×
20.11.2013
216.012.82bb

Результат интеллектуальной деятельности: НАДБАНДАЖНОЕ ПРИРАБАТЫВАЕМОЕ УПЛОТНЕНИЕ ДЛЯ ПАРОВОЙ ТУРБИНЫ

Вид РИД

Изобретение

Аннотация: Надбандажное прирабатываемое уплотнение для паровой турбины содержит уплотнительные кольцевые гребешки ротора турбины, сегменты уплотнения и кольцевые пазы статора турбины. Сегменты уплотнения включают в себя уплотняющие блоки, прикрепленные к корпусам уплотняющих блоков, имеющим в поперечном сечении V-образную форму. Уплотняющие блоки имеют размеры, позволяющие вставлять корпусы уплотняющих блоков в V-образный паз статора турбины с минимальным зазором, и расположены между уплотняющими статорными гребнями, выполненными за одно с корпусами уплотняющих блоков. Кольцевые пазы статора турбины имеют V-образную в продольном сечении турбины форму и горизонтальный продольный разъем. Уплотняющие блоки выполнены из адгезионно соединенных между собой в монолитный материал частиц прирабатываемого порошкового материала. В поперечном сечении имеют трапецеидальную форму. Внутренние поверхности корпусов уплотняющих блоков имеют в поперечном сечении соответствующую уплотняющим блокам трапецеидальную форму, с размерами, позволяющими вставлять и закреплять с минимальным зазором уплотняющие блоки в корпуса уплотняющих блоков. Корпуса уплотняющих блоков выполнены из адгезионно соединенных между собой в монолитный материал частиц прирабатываемого порошкового материала, причем адгезионная прочность соединения частиц порошкового сплава составляет величину от 40 до 80% прочности материала частиц, а адгезионная прочность частиц материала уплотняющих блоков составляет от 5 до 20% от прочности материала частиц. Уплотняющие блоки и корпуса уплотняющих блоков выполнены прессованием с последующим спеканием в вакууме или защитной атмосфере. 24 з.п. ф-лы, 3 ил.

Изобретение относится к уплотнениям паровых турбин, ограничивающим перетекание пара через зазоры между бандажом рабочих лопаток и статором турбины, а именно, к лабиринтным надбандажным уплотнениям паровых турбин.

Эффективность работы паровых турбин зависит герметичности уплотнения между вращающимися лопатками и внутренней поверхностью корпуса в турбине. Одним из основных видов подобных уплотнений являются истираемые уплотнения, герметичность которых обеспечивается за счет прорезания выступами на торцах лопаток канавок в истираемом уплотнительном материале. Уплотнения турбин выполняют например, используя плетеные металлические волокна, соты [патент США N 5080934, МПК. F01D 11/08, 427/271, 1991] или спеченные металлические частицы. Приработка этих уплотнений происходит за счет его высокой пористости и его низкой прочности. Последнее обуславливает невысокую эрозионную стойкость уплотнительных материалов, что приводит к быстрому износу уплотнения. В качестве прирабатываемых уплотнений в современных двигателях и установках используют также газотермические покрытия, имеющих, по сравнению с вышеописанными материалами, меньшую трудоемкость изготовления.

Известно прирабатываемое уплотнение турбомашины [патент США №4291089], получаемое методом газотермического напыления порошкового материала. При этом уплотнение формируется в виде покрытия, которое наносится непосредственно на кольцевой элемент корпуса турбомашины в зону уплотнения между корпусом и лопаткой.

Недостатком известного уплотнения является невозможность одновременного обеспечения высокой прирабатываемости и износостойкости покрытия.

Известно также прирабатываемое уплотнение турбомашины [патент США №4936745], выполненное в виде высокопористого керамического слоя с пористостью от 20 до 35 объемных %.

Недостатком известного уплотнения является низкая эрозионная стойкость и прочность.

Для уплотнения зазоров между бандажом рабочих лопаток и статорными деталями корпуса турбины применяются различные типы надбандажных уплотнений (Тепловые и атомные электрические станции, Справочник под общей редакцией В.А. Григорьева и В.М. Зорина, 2-е издание, книга 3, М.: Энергоатомиздат, с.206…208). Для таких уплотнений радиальные зазоры назначаются таким образом, чтобы исключить касание уплотнительных гребешков с острыми кромками об ответную твердую уплотняющую поверхность. Опыт эксплуатации показывает, что избежать касаний при всех эксплуатационных и аварийных режимах за межремонтный период, как правило, не удается. Острые кромки гребешков притупляются и эффективность уплотнения падает.

Наиболее близким по технической сущности и достигаемому результату к заявляемому является уплотнение для паровой турбины (патент РФ №2287063, МКИ F16D 11/08), содержащее уплотнительный кольцевой гребешок, выполненный или установленный на бандаже лопаток ступени ротора турбины, уплотнительные блоки, установленные с уплотняющим радиальным зазором относительно кольцевого гребешка бандажа лопаток ступени ротора, держатели уплотнительных блоков в обойме статора турбины, каждый из которых выполнен с кольцевым сектором T-образного в продольном сечении турбины хвостовика, установленным в кольцевом пазу обоймы статора турбины, имеющем T-образную в продольном сечении турбины форму. Уплотнение выполнено в виде соединенного со статором слоя сотовой структуры.

Однако гребешки на роторе при взаимодействии с сотовой структурой притупляются, что снижает герметичность уплотнения. Ячейки сотовой структуры могут иметь различные форму и размер площади поперечного сечения, глубину и толщину стенок. Сотовая структура, может быть выполнена из стальной жаростойкой фольги или сверлением, прожигом, травлением, или литьем. При значительной толщине стенок ячеек сот условия работы гребешков ужесточаются. Сильный износ гребешков так или иначе связан с необоснованно высокой прочностью материалов, используемых для производства сот, а также методов их изготовления вызывающих утолщение толщины стенок ячеек.

