×
20.11.2013
216.012.81b3

Результат интеллектуальной деятельности: СОСТАВНОЙ СЕГМЕНТ ПРИРАБАТЫВАЕМОГО УПЛОТНЕНИЯ ТУРБИНЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к машиностроению, в частности к уплотнениям зазоров проточной части турбомашин, длительно работающих в условиях повышенных температур и высокочастотных вибраций. Составной сегмент прирабатываемого уплотнения турбины содержит уплотняющий блок, выполненный в виде призмы из адгезионно соединенных между собой частиц прирабатываемого порошкового материала и закрепленный внутри металлического коробчатого корпуса, открытого с рабочей стороны уплотняющего блока и имеющего выступающие над поверхностью уплотняющего блока боковые стенки. Уплотняющий блок закреплен внутри металлического коробчатого корпуса паяным соединением, выполнен в виде призмы с трапецеидальным или прямоугольным поперечным сечением с боковыми опорными выступами, контактирующими с боковыми стенками коробчатого корпуса и обеспечивающими равномерное распределение припоя в зазоре между уплотняющим блоком и корпусом уплотняющего блока. Обеспечивается высокая прирабатываемость, износостойкость и механическая прочность. 18 з.п. ф-лы, 5 ил., 1 табл., 2 пр.

Изобретение относится к машиностроению, в частности к уплотнениям зазоров проточной части турбомашин, длительно работающих в условиях повышенных температур и высокочастотных вибраций.

Эффективность работы газотурбинных двигателей и установок, а также паровых турбин зависит герметичности уплотнения между вращающимися лопатками и внутренней поверхностью корпуса в вентиляторе, компрессоре и турбине. Одним из основных видов подобных уплотнений являются истираемые уплотнения, герметичность которых обеспечивается за счет прорезания выступами на торцах лопаток канавок в истираемом уплотнительном материале. Уплотнения турбин выполняют например, используя плетеные металлические волокна, соты [патент США N 5080934, МПК. F01D 11/08, 427/271, 1991] или спеченные металлические частицы. Приработка этих уплотнений происходит за счет его высокой пористости и его низкой прочности. Последнее обуславливает невысокую эрозионную стойкость уплотнительных материалов, что приводит к быстрому износу уплотнения. В качестве прирабатываемых уплотнений в современных двигателях и установках используют также газотермические покрытия, имеющих, по сравнению с вышеописанными материалами, меньшую трудоемкость изготовления.

Известно прирабатываемое уплотнение турбомашины [патент США №4291089], получаемое методом газотермического напыления порошкового материала. При этом уплотнение формируется в виде покрытия, которое наносится непосредственно на кольцевой элемент корпуса турбомашины в зону уплотнения между корпусом и лопаткой.

Недостатком известного уплотнения является невозможность одновременного обеспечения высокой прирабатываемости и износостойкости покрытия.

Известно также прирабатываемое уплотнение турбомашины [патент США №4936745], выполненное в виде высокопористого керамического слоя с пористостью от 20 до 35 объемных %.

Недостатком известного уплотнения является низкая эрозионная стойкость и прочность.

Наиболее близким по технической сущности и достигаемому результату к заявляемому является сегмент истираемого уплотнения турбины, выполненный из адгезионно соединенных между собой частиц порошкового материала, [патент РФ №2039631, МПК B22F 3/10, Способ изготовления истираемого материала, 1995]. При этом уплотнение включает порошковый наполнитель, составляющий основу материала уплотнения и добавки. Порошковый материал заполнен в сотовые ячейки и спечен в вакууме или защитной среде. В качестве гранулированного прошкового материла использован материал состава Cr-Fe-Nb-C-Ni.

Известное прирабатываемое уплотнение турбомашины [патент РФ №2039631, МПК B22F 3/10, Способ изготовления истираемого материала, 1995] используется для уплотнения, которое выполнено в виде жестко соединенного со статором слоя сотовой структуры. При соприкосновении выступов на торце лопатке с сотовой структурой острые кромки гребешков притупляются, что приводит к снижению эффективности уплотнения. При этом слой сотовой структуры может быть закреплен на элементе турбомашины методом сварки или пайки [например, патент РФ №2277637, МПК F01D 11/08, 2006 г.].

