать туннельную прозрачность барьерных слоев за счет увеличения их толщины и ужесточения требований к составу, что, с другой стороны, уменьшает плотность электрического тока генерации, что не позволяет достичь высокой мощности излучателя. Недостатками таких ТРД и устройств на их основе являются как чрезвычайно жесткие технологические требования для реализации указанной квантоворазмерной неустойчивости, так и достаточно низкие для множества прикладных применений выходные мощности (предельно достижимые расчетные значения мощности не превышают 10 мВт).

Прототипом заявляемой в настоящем изобретении гетероструктуры для генераторов суб- и терагерцового диапазонов является многобарьерная гетероструктура [2], представляющая собой последовательное соединение таких туннельно-резонансных диодов - так называемая ТР-«сверхрешетка», где дискретные квантовые уровни в узкозонных слоях размываются в соответствующие минизоны, ширина которых определяется туннельным взаимодействием между квантовыми ямами соседних узкозонных слоев и, соответственно, ограничивает снизу область частот генерации. Верхняя граница частотного диапазона при этом ограничена энергетическим зазором между соседними минизонами, тем самым, указанная многобарьерная гетероструктура - ТР-«сверхрешетка» наследует соответствующие недостатки отдельных ТРД указанных выше, также не может обеспечить требуемых мощностей излучения и ширины частотного диапазона [2].

Цель предлагаемого изобретения - увеличение мощности и расширение частотного диапазона компактных генераторов терагерцового излучения. Поставленная цель достигается тем, что в мультибарьерной гетероструктуре для генерации мощного электромагнитного излучения субтерагерцового и терагерцового частотного диапазонов, представляющей собой многослойную гетероструктуру из чередующихся слоев узкозонного и широкозонного полупроводников, где слой широкозонного полупроводника является энергетическим барьером ΔEC для электронов из узкозонного слоя, согласно изобретению, толщины d гетерослоев выбираются из условия где D - коэффициент диффузии электронов, а τ - время релаксации избыточной тепловой энергии электронов в решетку; широкозонные (барьерные) слои не легированы, а концентрация доноров Nd в узкозонных слоях удовлетворяет условию 1017 см-3≤Nd≤1018 см-3; высота энергетического барьера ΔEC>6 kT; количество чередующихся пар узкозонных и широкозонных слоев n>4, причем материал широкозонного барьерного слоя в первой паре отличается от всех остальных, последующих, и выбирается обеспечивающим пониженную по сравнению с последующими высоту первого энергетического барьера.

Поставленная цель достигается также тем, что в структуре по п.1 последний энергетический барьер имеет пониженную высоту , как и первый барьер.

Перечень фигур

Фиг 1. Типичная архитектура (последовательность слоев) для реализации предлагаемой мультибарьерной структуры на основе тройного соединения AlGaAs

Фиг 2. Схемотическое изображение конструкции типичной тестовой ячейки (мультибарьерного гетеродиода) для излучения мощного терагерцового излучения, где

1 - подложка, n + GaAs

2 - активная ячейка многослойной герероструктуры (ГС)

3 - омический контакт к n + GaAs слою ГС

4 - слой изолятора

5 - омический контакт с n + GaAs

6 - контактные ламели

Фиг 3. Экспериментальная квазистатическая вольт-амперная характеристика типичной тестовой ячейки

Выполненный с использованием методов математического моделирования анализ изменений характера пространственных и временных зависимостей потенциала, концентрации носителей и электронной температуры в рассматриваемой многослойной структуре в зависимости от приложенного напряжения [3, 4], позволил установить:

1. Механизмом электропроводности в предлагаемой структуре является термоинжекция электронов из высоколегированных узкозонных слоев в широкозонные не легированные слои, определяемая как электронной температурой на гетеробарьерах, так и электрическим полем в широкозонных слоях;

2. В области сравнительно малых и промежуточных значений тока большая часть приложенного напряжения парциально падает на слаболегированных слоях широкозонного материала;

3. В процессе высокополевого дрейфа электронов в широкозонных слоях за счет джоулева разогрева увеличивается поток электронной температуры, поступающий в последующий узкозонный слой, где происходит частичное остывание электронов, но определенная часть избыточного теплового потока (возрастающая с ростом тока) достигает следующей гетерограницы, повышая там электронную температуру, и стимулируя тем самым термоинжекцию электронов в следующий широкозонный слой, что приводит к снижению падающего на нем потенциала с ростом тока.