Кроме того, процесс изготовления и прикрепления сотовой структуры достаточно сложен, трудоемок, а также связан с большими временными затратами. При этом сотовая структура может быть соединена как с кольцевым элементом турбомашины, так и с отдельными, образующими кольцо вставками [например, патент РФ 2287063, МПК F01D 11/08, 2006 г.].

Недостатками прототипа являются невозможность одновременного обеспечения высокой прирабатываемости, механической прочности и износостойкости материала уплотнения, а также необходимости использования сотовых ячеек.

В этой связи, использование уплотнения, не содержащего слоя сотовой структуры, а выполненного из монолитного материала допускающими врезание в него выступов лопатки и снижающими их износ в процессе эксплуатации, привело бы к дальнейшему повышению эффективности работы турбомашин.

Техническим результатом заявляемого изобретения является одновременное обеспечение высокой прирабатываемости, механической прочности и износостойкости уплотнения, а также снижения трудоемкости его изготовления по сравнению с существующими сотовыми уплотнениями.

Технический результат достигается тем, что надбандажное прирабатываемое уплотнение для паровой турбины, содержащее уплотнительные кольцевые гребешки ротора турбины, сегменты уплотнения, включающие в себя уплотняющие блоки, прикрепленные к корпусам уплотняющих блоков, имеющим в поперечном сечении V-образную форму, с размерами, позволяющими вставлять корпусы уплотняющих блоков в V-образный паз статора турбины с минимальным зазором и расположенных между уплотняющих статорных гребней, выполненных заодно с корпусами уплотняющих блоков, кольцевые пазы статора турбины, имеющие V-образную в продольном сечении турбины форму и горизонтальный продольный разъем, в отличие от прототипа, уплотняющие блоки выполнены из адгезионно соединенных между собой в монолитный материал частиц прирабатываемого порошкового материала, имеют в поперечном сечении трапецеидальную форму, а внутренние поверхности корпусов уплотняющих блоков имеют в поперечном сечении соответствующую уплотняющим блокам трапецеидальную форму, с размерами, позволяющими вставлять и закреплять с минимальным зазором уплотняющие блоки в корпуса уплотняющих блоков, а корпуса уплотняющих блоков выполнены из адгезионно соединенных между собой в монолитный материал частиц прирабатываемого порошкового материала, причем адгезионная прочность соединения частиц порошкового сплава составляет величину от 40 до 80% прочности материала частиц, а адгезионная прочность частиц материала уплотняющих блоков составляет от 5 до 20% от прочности материала частиц, причем уплотняющие блоки и корпуса уплотняющих блоков выполнены прессованием с последующим спеканием в вакууме или защитной атмосфере.

Технический результат достигается также тем, что в надбандажном прирабатываемом уплотнении для паровой турбины, в качестве прирабатываемого порошкового материала используют материал состава, в вес.%: Cr - от 10,0 до 18,0%, Mo - от 0,8 до 3,7%, Fe или Ti или Cu или их комбинации - остальное или материал состава, в вес.%: Cr - от 18% до 34%; Al - от 3% до 16%; Y - от 0,2% до 0,7%; Ni - остальное или материал состава, в вес.%: Cr - от 18% до 34%; Al - от 3% до 16%; Y - от 0,2% до 0,7%; Co - от 16% до 30%; Ni - остальное, с размерами частиц порошка от 15 мкм до 180 мкм в механической смеси с порошковым, с размерами частиц порошка менее 1 мкм, гексагональным нитридом бора - BN в количестве от 1,0% до 1,5% от общего объема смеси и фторидом кальция - CaF2, с размерами частиц порошка от 1 мкм до 25 мкм, в количестве от 6,0% до 8,0% от общего объема материала уплотнения и, как вариант, прирабатываемый порошковый материал дополнительно в качестве добавки содержит от 0,4% до 3% BaSO4 в виде порошка, размерами частиц от 1 мкм до 25 мкм.

Технический результат достигается также тем, что в надбандажном прирабатываемом уплотнении для паровой турбины, уплотняющие блоки и корпуса уплотняющих блоков выполнены спеканием при температуре от 950°C до 1250°C, причем в качестве защитной среды использована газовая смесь, состава, в об.%: аргон от 6% до 50%, аммиак - остальное.

Технический результат достигается также тем, что в надбандажном прирабатываемом уплотнении для паровой турбины, уплотняющие блоки закреплены в корпусах уплотняющих блоков пайкой, причем как вариант технического решения, уплотняющие блоки снабжены опорными выступами, контактирующими с основанием корпусов уплотняющих блоков и обеспечивающими равномерное распределение припоя по соединяемым поверхностям уплотняющего блока и корпуса уплотняющего блока, а опорные выступы выполнены монолитно с уплотняющими блоками в виде равномерно расположенных в поперечном направлении призматических полос имеющих в поперечном сечении форму трапеции.

Технический результат достигается также тем, что в надбандажном прирабатываемом уплотнении для паровой турбины рабочая поверхность уплотняющего блока выполнена с регулярным микрорельефом, рисунок и размеры которого обеспечивают повышенную прирабатываемость уплотнения, причем регулярный микрорельеф выполнен либо в виде расположенных вдоль продольной оси сегмента параллельных или синусоидальных борозд глубиной от 0,5 мм до 6 мм, шагом расположения от 0,3 мм до 3 мм, либо в виде равномерно расположенных по поверхности в шахматном или коридорном порядке островков и/или углублений круглой формы диаметром d от 0,5 мм до 4 мм, межцентровым расстоянием a=(2,2…3,2)d и глубиной борозд между островками или глубиной углублений от 0,5 мм до 6 мм, либо в виде равномерно расположенных по поверхности в шахматном или коридорном порядке островков и/или углублений овальной формы размерами большего диаметра овала D от 0,5 мм до 4 мм и меньшего диаметра овала dO=(0,2…0,9)D, шириной борозд между островками или шириной стенок между углублениями b=(0,1…0,3)dO и глубиной борозд или глубиной углублений от 0,5 мм до 6 мм, либо в виде равномерно расположенных по поверхности островков и/или углублений прямоугольной формы размерами сторон P от 0,5 мм до 4 мм, шириной борозд между островками или шириной стенок между углублениями b1=(0,1…0,3)P и глубиной борозд или глубиной углублений от 0,5 мм до 6 мм.

