×
20.11.2013
216.012.8256

Результат интеллектуальной деятельности: СПОСОБ ИЗОТОПНОГО ОБОГАЩЕНИЯ КЛЕТОК E.coli

Вид РИД

Изобретение

Аннотация: Изобретение относится к микробиологии и может быть использовано для получения изотопно-меченых клеток микроорганизмов. Способ обогащения клеток E.coli изотопами магния предусматривает культивирование клеток E.coli в течение 10-16 ч при температуре 37°C в водном растворе, обогащенном изотопом магния Mg или Mg, или Mg. Водный раствор включает NHCl, глюкозу, NaHPO, KHPO, NaCl и MgSO при следующем содержании компонентов на 1 л дистиллированной воды: NHCl - 2 г, MgSO - 200-260 мг, глюкоза (сухая) - 8-10 г, NaHPO - 11,9-12,1 г, KHPO - 5,95-6,05 г, NaCl - 0,98-1,02 г. Изобретение обеспечивает эффективное замещение природного внутриклеточного магния клеток E.coli соответствующим изотопом. 5 табл.
Основные результаты: Способ обогащения клеток E.coli изотопами магния, предусматривающий культивирование клеток E.coli в течение 10-16 ч при температуре 37°C в водном растворе, обогащенном изотопом магния Mg, или Mg, или Mg, включающем NHCl, глюкозу, NaHPO, KHPO, NaCl и MgSO, при следующем содержании компонентов на 1 л дистиллированной воды:

Способ изотопного обогащения клеток E.coli относится к микробиологии, энзимологии для получения изотопно-меченых клеток микроорганизмов.

Известен способ изотопного обогащения (патент РФ №2399409, опубл. 20.09.10), содержащий стадию осуществления изотопного обмена между водным раствором, содержащим, по меньшей мере, два компонента, каждый из которых представлен формулой H2O-H2SiF6·nSiF4 (где n≥0), и газом, содержащим SiF4, для обогащения стабильного изотопа Si. Возможно, что SiF4 растворяют в водном растворе до состояния насыщения, а также, что водный раствор имеет азеотропный состав.

Недостатком данного способа является невозможность его использования для обогащения клеток E.coli, т.к. данный раствор не содержит питательных веществ для бактерий и не имеет pH=6.5-7.5, при котором растут и размножаются клетки.

Техническим результатом заявляемого способа изотопного обогащения клеток E.coli является эффективное замещение природного внутриклеточного магния соответствующим изотопом.

Задача решается тем, что в способе изотопного обогащения клеток E.coli, содержащего стадию изотопного обмена между клетками E.coli и водным раствором, отличающийся тем, что изотопный обмен между клетками E.coli и водным раствором осуществляют в течение 10-16 часов при температуре 37°C, причем в водный раствор, обогащенный по одному из изотопов магния 24Mg, 25Mg, 26Mg, входят NH4Cl, глюкоза, Na2HPO4, KH2PO4, NaCl и MgSO4, при следующем содержании на 1 л дистиллированной воды:

NH4Cl - 2 г;

MgSO4 - 200-260 мг;

глюкоза (сухая) - 8-10 г;

Na2HPO4 - 11,9-12,1 г;

KH2PO4 - 5,95-6,05 г;

NaCl - 0,98-1,02 г.

Способ изотопного обогащения клеток E.coli осуществляли следующим образом.

Музейный штамм Escherichia coli K12TG1 предварительно инкубировался в Lb-бульоне (производства Sigma Aldrich Co.), который содержит природный магний, в течение 24 часов при температуре 37°C. Далее трижды производился посев микроорганизмов исходной концентрации 105 KOE/мл в синтетическую питательную среду М9 - водный раствор с разной концентрацией 6 компонентов на 1 л дистиллированной воды.

Первый водный раствор:

NH4Cl - 2 г; MgSO4 - 200 мг; глюкоза (сухая) - 8 г; Na2HPO4 - 11,9 г; KH2PO4 - 5,95 г; NaCl - 0,98 г.

Второй водный раствор:

NH4Cl - 2 г; MgSO4 - 230 мг; глюкоза (сухая) - 9 г; Na2HPO4 - 12 г; KH2PO4 - 6 г; NaCl - 1 г.

Третий водный раствор:

NH4Cl - 2 г; MgSO4 - 260 мг; глюкоза (сухая) - 10 г; Na2HPO4 - 12, 1 г; KH2PO4 - 6,05 г; NaCl - 1,02 г.