Именно поэтому толщина узкозонных слоев не должна превышать характерной длины термодиффузии электронов где D - коэффициент диффузии электронов, а τ - время релаксации избыточной энергии электронов в решетку, а толщина широкозонных слоев не превышать характерной длины джоулева разогрева электронов в сильных электрических полях vs≈(3÷5)·100 нм, где vS - дрейфовая скорость насыщения.

Расчеты показывают, что причиной возникающей S-образности является существенное отличие характерного времени электроразогрева электронов в широкозонных слоях (время пролета порядка 10-14 сек) и характерного времени охлаждения электронов в узкозонных легированных (времени энергетической релаксации τ порядка 10-13 сек).

Результаты моделирования выявили важную и специфическую особенность электроразогревного процесса в первой (присоединенной к отрицательному полюсу источника питания) элементарной ячейке предлагаемой мультибарьерной структуры. У инжектирующей границы первого гетеробарьера электронная температура, отвечающая термодинамическому равновесию, существенно меньше, чем у последующих, и следовательно, эту первую гетерограницу отличает пониженная термоинжекция. Для поддержания постоянства электронного тока эта пониженная инжекционная способность должна компенсироваться повышенным падением потенциала на этом первом широкозонном слое и соответственно повышенным электроразогревом электронов в нем. Столь сильно разогретые электроны практически беспрепятственно преодолевают последующие барьеры, что и обусловливает соответствующий переход структуры в сильно-токовое состояние через участок с достаточно малым, но положительным дифференциальным сопротивлением (без S-образности). Поэтому для обеспечения требуемой S-образной формы ВАХ предлагаемой мультибарьерной структуры с участком отрицательного дифференциального сопротивления принципиально важной и необходимой является пониженная высота первого энергетического барьера по сравнению с высотой последующих , а именно

Сформулированные ограничения на толщину и степень легирования узкозонных слоев структуры определяется требованием размещения в них соответствующих обедненных слоев генерирующих электрическое поле в широкозонных слоях структуры (d>30 нм, Nd>1017 см-3). Противоположное ограничение Nd<1018 см-3 обусловлено необходимостью ограничить подавляющее влияние рассеяния на заряженных примесях на электронную подвижность, а соответственно на величину коэффициента диффузии D и длину релаксации электронной температуры . Отметим также, что согласно проделанным вычислениям при недостаточной высоте энергетического барьера ΔEC<6 kT исчезает S - образность вольт-амперной характеристики, т.е. необходимый для усиления электромагнитных колебаний участок с отрицательным дифференциальным сопротивлением. Как показывают результаты численных экспериментов, с увеличением числа пар n чередующихся слоев узкозонного и широкозонного полупроводников пропорционально увеличивается ширина области отрицательного сопротивления ΔVmax-ΔVmin, при этом ожидаемая мощность генерации тем больше, чем больше n. Однако, как показывают расчеты, при n≤4 эта зависимость сильно подавлена, что и определяет минимально возможную границу числа чередующихся пар.

Что же касается ожидаемого расширения частотного диапазона, полученная нами из малосигнального анализа оценка предельной частоты генерации

показывает возможность достижения предельных частот генерации в несколько терагерц, где ν - предельная частота, а τ - время релаксации энергии электронов.

Конкретизация последующих расчетов значениями соответствующих параметров, отвечающих изготовлению предлагаемой мультибарьерной структуры на основе использования наиболее высокотехнологичного в настоящее время тройного соединения Ga1-xAlxAs, показывает реальную возможность генерации терагерцового излучения в импульсном режиме с длительностью импульсов до 1 мкс и частотой повторения до 1 кГц при напряжениях постоянного смещения в несколько вольт и средней плотности тока в импульсе порядка 10 мА/мкм2. При этом возможная выходная мощность для соответствующей ячейки 20×20 мкм2 может достигать величин порядка 1 Вт, а ожидаемые предельные частоты порядка 1012 Гц.

Заявленная структура по п.2 изобретения, в которой последний энергетический барьер имеет пониженную высоту , как и первый барьер, будет обладать симметричной по знаку приложенного напряжения характеристикой, что расширяет схемотехнический диапазон их возможного использования в СВЧ интегральных схемах.