Процесс изготовления и прикрепления сотовой структуры достаточно сложен, трудоемок, а также связан с большими временными затратами. При этом, сотовая структура может быть соединена как с кольцевым элементом турбомашины, так и с отдельными, образующими кольцо элементами-вставками [например, патент РФ 2287063, МПК F01D 11/08, 2006 г.].

Недостатками прототипа являются невозможность одновременного обеспечения высокой прирабатываемости, механической прочности и износостойкости материала уплотнения, а также необходимость использования сотовых ячеек.

В этой связи, использование уплотнения, не содержащего слоя сотовой структуры, а выполненного из монолитного материала допускающими врезание в него выступов лопатки и снижающими их износ в процессе эксплуатации, привело бы к дальнейшему повышению эффективности работы турбомашин.

Техническим результатом заявляемого изобретения является одновременное обеспечение высокой прирабатываемости, механической прочности и износостойкости уплотнения, а также снижения трудоемкости его изготовления.

Технический результат достигается тем, что составной сегмент прирабатываемого уплотнения турбины содержащий уплотняющий блок, выполненный в виде призмы из адгезионно соединенных между собой частиц прирабатываемого порошкового материала и закрепленный внутри металлического коробчатого корпуса, открытого с рабочей стороны уплотняющего блока и имеющего выступающие над поверхностью уплотняющего блока боковые стенки в отличие от прототипа, уплотняющий блок закреплен внутри металлического коробчатого корпуса паяным соединением, выполнен в виде призмы с трапециидальным или прямоугольным поперечным сечением с боковыми опорными выступами, контактирующими с боковыми стенками коробчатого корпуса и обеспечивающими равномерное распределение припоя в зазоре между уплотняющим блоком и корпусом уплотняющего блока, при этом боковые опорные выступы могут быть выполнены монолитно с материалом уплотняющего блока, в виде, по крайней мере одной сплошной полосы с каждой его стороны, с сечением в виде кругового сегмента и ориентированы вдоль продольной оси уплотняющего блока.

Технический результат достигается также тем, что в составной сегменте прирабатываемого уплотнения уплотняющий блок имеет с каждой стороны по одному боковому опорному выступу, симметрично расположенных друг к другу относительно радиальной оси сегмента, причем уплотняющий блок выполнен размерами, мм: длина - 50 мм, ширина основания - 11,7 мм, ширина рабочей части, - 11,5 мм, ширина средней части с боковыми выступами - 12,6 мм, высота - 6 мм, радиус кривизна блока по основанию - 843 мм, радиус окружности сегмента бокового выступа - 2 мм, высота бокового выступа - 0,5 мм, расстояние от края выступа до поверхности рабочей части блока - 1 мм, причем продольная ось сегмента параллельна продольной оси блока.

Технический результат достигается также тем, что в составной сегменте прирабатываемого уплотнения уплотняющий блок имеет с каждой стороны по два бокового опорного выступа, попарно симметрично расположенных друг к другу относительно радиальной оси сегмента, причем уплотняющий блок выполнен размерами, мм: длина - 50 мм, ширина основания - 11,7 мм, ширина рабочей части, - 11,5 мм, ширина средней части с боковыми выступами - 12,6 мм, высота - 6 мм, радиус кривизна блока по основанию - 843 мм, радиус окружности сегмента бокового выступа - 0,5 мм, высота бокового выступа - 0,5 мм, расстояние от края выступа до основания блока - 1 мм, шаг расположения выступов - 2,5 мм, причем продольная ось сегмента параллельна продольной оси блока, или уплотняющий блок имеет с каждой стороны по три бокового опорного выступа, симметрично расположенных друг к другу относительно радиальной оси сегмента, причем уплотняющий блок выполнен размерами, мм: длина - 50 мм, ширина основания - 11,7 мм, ширина рабочей части, - 11,5 мм, ширина средней части с боковыми выступами - 12,6 мм, высота - 6 мм, радиус кривизна блока по основанию - 843 мм, радиус окружности сегмента бокового выступа - 0,5 мм, высота бокового выступа - 0,5 мм, расстояние от края выступа до основания блока - 1 мм, шаг расположения выступов - 1,5 мм, причем продольная ось сегмента параллельна продольной оси блока.