Технический результат достигается также тем, что в надбандажном прирабатываемом уплотнении для паровой турбины, сегменты уплотнений выполнены раздельно для каждого ряда гребешков ротора турбины.

Надбандажное прирабатываемое уплотнение для паровой турбины содержит уплотнительные кольцевые гребешки, установленные на роторе турбины. Сегменты уплотнения включают в себя уплотняющие блоки, выполненные из адгезионно соединенных между собой частиц порошкового материала (полученные, например, методом спекания порошкового материала после предварительного прессования и получения заданной формы) закрепляются внутри корпусов уплотняющих блоков между уплотняющих гребней. Гребни выполняются за одно с корпусами уплотняющих блоков из порошкового материала одним из методов порошковой металлургии. В статоре турбины с горизонтальным продольным разъемом выполнены кольцевые пазы, имеющие V-образную в продольном сечении турбины форму.

Согласно изобретению сегменты уплотнений выполнены раздельно для каждого ряда гребешков ротора турбины. Корпусы уплотняющих блоков в поперечном сечении имеют V-образную форму с размерами, позволяющими вставлять корпуса уплотняющих блоков в паз статора турбины с минимальным зазором. В то же время, уплотняющие блоки также имеют в поперечном сечении трапецеидальную форму, а внутренние поверхности корпусов уплотняющих блоков имеют в поперечном сечении соответствующую уплотняющим блокам трапецеидальную форму, с размерами, позволяющими вставлять и закреплять с минимальным зазором уплотняющие блоки в корпуса уплотняющих блоков.

Вследствие указанных отличий, сегменты уплотнения с уплотняющими блоками, выполненными из адгезионно соединенных между собой в монолитный материал частиц прирабатываемого порошкового материала по сравнению с сотовыми блоками изготавливаются и монтируются на турбине с гораздо меньшими (2-5 раз) трудозатратами. Обеспечение функциональных свойств уплотнения за счет адгезионного соединенного порошкового материала в монолитный блок позволяет избежать вышеуказанных недостатков, присущих сотовым типам уплотнений. Кроме того, функциональное разделение сегмента на уплотняющий блок (прирабатываемую часть) и корпус (несущую часть) существенно увеличивают его прочностные характеристики. Кроме того, использование порошкового материала для получения уплотняющего блока позволяет, например, в отличие от сотовых уплотнений значительно снизить трудоемкость изготовления уплотнений. Наличие регулярного микрорельефа на рабочей поверхности уплотняющего блока облегчает процесс приработки уплотнения за счет более равномерного взаимодействия с выступами на торце лопатки и уноса части оторванных от уплотнения частиц в углубления микрорельефа.

Изобретение поясняется чертежами. На фигуре 1 представлено поперечное сечение лабиринтного надбандажного уплотнения, а на фигурах 2, 3 - сегмент уплотнения.

Фигуры 1, 2 и 3 содержат: 1 - ротор турбины; 2 - лопатка; 3 - кольцевые гребешки на бандаже лопаток; 4 - уплотняющий блок, 5 - сегменты уплотнения; 6 - уплотняющие гребни; 7 - корпус уплотняющего блока; 8 - кольцевой паз; 9 - статор турбины, 10 - опорные выступы, 11 - рабочая поверхность уплотняющего блока, 12 - выступы регулярного рельефа на рабочей поверхности уплотняющего блока, 13 - впадины регулярного рельефа на рабочей поверхности уплотняющего блока.

Надбандажное уплотнение для паровой турбины (фиг.1) содержит статор турбины 9 с кольцевым пазами 8, имеющими V-образную в продольном сечении турбины форму. В V-образный кольцевой паз 8 статора турбины вставлены сегменты уплотнения 5, каждый из которых включает в себя корпус уплотняющих блоков 4, выполненный из порошкового спеченного материала, имеющего большую по сравнению с материалом уплотняющих блоков прочность. Уплотняющие блоки 4, присоединяются к корпусам 7 либо механически, либо путем пайки. Для повышения равномерности пайки уплотняющие блоки имеют равномерно расположенные выступы 10. Корпус уплотняющих блоков 7 имеет V-образную в поперечном сечении внешнюю и внутреннюю формы и небольшую площадь поперечного сечения. Совокупность малой площади поперечного сечения и изготовления из пластичной стали позволяет деформировать сегменты 5 в холодном состоянии. Корпус 7 имеет уплотняющие гребни 6, выполненные заодно с корпусом 7. Уплотнительные кольцевые гребешки 3 ротора турбины 1 выполнены заодно с бандажом рабочих лопаток 2. Напротив каждого гребешка 3 расположен соответствующий кольцевой паз (фиг.1). Для осуществления монтажа сегмент уплотнения 5 вставляется в кольцевой паз со стороны продольного горизонтального разъема статора турбины 9. Между корпусом уплотняющего блока 7 и кольцевым пазом имеется минимальный зазор, позволяющий при механическом воздействии на корпус уплотняющего блока 7 перемещать его вдоль паза.