Для экспериментальной проработки предлагаемого технического решения методом молекулярно лучевой эпитаксии была изготовлена мультибарьерная структура по п.1 формулы изобретения на основе тройного соединения Ga1-xAlxAs, изображенная на Фиг. 1, где:

1 - GaAs:Si 1e18 см-3 толщиной 700 нм,

2 - Ga1-xAlxAs x=0.25 нелегированный, толщиной 45 нм,

3 - GaAs:Si 1e18 см-3 толщиной 45 нм,

4 - Ga1-xAlxAs x=0.4 нелегированный, толщина 45 нм,

5 - GaAs:Si 1е18см-3 толщиной 45 нм,

6 - Ga1-xAlxAs x=0.4 нелегированный, толщина 45 нм,

7 - GaAs:Si 1е18 см-3 толщиной 45 нм,

8 - Ga1-xAlxAs x=0.4 нелегированный, толщина 45 нм,

9 - GaAs:Si 1е18 см-3 толщиной 45 нм,

10 - Ga1-xAlxAs x=0.4 нелегированный, толщина 45 нм,

11 - GaAs:Si 1e18 см-3 толщиной 150 нм,

12 - GaAs подложка

При изготовлении тестовых образцов выполняются следующие технологические процедуры. На тыльной стороне сильнолегированной nGaAs подложки формируется омический контакт. На выращенной гетероструктуре посредством фотолитографии и ионно-реактивного травления формируются ячейки гетеродиодов, в виде мезаструктур высотой большей суммарной толщины слоев многослойной эпитаксиальной гетероструктуры и площадью каждой мезы в диапазоне 20×20…50×50 мкм . Поверхность структуры пассивируется (покрывается) диэлектриком и планаризируется, а в диэлектрике посредством литографии вскрываются окна к сильнолегированному nGaAs слою верхней плоскости упомянутой мезы. Затем, во вскрытом в диэлектрике окне к поверхности мезы формируется омический контакт (например, с использованием системы Ge/Ni/Au). В зависимости от требуемых параметров генератора, организуются с помощью металлических ламелей гальванические связи между тем либо иным количеством гетеродиодных ячеек (мез) и формируются контактные площадки к ним. Конструкция типичной тестовой ячейки приведена на Фиг.2.

На Фиг.3 приведена полученная экспериментально квазистатическая вольт-амперная характеристика типичной тестовой ячейки.

Заметим, что предлагаемые мультислойные гетероструктуры могут быть реализованы и на основе твердых растворов других материалов типа AIIIBV, например, системы GaN-A1N из пар чередующихся легированных GaN и нелегированных Ga1-xAlxN эпитаксиальных слоев на подложках из сапфира, либо карбида кремния.

Использование указанных материалов позволит, оставаясь в рамках предлагаемой в Формуле архитектуры мультислойной структуры, увеличить отбираемую (выходную) мощность за счет существенно лучшей, чем у GaAs теплопроводности твердых растворов GaN-A1N и подложек из SiC либо сапфира.

Таким образом, технический результат предполагаемого изобретения состоит в увеличении по крайней мере на порядок величины мощности генераторов на основе предлагаемой структуры, а также в существенном расширении частотного диапазона генераторов терагерцового излучения.

Литература

1. Елесин В.Ф. // ЖЭТФ, 1999. T.116, №2. C.704; ЖЭТФ, 2005. Т.127, №1. С.131.

2. Sollner T.C., Goodhue W.D. et al://Appl.Phys.Lett. 1983, V.43(6). P.588.

3. Гергель В.А., Зеленый А.П., Якупов М.Н. Исследование эффекта бистабильности токовых характеристик наноразмерных многослойных сильно легированных гетероструктур методами математического моделирования // Физика и техника полупроводников, 2007, том 41, №3, с.325-330.

4. Гергель В.А., Якупов М.Н., Верховцева А.В., Горшкова Н.М. Механизм электрической неустойчивости в мультибарьерных гетероструктурах. Особенности высокочастотного импеданса. // Радиотехника и электроника, 2012, том 57, №4, с.1-4.