Технический результат достигается также тем, что в составном сегменте прирабатываемого уплотнения турбины в качестве прирабатываемого порошкового материала используют материал состава, в вес.%: Cr - от 10,0 до 18,0%, Mo - от 0,8 до 3,7%, Fe или Ti или Cu или их комбинации - остальное или материал состава, в вес.%: Cr - от 18% до 34%; Al - от 3% до 16%; Y - от 0, 2% до 0,7%; Ni - остальное или материал состава, в вес.%: Cr - от 18% до 34%; Al - от 3% до 16%; Y - от 0,2% до 0,7%; Co - от 16% до 30%; Ni - остальное, с размерами частиц порошка от 15 мкм до 180 мкм в механической смеси с порошковым, с размерами частиц порошка менее 1 мкм, гексагональным нитридом бора - BN в количестве от 1,0% до 1,5% от общего объема смеси и фторидом кальция - CaF2, с размерами частиц порошка от 1 мкм до 25 мкм, в количестве от 6,0% до 8,0% от общего объема материала уплотнения, причем прирабатываемый порошковый материал дополнительно в качестве добавки содержит от 0,4% до 3% BaSO4 в виде порошка, размерами частиц от 1 мкм до 25 мкм.

Технический результат достигается также тем, что в составном сегменте прирабатываемого уплотнения турбины в качестве прирабатываемого порошкового материала используют материал состава, в вес.%: Cr - от 12,0 до 14,0%, Мо - от 1,0 до 3,0%, Fe - остальное, с размерами частиц порошка от 10 мкм до 160 мкм в механической смеси с порошковым, с размерами частиц порошка менее 1 мкм, гексагональным нитридом бора - BN в количестве в вес.%: от 5,0% до 6,5% от общего объема смеси и стеарат цинка - Zn(C18H35O2)2 с размерами частиц порошка от 1 мкм до 75 мкм, в вес.%: 0,9% до 1,1% от общего объема материала уплотнения.

Технический результат достигается также тем, что в составном сегменте прирабатываемого уплотнения турбины уплотняющий блок выполнен холодным прессованием с последующим спеканием в вакууме или в защитной среде при температуре от 1050°C до 1150°C, причем в качестве защитной среды использована газовая смесь, состава, в объем.%: аргон от 6% до 50%, аммиак - остальное.

Технический результат достигается также тем, что в составном сегменте прирабатываемого уплотнения, как вариант, размеры уплотнительного блока составляют: длина: 20 мм; 50 мм; 100 мм; 200 мм; 500 мм; 700 мм; ширина: 10 мм; 20 мм; 40 мм; 70 мм; высота: 5 мм; 10 мм; 30 мм; 50 мм; радиус кривизны по длине элемента, по его рабочей притираемой поверхности: 200 мм; 400 мм; 1200 мм; 2300 мм; 2500 мм.

Технический результат достигается также тем, что в составном сегменте прирабатываемого уплотнения турбины корпус уплотняющего блока выполнен из пластичной легированной стали или меди или сплавов на основе меди.

Исследованиями авторов было установлено, что, с одной стороны, в определенных условиях возможно создание материала для уплотнений обладающего с одной стороны, достаточно высокими механической прочностью и износостойкостью, позволяющими изготавливать из него уплотняющие блоки, не разрушающиеся в условиях эксплуатации, а с другой - обладать высокой прирабатываемостью. Совмещение высокой механической прочности и прирабатываемости в разработанном материале уплотняющего блока, объясняется, в частности, тем, что адгезионная прочность частиц наполнителя весьма высока, тогда как в результате мгновенного ударного-теплового воздействия в условиях эксплуатации уплотнения на отдельную частицу наполнителя кинетическая энергия удара переходит в тепловую энергию. В результате этого, адгезионная прочность на границе рассматриваемой частицы резко снижается и в результате удара происходит его отрыв. В целом же процесс прирабатываемости уплотнения складывается из совокупности единичных процессов отрыва частиц наполнителя в результате снижения адгезионной прочности на границе каждой частицы. Кроме того, отрыв и унос частицы приводит к отводу излишней теплоты из зоны приработки и не позволяет нагреваться основной массе материала. С другой стороны, функциональное разделение сегмента на уплотняющий блок (прирабатываемую часть) и корпус (несущую часть) существенно увеличивают его прочностные характеристики. Кроме того, использование порошкового материала для получения уплотняющего блока позволяет, например, в отличие от сотовых уплотнений значительно снизить трудоемкость изготовления уплотнений.