Сегмент прирабатываемого уплотнения турбины (фиг.2 и 3) содержит уплотняющий блок 4, выполненный в виде призмы с трапецеидальным поперечным сечением из адгезионно соединенных между собой частиц прирабатываемого порошкового материала и закрепленный внутри металлического коробчатого корпуса 7, открытого с рабочей стороны уплотняющего блока 4 и имеющего соответствующие размерам и форме уплотняющего блока 4 трапецеидальное поперечное сечение, обеспечивающее закрепление уплотняющего блока 4 внутри корпуса 7. Рабочая поверхность 11 уплотняющего блока 4 выполнена с регулярным микрорельефом, рисунок и размеры которого обеспечивают повышенную прирабатываемость уплотнения. Регулярный микрорельеф рабочей поверхности 11 уплотняющего блока 4 может быть выполнен по различным вариантам, например, в виде расположенных вдоль продольной оси сегмента параллельных борозд (фиг.3) глубиной от 0,5 мм до 6 мм, шагом расположения от 0,3 мм до 3 мм или в виде равномерно расположенных по поверхности в шахматном или коридорном порядке островков круглой формы диаметром d от 0,5 мм до 4 мм, межцентровым расстоянием a=(2,2…3,2)d и глубиной борозд между островками от 0,5 мм до 6 мм.

Уплотняющие блоки 4, присоединяются к корпусам 7 путем заклинивания в трапецеидальной полости корпуса 7. Корпус 2 имеет трапецеидальную в поперечном сечении внешнюю и внутреннюю формы и небольшую площадь поперечного сечения. Совокупность малой площади поперечного сечения и изготовления из пластичной стали позволяет деформировать сегменты 5 в холодном состоянии. Корпус 7 имеет уплотняющие гребни 6, выполненные за одно с корпусом 7. Для осуществления монтажа сегмент уплотнения 5 вставляется в кольцевой паз со стороны продольного горизонтального разъема статора турбины. Между корпусом уплотняющего блока 4 и кольцевым пазом имеется минимальный зазор, позволяющий при механическом воздействии на корпус уплотняющего блока 4 перемещать его вдоль паза.

Работа надбандажного уплотнения заключается в том, что при вращении ротора турбины 1 гребешки 3, уплотняющие зазор, по которому происходят утечки пара, могут касаться уплотняющих блоков 4 без аварийных последствий и уменьшения эффективности уплотнения. Это происходит из-за того, что гребешок 3 прорезает канавку в уплотняющем блоке 4 без притупления своей острой кромки, поскольку уплотняющий блок 4 выполнен из из адгезионно соединенных между собой в монолитный материал частиц прирабатываемого порошкового материала, обладающего высокой прирабатываемостью. Таким образом, уплотняющие блоки, выполненные из порошкового материала, позволяют автоматически установить минимально возможные радиальные зазоры лабиринтного надбандажного уплотнения.

Преимуществом предлагаемой конструкции надбандажного уплотнения является то, что масса заготовки корпуса уплотняющих блоков с V-образной формой поперечного сечения имеет небольшую площадь поперечного сечения из-за отсутствия необходимости выполнять на корпусе T-образный или Г-образный замок. Это приводит к снижению массы заготовки для корпуса уплотняющих блоков и, следовательно, к снижению цены изготовления лабиринтного надбандажного уплотнения. При повреждении одной дорожки уплотняющих блоков замене подлежит только один ряд сегментов уплотнения. Это снижает стоимость ремонта по сравнению с ремонтом сегментов, на которых выполнено два ряда уплотняющих блоков.

Пример. В качестве материалов для получения уплотняющего блока и корпуса уплотняющего блока использовался металлический порошок следующих составов: 1) [Cr - 9,0%, Mo - 0,6%, Fe - остальное] - неудовлетворительный результат (Н.Р.); 2) [Cr - 10,0%, Mo - от 0,8%, Fe - остальное] - удовлетворительный результат (У.Р.); 3) [Cr - 14,3%, Mo - 2,6%, Fe - остальное] - (У.Р.); 4) [Cr - 18,0%, Mo - 3,7%, Fe - остальное] - (У.Р.); 5) [Cr - 8,0%, Mo - 0,7%, Ti - остальное] - (Н.Р.); 6) [Cr - 10,0%, Mo - от 0,8%, Ti - остальное] - (У.Р.); 7) [Cr - 14,3%, Mo - 2,6%, Ti - остальное] - (У.Р.); 8) [Cr - 18,0%, Mo - 3,7%, Ti - остальное] - (У.Р.); 9) [Cr - 9,0%, Mo - 0,7%, Cu - остальное] - (Н.Р.); 10) [Cr - 10,0%, Mo - от 0,8%, Cu - остальное] - (У.Р.); 11) [Cr - 15,2%, Mo - 2,4%, Cu - остальное] - (У.Р.); 12) [Cr - 18,0%, Mo - 3,7%, Cu - остальное] - (У.Р.); 13) [Cr - от 16%; Al - 2,5%; Y - от 0,1%; Ni - остальное] - (Н.Р.); 14) [Cr - от 18%; Al - 3%; Y - 0,2%; Ni - остальное] - (У.Р.); 15) [Cr - 34%; Al - 16%; Y - 0,7%; Ni - остальное] - (У.Р.); 16) [Cr - 16%; Al - от 2%; Y - 0,1%; Co - 14%; Ni - остальное] - (Н.Р.); 17) Cr - 18%; Al - 3%; Y - 0,2%; Co - 16%; Ni - остальное] - (У.Р.); 18) Cr - 34%; Al - 16%; Y - 0,7%; Co 30%; Ni - остальное] - (У.Р.).