Первые три вещества, NH4Cl, глюкоза (сухая) и MgSO4, входят в питательный раствор, необходимый для поддержания жизнеспособности клеточной культуры и ее роста, требуемого для накопления изотопно-обогащенной магнием клеточной биомассы. Последние три вещества, Na2HPO4, KH2PO4 и NaCl, являются буферным раствором, который поддерживает pH=6.5-7.5 среды. Два раствора готовятся отдельно, стерилизуют в автоклаве 25 минут при давлении 1,5-2 атм. После автоклавирования растворы сливаются; pH контролируют до и после стерилизации. Изотопы магния добавляют в среду в виде сульфата магния MgSO4, концентрация которого составляет 2.2 мМ/л. Характеристики существующих в природе стабильных изотопов магния и их природное содержание приведены в таблице 1.

Таблица 1
Изотоп Магнитный момент (µв) Природное содержание, %
24Mg 0 79
25Mg 0.85 10
26Mg 0 11

Для приготовления сульфатов использовались изотопно-чистые оксиды 24MgO, 25MgO и 26MgO производства ФГУП «Электрохимприбор» с рекордно высоким изотопным обогащением 99.8, 98.8 и 97.7 атомных процентов, соответственно. Паспортные данные оксидов изотопов магния приведены в таблицах 2-3.

Таблица 2
Содержание изотопа магния, ат.%
Изотоп для 24MgO для 26MgO для 25MgO
24Mg 99,88±0,02 97,70±0,20 99,37±0,08
25Mg 0,07 1,98 0,33
26Mg 0,05 0,20 0,30

Таблица 3
Содержание примесей, вес.%
Элемент для 24MgO для 26MgO для 25MgO
K <0,005 <ПО 0,017
Na 0,002 <ПО 0,004
Ca <0,005 0,008 0,34
Fe <0,005 0,019 0,048
Al 0,0011 0,0008 0,031
Si <0,005 <ПО <0,005
Cr - <ПО 0,0030
Ni 0,0001 <0,0002 <0,0001
Cu 0,0029 0,0021 0,0004
Mn 0,0032 0,0021 0,059
Pb <ПО* <ПО 0,0015
Lu <ПО <ПО 0,0003
Pt <ПО 0,0031 0,0002
B <ПО 0,008 0,0026
Ti <ПО <ПО 0,0015
Co <ПО <ПО 0,0011
Sr <ПО <ПО 0,0002
Ba <ПО 0,0003 0,0002
La <ПО <ПО 0,0003
Eu <ПО <ПО 0,0002
Zn 0,0006 0,0005 0,0009
Ru <ПО 0,0001 <ПО
Cd <ПО 0,0001 <ПО
P <0,005 <ПО <ПО

Контроль соотношения изотопов магния, содержащихся в питательной среде М9, осуществлялся с помощью масс-спектрометрического анализа. Соотношение изотопов магния для сред М9 в % приведено в таблице 4.

Таблица 4
Изотоп Среда М9 с 24Mg Среда М9 с 25Mg Среда М9 с 26Mg
24Mg 99,7 1,4 4,5
25Mg 0,12 98,1 0,61
26Mg 0,13 0,5 94,9

В подготовленные таким образом водные растворы производили посев микроорганизмов с начальной концентрацией 105 КОЕ/мл (колониеобразующих единиц на 1 мл раствора). После этого образцы выдерживали в термостате при температуре 37°C в течение 10, 13 и 16 часов. Контроль накопления клеточной биомассы осуществлялся с помощью стандартных методов измерения оптической плотности суспензии микроорганизмов и измерения колониеобразующих единиц. При достижении бактериями плотности популяции 108-109 КОЕ/мл или 0,6-0.7 отн. ед. оптической плотности клеточная биомасса осаждалась методом центрифугирования на 15 тыс. об. в течение 15 минут. После производился двукратный отмыв клеточной биомассы бактерий E.coli дистиллированной водой с повторным центрифугированием.

Полученная таким образом клеточная биомасса исследовалась на содержание изотопов магния масс-спектральным (PlasmaQuad 2, VG Elemental, Англия) и атомно-эмиссионным методами (ICAP-61, Thermo Jarrell Ash, США). Клеточная биомасса предварительно подвергалась лиофильной сушке и автоклавному разложению. Данные по соотношению изотопов магния в клетках E.coli после цикла культивирования на изотопных средах М9 приведены в таблице 5.