МУЛЬТИБАРЬЕРНАЯ ГЕТЕРОСТРУКТУРА ДЛЯ ГЕНЕРАЦИИ МОЩНОГО ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ СУБ- И ТЕРАГЕРЦОВОГО ДИАПАЗОНОВ
МУЛЬТИБАРЬЕРНАЯ ГЕТЕРОСТРУКТУРА ДЛЯ ГЕНЕРАЦИИ МОЩНОГО ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ СУБ- И ТЕРАГЕРЦОВОГО ДИАПАЗОНОВ
МУЛЬТИБАРЬЕРНАЯ ГЕТЕРОСТРУКТУРА ДЛЯ ГЕНЕРАЦИИ МОЩНОГО ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ СУБ- И ТЕРАГЕРЦОВОГО ДИАПАЗОНОВ
МУЛЬТИБАРЬЕРНАЯ ГЕТЕРОСТРУКТУРА ДЛЯ ГЕНЕРАЦИИ МОЩНОГО ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ СУБ- И ТЕРАГЕРЦОВОГО ДИАПАЗОНОВ
МУЛЬТИБАРЬЕРНАЯ ГЕТЕРОСТРУКТУРА ДЛЯ ГЕНЕРАЦИИ МОЩНОГО ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ СУБ- И ТЕРАГЕРЦОВОГО ДИАПАЗОНОВ
Источник поступления информации: Роспатент

Показаны записи 81-90 из 107.
13.06.2019
№219.017.8169

Устройство для приема электромагнитного поля в море

Изобретение относится к радиотехнике и предназначено для приема электромагнитных полей сверхнизких и крайне низких частот (СНЧ и КНЧ) естественного и искусственного происхождения в морской среде. Сущность: устройство содержит электродный датчик электрического поля в виде первого и второго...
Тип: Изобретение
Номер охранного документа: 0002691165
Дата охранного документа: 11.06.2019
20.06.2019
№219.017.8dbd

Демультиплексор на магнитостатических волнах

Изобретение относится к радиотехнике, в частности к приборам СВЧ на магнитостатических волнах, и может быть использовано в качестве демультиплексора. Демультиплексор содержит подложку, с размещенными на ней первым и вторым протяженными микроволноводами из железоиттриевого граната, входную...
Тип: Изобретение
Номер охранного документа: 0002691981
Дата охранного документа: 19.06.2019
10.07.2019
№219.017.a9ad

Логический элемент инвертор-повторитель на магнитостатических волнах

Изобретение относится к логическим элементам на магнитостатических волнах. Технический результат - создание логического устройства типа инвертор/повторитель на поверхностных магнитостатических волнах с возможностью управления режимами работы. Для этого предложен логический элемент, который...
Тип: Изобретение
Номер охранного документа: 0002694020
Дата охранного документа: 08.07.2019
03.08.2019
№219.017.bc4a

Способ неразрушающего контроля качества сверхбольших интегральных схем по значению критического напряжения питания

Изобретение относится к микроэлектронике и может быть использовано для обеспечения качества и надежности сверхбольших интегральных схем (СБИС). Сущность: измеряют критическое напряжение питания при нормальной и повышенной температуре. СБИС предварительно программируют тестирующей программой для...
Тип: Изобретение
Номер охранного документа: 0002696360
Дата охранного документа: 01.08.2019
21.08.2019
№219.017.c1be

Функциональный элемент магноники

Изобретение относится к СВЧ технике и может быть использовано при конструировании приборов на магнитостатических волнах в гигагерцовом диапазоне частот. Функциональный элемент магноники содержит немагнитную подложку, размещенную на ней ферромагнитную пленку из железоиттриевого граната (ЖИГ),...
Тип: Изобретение
Номер охранного документа: 0002697724
Дата охранного документа: 19.08.2019
02.10.2019
№219.017.cf06

Устройство и способ измерения спектральных характеристик волоконно-оптических брэгговских решеток

Группа изобретений относится к волоконной оптике. Устройство измерения спектральных характеристик волоконно-оптических брэгговских решеток включает полупроводниковый лазер со встроенным элементом нагрева-охлаждения. К управляющим выходам блока контроля и управления подключены входы устройства...
Тип: Изобретение
Номер охранного документа: 0002700736
Дата охранного документа: 19.09.2019
09.10.2019
№219.017.d3b3