Размеры частиц составляли величины: 10 мкм; 30 мкм; 63 мкм; 100 мкм; 160 мкм; 180 мкм. Наилучшие результаты при содержании фракций порошка размерами: менее 40 мкм - от 30% до 40%, от 40 мкм до 70 мкм - 40% до 50%, от 70 мкм до 140 мкм - 10% до 20%, более 140 мкм - остальное. Механическая смесь из металлического порошка состава, в вес.%: Cr - от 10,0 до 18,0%, Mo - от 0,8 до 3,7%, Fe или Ti или Cu или их комбинации - остальное или из сплава состава, в вес.%: Cr - от 18% до 34%; Al - от 3% до 16%; Y - от 0, 2% до 0,7%; Ni - остальное или из сплава состава, в вес.%: Cr - от 18% до 34%; Al - от 3% до 16%; Y - от 0, 2% до 0,7%; Co - от 16% до 30%; Ni - остальное, содержала гексагональный нитрид бора (BN) размерами частиц порошка менее 1 мкм в количестве: 0,5% - (Н.Р.);; 1,0% - (У.Р.); 1,5% - (У.Р.) - (Н.Р.) и фторид кальция - CaF2, с размерами частиц порошка от 1 мкм до 25 мкм, в количестве от общего объема смеси: 5% - (Н.Р.); 6,0% - (У.Р.); 8,0% - (У.Р.); 9% - (Н.Р.);, Кроме того, были использованы порошковые материалы вышеуказанных составов с дополнительными добавками следующих компонентов: 1) BaSO4: 0,4%; 1,2%; 3%. 2) углерод: 0,4%; 0,8%; 2,1%; 3%.3) Ca: 0,01%; 0,2%. Для пайки использовался припой ВПр36.

Регулярный микрорельеф был выполнен по следующим вариантам:

- в виде расположенных вдоль продольной оси сегмента параллельных борозд глубиной от 0,5 мм до 6 мм (0,3 мм - (Н.Р.); 0,5 мм - (У.Р.); 2,5 мм - (У.Р.); 6,0 мм - (У.Р.); 6,5 мм - (Н.Р.), шагом расположения от 0,3 мм до 3 мм (0,1 мм - (Н.Р.); 0,3 мм - (У.Р.); 2,0 мм - (У.Р.); 3,0 мм - (У.Р.); 4,0 мм - (Н.Р.).

- в виде расположенных вдоль продольной оси сегмента синусоидальных борозд глубиной от 0,5 мм до 6 мм (0,3 мм - (Н.Р.); 0,5 мм - (У.Р.); 2,5 мм - (У.Р.); 6,0 мм - (У.Р.); 6,5 мм - (Н.Р.),, шагом расположения от 0,3 мм до 3 мм (0,1 мм - (Н.Р.); 0,3 мм - (У.Р.); 2,0 мм - (У.Р.); 3,0 мм - (У.Р.); 4,0 мм - (Н.Р.).

- в виде равномерно расположенных по поверхности в шахматном или коридорном порядке островков и/или углублений круглой формы диаметром d от 0,5 мм до 4 мм (0,3 мм - (Н.Р.); 0,5 мм - (У.Р.); 2,0 мм - (У.Р.); 4,0 мм - (У.Р.); 4,5 мм - (Н.Р.), межцентровым расстоянием a=(2,2…3,2)d, (2,0 d - (Н.Р.); 2,2 d - (Y.P.); 3,2 d - (У.Р.); 3,5 d - (H.P.), и глубиной борозд между островками или глубиной углублений от 0,5 мм до 6 мм - (0,3 мм - (Н.Р.); 0,5 мм - (У.Р.); 2,5 мм - (У.Р.); 6,0 мм - (У.Р.); 6,5 мм - (Н.Р.).

- в виде равномерно расположенных по поверхности в шахматном или коридорном порядке островков и/или углублений овальной формы размерами большего диаметра овала D от 0,5 мм до 4 мм - (0,3 мм - (Н.Р.); 0,5 мм - (У.Р.); 2,0 мм - (У.Р.); 4,0 мм - (У.Р.); 4,5 мм - (Н.Р.) и меньшего диаметра овала dO=(0,2…0,9)D - (0,1 D - (Н.Р.); 0,2 D - (У.Р.); 0,5 D - (У.Р.); 0,9 D - (У.Р.); 1,0 мм - (Н.Р.), шириной борозд между островками или шириной стенок между углублениями b=(0,1…0,3)dO - (0,05 dO - (Н.Р.); 0,1 dO - (У.Р.); 0,3 dO - (У.Р.); 0,5 dO - (Н.Р.), и глубиной борозд или глубиной углублений от 0,5 мм до 6 мм - (0,3 мм - (Н.Р.); 0,5 мм - (У.Р.); 2,5 мм - (У.Р.); 6,0 мм - (У.Р.); 6,5 мм - (Н.Р.).

- в виде равномерно расположенных по поверхности островков и/или углублений прямоугольной или шестигранной формы размерами сторон P от 0,5 мм до 4 мм - (0,3 мм - (Н.Р.); 0,5 мм - (У.Р.); 2,0 мм - (У.Р.); 4,0 мм - (У.Р.); 4,5 мм - (Н.Р.), шириной борозд между островками или шириной стенок между углублениями b1=(0,1…0,3)P (0,05 P - (Н.Р.); 0,1 P - (У.Р.); 0,3 P - (У.Р.); 0,5 P - (Н.Р.), и глубиной борозд или глубиной углублений от 0,5 мм до 6 мм - (0,3 мм - (Н.Р.); 0,5 мм - (У.Р.); 2,5 мм - (У.Р.); 6,0 мм - (У.Р.); 6,5 мм - (Н.Р.).

Размеры уплотнительного блока составляли: длина: 20 мм; 50 мм; 100 мм; 200 мм; 500 мм; 700 мм; ширина: 10 мм; 20 мм; 40 мм; 70 мм; высота: 5 мм; 10 мм; 30 мм; 50 мм; радиус кривизны по длине элемента, по его притираемой поверхности: 200 мм; 400 мм; 1200 мм; 2300 мм; 2500 мм.