Таблица 5
Изотоп Исход-ная куль тура Выдержка в термоста-те, час. Клетки, выращенные на среде М9 с 24Mg Клетки, выращенные на среде М9 с 25Mg Клетки, выращенные на среде М9 с 26Mg
1-й водный р-р 2-й водный р-р 3-й водный р-р 1-й водный р-р 2-й водный р-р 3-й водный р-р 1-й водный р-р 2-й водный р-р 3-й водный р-р
24Mg 87,8 10 90,8 94,5 95,1 5,9 6,3 6,1 12,5 9,8 9,8
13 91,1 99,5 99,4 6,0 6,6 6,5 10,4 10,0 9,9
16 93,5 99,5 99,5 6,2 6,6 6,5 9,7 10,0 10,0
25Mg 5,9 10 6,2 3,5 3,4 90,2 91,9 91,3 2,1 3,3 3,7
13 5,8 0,23 0,22 91,9 92,5 92,1 2,0 1,6 2,6
16 4,7 0,24 0,23 92,3 92,5 92,4 2,2 1,6 1,7
26Mg 6,3 10 3,0 2,0 1,4 3,9 1,8 2,6 85,4 86,9 86,5
13 3,1 0,23 1,5 2,1 0,87 1,4 87,6 88,4 87,5
16 1,8 0,22 0,22 1,5 0,87 1,1 88,1 88,4 88,3
* Погрешность определения от 1.2% отн. для 95%; до 15% для 0.5%

После 10-16 часов культивирования на магний-изотопных средах, в течение которых происходил изотопный обмен между клетками и водным раствором, бактерии были обогащены по соответствующему изотопу магния до 99,5 по сравнению с исходной бактериальной культурой, выращенной на питательном бульоне Lb, как видно из второго столбца данных таблицы 5. Цикл культивирования бактерий на питательных средах М9, содержащих изотопы магния, приводит к практически полному замещению внутриклеточного магния на конкретный изотоп.

Используемый способ изотопного обогащения микроорганизмов в присутствии магнитного и немагнитных изотопов магния оказался уникальным и применяется впервые. Данный способ может использоваться для получения изотопно-меченых клеток микроорганизмов, который найдет свое применение в различных исследовательских работах в микробиологии, энзимологии. Кроме того, он может использоваться в различных медицинских и биотехнологических приложениях как простой и нетрудоемкий способ получения изотопно-обогащенных биомолекул (АТФ, ДНК и т.д.), клеточных подструктур и самих клеток. Немаловажно, что подобные выделенные молекулы и клеточные подструктуры нерадиоактивны, так как для изотопного обогащения используются только стабильные изотопы. Данный способ может быть модифицирован для других стабильных изотопов жизненно важных химических элементов, а также для других микроорганизмов.

Таким образом, по сравнению с прототипом, заявляемый способ изотопного обогащения клеток E.coli позволяет эффективно проводить до 90% изотопный обмен между природным магнием, изначально содержащимся в клетках, и изотопом магния из водного раствора.

Способ обогащения клеток E.coli изотопами магния, предусматривающий культивирование клеток E.coli в течение 10-16 ч при температуре 37°C в водном растворе, обогащенном изотопом магния Mg, или Mg, или Mg, включающем NHCl, глюкозу, NaHPO, KHPO, NaCl и MgSO, при следующем содержании компонентов на 1 л дистиллированной воды:
Источник поступления информации: Роспатент

Показаны записи 1-3 из 3.
27.02.2013
№216.012.2b3a

Способ повышения продуктивности микроорганизмов e.coli

Изобретение относится к микробиологии и медицине и может быть использовано в фармацевтической промышленности. Способ повышения продуктивности бактерий E.coli заключается в подготовке суспензии микроорганизмов, перемешивании ее в процессе культивирования в присутствии сульфата магнитного изотопа...
Тип: Изобретение
Номер охранного документа: 0002476593
Дата охранного документа: 27.02.2013
20.11.2013
№216.012.8376

Органический донорно-акцепторный гетеропереход для солнечного элемента

Изобретение относится к области полупроводниковых приборов на твердом теле с использованием комбинации органических материалов с другими материалами в качестве активной части, специально предназначенных для преобразования энергии светового излучения в электрическую энергию. Техническим...
Тип: Изобретение
Номер охранного документа: 0002499330
Дата охранного документа: 20.11.2013
13.01.2017
№217.015.794b

Автоклавная система вскрытия образцов для элементного анализа

Изобретение относится к области аналитической химии, а именно, лабораторному оборудованию, и может быть применено в элементном анализе геологических образцов (горные породы, почвы, грунты и донные отложения), различных биогеохимических образцов (травы, листва, мягкие и костные ткани), а также...
Тип: Изобретение
Номер охранного документа: 0002599526
Дата охранного документа: 10.10.2016
Показаны записи 41-50 из 128.
20.01.2014
№216.012.9776