Приемное устройство для радиосвязи с подводным объектом

Устройство относится к радиотехнике и предназначено для приема радиоволн сверхнизких и крайне низких частот (СНЧ и КНЧ) в морской среде при радиосвязи с движущимся подводным объектом. Технический результат состоит в улучшении эксплуатационных характеристик за счет уменьшения длины кабельной...
Тип: Изобретение
Номер охранного документа: 0002702235
Дата охранного документа: 07.10.2019
17.10.2019
№219.017.d660

Функциональный компонент магноники на многослойной ферромагнитной структуре

Использование: для конструирования приборов на магнитостатических волнах. Сущность изобретения заключается в том, что функциональный компонент магноники содержит подложку из немагнитного диэлектрика, ферромагнитные слои железоиттриевого граната (ЖИГ), микрополосковые преобразователи для...
Тип: Изобретение
Номер охранного документа: 0002702915
Дата охранного документа: 14.10.2019
17.10.2019
№219.017.d66d

Устройство на магнитостатических волнах для пространственного разделения свч-сигналов разного уровня мощности

Использование: для пространственного разделения СВЧ-сигналов разного уровня мощности. Сущность изобретения заключается в том, что устройство на магнитостатических волнах включает микроволноводную структуру, содержащую слой железо-иттриевого граната (ЖИГ) на подложке из галлий-гадолиниевого...
Тип: Изобретение
Номер охранного документа: 0002702916
Дата охранного документа: 14.10.2019
17.10.2019
№219.017.d6be

Способ обнаружения скрытых предметов на терагерцевых изображениях тела человека

Способ обнаружения скрытых предметов на теле человека включает регистрацию собственного теплового излучения (ТИ) человека в терагерцевом диапазоне электромагнитных волн с последующей цифровой обработкой анализируемого ТИ-изображения. Формируют набор эталонов, каждый из которых включает в себя:...
Тип: Изобретение
Номер охранного документа: 0002702913
Дата охранного документа: 14.10.2019
Показаны записи 61-65 из 65.
14.05.2019
№219.017.51ea

Низкочастотная двухкомпонентная донная сейсмическая коса

Изобретение относится к сейсмическим регистрирующим системам и может быть использовано при поисках и разведке углеводородов, а также мониторинге нефтегазовых месторождений. В частности, техническое решение относится к двухкомпонентным сейсмическим системам, основанным на одновременном измерении...
Тип: Изобретение
Номер охранного документа: 0002687297
Дата охранного документа: 13.05.2019
31.07.2019
№219.017.ba3d

Автономное защитное лечебно-диагностическое устройство для лечения ишемической болезни сердца, осложнений и внезапной смерти

Изобретение относится к медицинской технике. Автономное защитное лечебно-диагностическое устройство для лечения ишемической болезни сердца (ИБС) и остро развивающихся осложнений и внезапной смерти содержит электрокардиорегистратор, связанный с ним блок управления, автономный блок питания и блок...
Тип: Изобретение
Номер охранного документа: 0002695926
Дата охранного документа: 29.07.2019
01.09.2019
№219.017.c55a

Молекулярно-электронный гидрофон с обратной связью на основе магнитогидродинамического эффекта

Изобретение относится к измерительной технике, в частности к способам преобразования механического движения в электрический сигнал. Молекулярно-электронный гидрофон с обратной связью состоит из двух камер, заполненных проводящей жидкостью и разделенных мембраной. В одной из камер находится...
Тип: Изобретение
Номер охранного документа: 0002698527
Дата охранного документа: 28.08.2019
27.05.2023
№223.018.7179

Устройство для диагностики драгоценных камней в составе ювелирных изделий

Изобретение относится к измерительной технике, в частности к оптическим средствам диагностики качества драгоценных камней для ювелирных изделий. Устройство для диагностики методом лазерной спектроскопии включает лазерный источник излучения для освещения камня, спектрометр для регистрации...
Тип: Изобретение
Номер охранного документа: 0002765213
Дата охранного документа: 26.01.2022
01.06.2023
№223.018.7492

Вакуумный эмиссионный приемник изображений ультрафиолетового диапазона

Изобретение относится к приемникам-преобразователям оптических изображений с внутренним усилением. Оно может быть использовано для регистрации и усиления оптических изображений объектов в спектральном диапазоне 40…270 нм вакуумного ультрафиолета (ВУФ), с возможностью последующего цифрового...
Тип: Изобретение
Номер охранного документа: 0002738767
Дата охранного документа: 16.12.2020
+ добавить свой РИД