Уплотнительные блоки был изготовлен спеканием в среде смеси аргона и аммиака при температуре от 1100 до 1200°C, [(от 1100°C до 1200°C±100°C]. Спекание заготовок проводили при температуре 1200±100°C в электропечи ОКБ 8086 в среде смеси газов аргона и аммиака, при содержании аргона в смеси в объемных процентах от общей смеси аргона с аммиаком: 5% - (Н.Р.); 6% - (У.Р.); 12% - (У.Р.); 25% - (У.Р.); 50% - (У.Р.); 55% - (Н.Р.). Давление прессования при изготовлении заготовок уплотнительного блока было равным: 40 кгс/мм2; 50 кгс/мм2; 60 кгс/мм2; 70 кгс/мм2. Механические свойства полученного материала составили: твердость НВ от 139 до 147; σв=29,1…37,2 кгс/мм2; σт,=17,1…25,8 кгс/мм2; ударная вязкость 1,16…1,57 кгм/см2. Результаты испытаний образцов уплотнительного блока из разработанного материала в условиях эксплуатации показали сочетание высоких прочностных характеристик уплотнений, с хорошей прирабатываемостью и минимальным износом кольцевых гребешков на бандаже лопаток.

Таким образом, надбандажное прирабатываемое уплотнение для паровой турбины, рбины, включающее следующие признаки: содержащее уплотнительные кольцевые гребешки ротора турбины, сегменты уплотнения, включающие в себя уплотняющие блоки, прикрепленные к корпусам уплотняющих блоков, имеющим в поперечном сечении V-образную форму, с размерами, позволяющими вставлять корпусы уплотняющих блоков в V-образный паз статора турбины с минимальным зазором и расположенных между уплотняющих статорных гребней, выполненных заодно с корпусами уплотняющих блоков; кольцевые пазы статора турбины, имеющие V-образную в продольном сечении турбины форму и горизонтальный продольный разъем; уплотняющие блоки выполнены из адгезионно соединенных между собой в монолитный материал частиц прирабатываемого порошкового материала, имеют в поперечном сечении трапецеидальную форму; внутренние поверхности корпусов уплотняющих блоков имеют в поперечном сечении соответствующую уплотняющим блокам трапецеидальную форму, с размерами, позволяющими вставлять и закреплять с минимальным зазором уплотняющие блоки в корпуса уплотняющих блоков; корпуса уплотняющих блоков выполнены из адгезионно соединенных между собой в монолитный материал частиц прирабатываемого порошкового материала; адгезионная прочность соединения частиц порошкового сплава составляет величину от 40 до 80% прочности материала частиц; адгезионная прочность частиц материала уплотняющих блоков составляет от 5 до 20% от прочности материала частиц; уплотняющие блоки и корпуса уплотняющих блоков выполнены прессованием с последующим спеканием в вакууме или защитной атмосфере; в качестве прирабатываемого порошкового материала используют материал состава, в вес.%: Cr - от 10,0 до 18,0%, Mo - от 0,8 до 3,7%, Fe или Ti или Cu или их комбинации - остальное или материал состава, в вес.%: Cr - от 18% до 34%; Al - от 3% до 16%; Y - от 0, 2% до 0,7%; Ni - остальное или материал состава, в вес.%: Cr - от 18% до 34%; Al - от 3% до 16%; Y - от 0, 2% до 0,7%; Co - от 16% до 30%; Ni - остальное, с размерами частиц порошка от 15 мкм до 180 мкм в механической смеси с порошковым, с размерами частиц порошка менее 1 мкм, гексагональным нитридом бора - BN в количестве от 1,0% до 1,5% от общего объема смеси и фторидом кальция - CaF2, с размерами частиц порошка от 1 мкм до 25 мкм, в количестве от 6,0% до 8,0% от общего объема материала уплотнения; прирабатываемый порошковый материал дополнительно в качестве добавки содержит от 0,4% до 3% BaSO4 в виде порошка, размерами частиц от 1 мкм до 25 мкм; уплотняющие блоки и корпуса уплотняющих блоков выполнены спеканием при температуре от 950°C до 1250°C; в качестве защитной среды использована газовая смесь, состава, в объем. %: аргон от 6% до 50%, аммиак - остальное; уплотняющие блоки закреплены в корпусах уплотняющих блоков пайкой; уплотняющие блоки снабжены опорными выступами, контактирующими с основанием корпусов уплотняющих блоков и обеспечивающими равномерное распределение припоя по соединяемым поверхностям уплотняющего блока и корпуса уплотняющего блока; опорные выступы выполнены монолитно с уплотняющими блоками в виде равномерно расположенных в поперечном направлении призматических полос имеющих в поперечном сечении форму трапеции; рабочая поверхность уплотняющего блока выполнена с регулярным микрорельефом, рисунок и размеры которого обеспечивают повышенную прирабатываемость уплотнения, причем регулярный микрорельеф выполнен либо в виде расположенных вдоль продольной оси сегмента параллельных или синусоидальных борозд глубиной от 0,5 мм до 6 мм, шагом расположения от 0,3 мм до 3 мм, либо в виде равномерно расположенных по поверхности в шахматном или коридорном порядке островков и/или углублений круглой формы диаметром d от 0,5 мм до 4 мм, межцентровым расстоянием a=(2,2…3,2)d и глубиной борозд между островками или глубиной углублений от 0,5 мм до 6 мм, либо в виде равномерно расположенных по поверхности в шахматном или коридорном порядке островков и/или углублений овальной формы размерами большего диаметра овала D от 0,5 мм до 4 мм и меньшего диаметра овала dO=(0,2…0,9)D, шириной борозд между островками или шириной стенок между углублениями b=(0,1…0,3)dO и глубиной борозд или глубиной углублений от 0,5 мм до 6 мм, либо в виде равномерно расположенных по поверхности островков и/или углублений прямоугольной формы размерами сторон P от 0,5 мм до 4 мм, шириной борозд между островками или шириной стенок между углублениями b1=(0,1…0,3)P и глубиной борозд или глубиной углублений от 0,5 мм до 6 мм; сегменты уплотнений выполнены раздельно для каждого ряда гребешков ротора турбины, позволяет достичь поставленного в изобретении технического результата - одновременного обеспечения высокой прирабатываемости, механической прочности и износостойкости уплотнения, а также снижения трудоемкости его изготовления.