Шнековый пресс-экструдер для формования брикетов из опилок

Изобретение относится к машиностроению и может быть использовано в конструкциях шнековых прессов, предназначенных для получения формованного топлива методом прессования из композиционных материалов, преимущественно из смеси торфа с отходами деревообработки и лесопиления (опилок, стружек,...
Тип: Изобретение
Номер охранного документа: 0002504473
Дата охранного документа: 20.01.2014
27.01.2014
№216.012.9ae6

Центробежный сепаратор-очиститель

Изобретение относится к сепараторостроению и может быть использовано в таких отраслях промышленности, как пищевая, химическая, нефтяная, биологическая, автотракторная и другие. Центробежный сепаратор-очиститель содержит барабан с крышкой, укрепленный жестко на вертикальном вращающемся полом...
Тип: Изобретение
Номер охранного документа: 0002505360
Дата охранного документа: 27.01.2014
20.02.2014
№216.012.a04a

Устройство для выпечки хлеба

Изобретение относится к хлебопекарной промышленности, в частности к устройствам выпечки хлеба. Устройство включает форму из неэлектропроводного материала, две пластины из нержавеющей стали, систему электропитания. Пластины имеют форму тора и расположены в горизонтальной плоскости, причем...
Тип: Изобретение
Номер охранного документа: 0002506749
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a1a1

Установка для мойки автомобиля

Изобретение относится к устройствам для технического обслуживания, а именно к установкам для мойки автомобилей. Установка для мойки автомобилей содержит устройство для мойки автомобилей, включающее в себя основание, стойку, привод, коллектор, соединенный с форсунками при помощи шарниров и...
Тип: Изобретение
Номер охранного документа: 0002507092
Дата охранного документа: 20.02.2014
10.03.2014
№216.012.a920

Система пассивной безопасности локомотива

Изобретение относится к транспортному машиностроению, в частности к системам, обеспечивающим пассивную безопасность пешеходов, животных и участников дорожного движения, передвигающихся на транспортных средствах (далее «Участников»), при их столкновении с передней частью локомотивов. Техническим...
Тип: Изобретение
Номер охранного документа: 0002509011
Дата охранного документа: 10.03.2014
10.03.2014
№216.012.a921

Система пассивной безопасности локомотива

Изобретение относится к транспортному машиностроению, в частности к системам, обеспечивающим пассивную безопасность пешеходов, животных и участников дорожного движения, передвигающихся на транспортных средствах (далее «Участников»), при их столкновении с передней частью локомотивов. Техническим...
Тип: Изобретение
Номер охранного документа: 0002509012
Дата охранного документа: 10.03.2014
10.04.2014
№216.012.b3c3

Беспилотный летательный аппарат вертикального взлета и посадки

Изобретение относится к области авиационной техники, в частности к беспилотным летательным аппаратам. Беспилотный летательный аппарат вертикального взлета и посадки содержит корпус выпуклой формы, выполненный в виде сжатого десятиугольника в плане, силовой элемент, размещенный в центре корпуса,...
Тип: Изобретение
Номер охранного документа: 0002511735
Дата охранного документа: 10.04.2014
20.04.2014
№216.012.b8e9

Жидкостно-масляный теплообменник для двигателей внутреннего сгорания транспортных средств

Изобретение относится к области теплотехники и может быть использовано в теплообменниках, в которых теплопередача производится через неподвижные и вращающиеся стенки аналогично типу труба в трубе или встроенные в блок двигателя. В жидкостно-масляном теплообменнике для двигателей внутреннего...
Тип: Изобретение
Номер охранного документа: 0002513065
Дата охранного документа: 20.04.2014
20.04.2014
№216.012.b907

Устройство для повышения сцепных свойств автотранспортного средства

Изобретение относится к транспортному машиностроению, в частности к средствам для что предотвращения буксования ведущих колес. Устройство для повышения сцепных свойств автотранспортного средства, содержит компрессор, к выходу которого подключен теплоизолированный ресивер, снабженный...
Тип: Изобретение
Номер охранного документа: 0002513095
Дата охранного документа: 20.04.2014
10.05.2014
№216.012.c06d

Противобуксовочное устройство для автотранспортного средства

Изобретение относится к транспортному машиностроению, в частности к средствам для предотвращения буксования ведущих колес. Противобуксовочное устройство для автотранспортного средства содержит связанный с несущей системой корпус с горловинами подачи и отвода песка, сообщающийся через...
Тип: Изобретение
Номер охранного документа: 0002515010
Дата охранного документа: 10.05.2014
+ добавить свой РИД