НАДБАНДАЖНОЕ ПРИРАБАТЫВАЕМОЕ УПЛОТНЕНИЕ ДЛЯ ПАРОВОЙ ТУРБИНЫ
НАДБАНДАЖНОЕ ПРИРАБАТЫВАЕМОЕ УПЛОТНЕНИЕ ДЛЯ ПАРОВОЙ ТУРБИНЫ
НАДБАНДАЖНОЕ ПРИРАБАТЫВАЕМОЕ УПЛОТНЕНИЕ ДЛЯ ПАРОВОЙ ТУРБИНЫ
Источник поступления информации: Роспатент

Показаны записи 61-70 из 83.
19.01.2018
№218.016.082f

Способ нанесения многослойного ионно-плазменного покрытия на поверхность гравюры штампа из жаропрочной стали

Изобретение относится к способу нанесения многослойного ионно-плазменного покрытия на поверхность гравюры штампа из жаропрочной стали и может быть использовано при изготовлении лопаток газотурбинных двигателей горячей штамповкой. Способ включает помещение штампа в вакуумную камеру, создание...
Тип: Изобретение
Номер охранного документа: 0002631572
Дата охранного документа: 25.09.2017
20.01.2018
№218.016.0fe9

Способ изготовления пустотелой лопатки турбомашины

Изобретение относится к способам изготовления пустотелых лопаток турбомашин. Способ получения пустотелой лопатки турбомашины, заключающийся в формировании элементов спинки и корыта лопатки путем придания пластинам заданного профиля и размеров, их фиксации, обеспечивающей заданный профиль и...
Тип: Изобретение
Номер охранного документа: 0002633564
Дата охранного документа: 13.10.2017
20.01.2018
№218.016.12f4

Способ ионного азотирования режущего инструмента из легированной стали

Изобретение относится к металлургии, а именно к способам химико-термической обработки деталей из легированных инструментальных сталей, и может быть использовано в машиностроении для поверхностного упрочнения режущего инструмента. Способ ионного азотирования режущего инструмента из легированной...
Тип: Изобретение
Номер охранного документа: 0002634400
Дата охранного документа: 26.10.2017
20.01.2018
№218.016.1d36

Способ изготовления полой лопатки газотурбинного двигателя

Изобретение относится к области обработки металлов давлением и может быть использовано для изготовления полой лопатки вентилятора газотурбинного двигателя из титанового сплава. Используют трехслойные заготовки обшивок и/или заполнителя, причем внешние слои заготовок выполняют из титанового...
Тип: Изобретение
Номер охранного документа: 0002640692
Дата охранного документа: 11.01.2018
20.01.2018
№218.016.1d66

Способ формирования нанокристаллического поверхностного слоя на деталях из алюминиевых сплавов (варианты)

Изобретение относится к способу формирования нанокристаллического поверхностного слоя на деталях из алюминиевых сплавов (варианты) и может быть использовано для обработки лопаток газотурбинных двигателей. Формируют аморфный поверхностный слой путем бомбардировки его ионами одного из следующих...
Тип: Изобретение
Номер охранного документа: 0002640687
Дата охранного документа: 11.01.2018
10.05.2018
№218.016.4182

Способ обработки лопаток турбомашин из железохромоникелевых сплавов

Изобретение относится к технологии электролитно-плазменного полирования поверхности деталей. Способ включает полирование поверхности пера лопатки электролитно-плазменным методом, включающим погружение лопатки в электролит, формирование вокруг обрабатываемой поверхности лопатки парогазовой...
Тип: Изобретение
Номер охранного документа: 0002649128
Дата охранного документа: 29.03.2018
01.03.2019
№219.016.c97f

Лабиринтное уплотнение

Изобретение относится к лабиринтным уплотнениям вала турбин. Кольцевой гребень ротора турбины установлен с осевыми зазорами между кольцевыми гребнями статора. Мелкоячеистые соты установлены в статоре между его кольцевыми гребнями с кольцевым радиальным зазором относительно кольцевого гребня...
Тип: Изобретение
Номер охранного документа: 0002244182
Дата охранного документа: 10.01.2005
01.03.2019
№219.016.cd6d

Лабиринтное надбандажное уплотнение для паровой турбины

Изобретение относится к лабиринтному надбандажному уплотнению для паровой турбины, содержащему уплотнительные кольцевые гребешки ротора турбины, сегменты уплотнения, включающие в себя мелкоячеистые сотовые блоки, припаянные к корпусам сотовых блоков между уплотняющих статорных гребней,...
Тип: Изобретение
Номер охранного документа: 0002362887
Дата охранного документа: 27.07.2009
01.03.2019
№219.016.d024

Вставка сотового надбандажного уплотнения паровой турбины и способ установки вставок сотового надбандажного уплотнения

Вставка сотового надбандажного уплотнения паровой турбины состоит из корпуса, который имеет в продольном сечении плоскую (прямую) форму, а в поперечном сечении - V-образную форму. Боковые поверхности корпуса имеют экономически обоснованную точность изготовления. Заодно с корпусом выполнены...
Тип: Изобретение
Номер охранного документа: 0002447294
Дата охранного документа: 10.04.2012
08.03.2019
№219.016.d59d

Способ электролитно-плазменного удаления покрытий из нитридов титана или нитридов соединений титана с металлами

Изобретение относится к технологии электролитно-плазменного удаления защитных покрытий из нитрида титана с поверхности деталей из титановых сплавов и может быть использовано при восстановлении деталей турбомашин, в частности рабочих и направляющих лопаток паровых турбин, лопаток...
Тип: Изобретение
Номер охранного документа: 0002467098
Дата охранного документа: 20.11.2012
Показаны записи 61-70 из 148.
10.05.2018
№218.016.4182

Способ обработки лопаток турбомашин из железохромоникелевых сплавов

Изобретение относится к технологии электролитно-плазменного полирования поверхности деталей. Способ включает полирование поверхности пера лопатки электролитно-плазменным методом, включающим погружение лопатки в электролит, формирование вокруг обрабатываемой поверхности лопатки парогазовой...
Тип: Изобретение
Номер охранного документа: 0002649128
Дата охранного документа: 29.03.2018
10.05.2018
№218.016.44c8

Способ упрочняющей обработки деталей из титановых сплавов с ультрамелкозернистой структурой

Изобретение относится к способу упрочняющей обработки деталей из титановых сплавов с ультрамелкозернистой структурой и может быть использовано в авиационном двигателестроении и энергетическом турбостроении для защитно-упрочняющей обработки пера рабочих лопаток компрессора ГТД или паровой...
Тип: Изобретение
Номер охранного документа: 0002649928
Дата охранного документа: 05.04.2018
10.05.2018
№218.016.4b27

Способ упрочнения деталей из жаропрочных сплавов

Изобретение относится к машиностроению и может быть использовано для упрочнения деталей из жаропрочных сплавов. Упрочнение деталей проводят дробеструйной обработкой шариками и микрошариками твердостью HRC 60-64, при давлении 0,6 МПа. Обработку проводят в несколько этапов: на первом этапе...
Тип: Изобретение
Номер охранного документа: 0002651847
Дата охранного документа: 24.04.2018
09.06.2018
№218.016.5aa2

Способ защиты блиска газотурбинного двигателя из титановых сплавов от пылеабразивной эрозии

Изобретение относится к способу защиты блиска газотурбинного двигателя из титановых сплавов от пылеабразивной эрозии. Осуществляют упрочняющую обработку микрошариками, полирование кромок лопаток блиска, ионно-плазменную модификацию материала поверхностного слоя лопаток блиска с последующим...
Тип: Изобретение
Номер охранного документа: 0002655563
Дата охранного документа: 28.05.2018
03.07.2018
№218.016.69c2

Способ изготовления раскатных колец с регулярной микроструктурой

Изобретение относится к способам раскатки заготовки в виде кольца. Раскатку заготовки осуществляют роликовыми инструментами. Вначале роликовым инструментом формируют регулярный микрорельеф поверхности за счет микрорельефа на его рабочей поверхности, а затем выглаживают поверхность микрорельефа...
Тип: Изобретение
Номер охранного документа: 0002659501
Дата охранного документа: 02.07.2018
13.07.2018
№218.016.70eb

Установка для ионно-плазменного модифицирования и нанесения покрытий на моноколеса с лопатками

Изобретение относится к технике для нанесения покрытий на детали машин, а именно к вакуумной ионно-плазменной обработке поверхностей, и может быть использовано для нанесения функциональных покрытий на моноколеса турбомашин. Установка для вакуумной ионно-плазменной обработки поверхности...
Тип: Изобретение
Номер охранного документа: 0002661162
Дата охранного документа: 12.07.2018
14.07.2018
№218.016.7164

Способ получения многослойной детали из титанового сплава

Использование: изобретение относится к способу получения многослойной детали из титанового сплава. Осуществляют ионно-имплантационное модифицирование листовой детали из титанового сплава путем ионной имплантации азота, углерода или бора с энергией 30-50 кэВ, плотностью тока 35-50 мкА/см и...
Тип: Изобретение
Номер охранного документа: 0002661294
Дата охранного документа: 13.07.2018
11.10.2018
№218.016.8fe7

Способ ионно-имплантационной обработки лопаток компрессора из высоколегированных сталей и сплавов на никелевой основе

Изобретение относится к машиностроению и может быть использовано в авиационном двигателестроении и энергетическом турбостроении для упрочняющей обработки пера рабочих лопаток компрессора газотурбинного двигателя или газотурбинной установки из высоколегированных сталей или сплавов на никелевой...
Тип: Изобретение
Номер охранного документа: 0002669136
Дата охранного документа: 08.10.2018
16.01.2019
№219.016.b07e

Способ нанесения защитного многослойного покрытия на лопатки блиска газотурбинного двигателя из титанового сплава от пылеабразивной эрозии

Изобретение относится к машиностроению и может быть использовано в авиационном двигателестроении и энергетическом турбостроении для защиты пера рабочих лопаток моноколеса компрессора ГТД из титановых сплавов от пылеабразивной эрозии. Способ нанесения защитного многослойного покрытия на лопатки...
Тип: Изобретение
Номер охранного документа: 0002677041
Дата охранного документа: 15.01.2019
24.01.2019
№219.016.b2d7

Способ химико-термической обработки детали из легированной стали

Изобретение относится к металлургии, в частности к способам химико-термической обработки деталей из легированных сталей, и может быть использовано в машиностроении для поверхностного упрочнения деталей машин, в том числе деталей, работающих в парах трения, режущего инструмента и штамповой...
Тип: Изобретение
Номер охранного документа: 0002677908
Дата охранного документа: 22.01.2019
+ добавить свой РИД