Изобретение поясняется чертежами. На фигурах 1-5 представлены варианты выполнения уплотняющего блока составного сегмента прирабатываемого уплотнения турбины.

Фигуры 1-5 содержат: 1 - составной сегмент прирабатываемого уплотнения турбины; 2 - металлический коробчатый корпус; 3 - уплотняющий блок; 4 - выступающие над поверхностью уплотняющего блока боковые стенки металлического коробчатого корпуса; 5 - боковой опорный выступ; 6 - основание уплотняющего блока; 7 - рабочая поверхность уплотняющего блока; 8 - припой; 9 - радиальная ось сегмента; 10 - продольная ось сегмента (Фиг.5 - микрофотография шлифа границы соединения «металлический коробчатый корпус (2) - припой (8) - уплотняющий блок (3)»).

Составной сегмент прирабатываемого уплотнения турбины 1 (фиг.1, 2 и 4) содержит уплотняющий блок 3, выполненный в виде призмы с прямоугольным или трапецеидальным поперечным сечением из адгезионно соединенных между собой частиц прирабатываемого порошкового материала и закрепленный внутри металлического коробчатого корпуса 2, открытого с рабочей поверхности 7 уплотняющего блока 3. Уплотняющий блок 3 снабжен по боковым поверхностям боковыми опорными выступами 5 контактирующими с боковыми стенками коробчатого корпуса 2 и обеспечивающими равномерное распределение припоя 8 в зазоре между уплотняющим блоком 3 и корпусом уплотняющего блока 2. Металлический коробчатый корпус 2 выполнен открытым с рабочей стороны 7 уплотняющего блока 3 и имеет выступающие над поверхностью уплотняющего блока 3 боковые стенки 4, для создания дополнительного уплотнения составного сегмента 1. Металлический коробчатый корпус 2 выполнен с соответствующими размерам и форме уплотняющему блоку 3 трапецеидальным или прямоугольным поперечным сечением, обеспечивающим закрепление уплотняющего блока 3 внутри металлического коробчатого корпуса 2 за счет паяного соединения 8. Уплотняющий блок 3 (фиг.2) может быть выполнен снабженным с каждой стороны по одному боковому опорному выступу 5, симметрично расположенных друг к другу относительно радиальной оси сегмента 9, причем уплотняющий блок 3 может иметь следующие размеры, мм: длина - 50 мм, ширина основания - 11,7 мм, ширина рабочей части,- 11,5 мм, ширина средней части с боковыми выступами - 12,6 мм, высота - 6 мм, радиус кривизна блока по основанию - 843 мм, радиус окружности сегмента бокового выступа - 2 мм, высота бокового выступа - 0,5 мм, расстояние от края выступа до поверхности рабочей части блока - 1 мм, причем продольная ось сегмента параллельна продольной оси блока (фиг.2). Или (фиг.3) уплотняющий блок 3 может быть выполнен снабженным с каждой стороны по два бокового опорного выступа 5, попарно симметрично расположенных друг к другу относительно радиальной оси сегмента 9, причем уплотняющий блок 3, как вариант, может быть выполнен следующими размерами, мм: длина - 50 мм, ширина основания - 11,7 мм, ширина рабочей части, - 11,5 мм, ширина средней части с боковыми выступами - 12,6 мм, высота - 6 мм, радиус кривизна блока по основанию - 843 мм, радиус окружности сегмента бокового выступа - 0,5 мм, высота бокового выступа - 0,5 мм, расстояние от края выступа до основания блока - 1 мм, шаг расположения выступов - 2,5 мм, причем продольная ось сегмента параллельна продольной оси блока 10. Уплотняющий блок 3 закрепляется (фиг.4) внутри металлического коробчатого корпуса 2 паяным соединением 6, при этом боковые опорные выступы 5, обеспечивают заданный зазор для осуществления гарантированного качества паяного соединения 6 (фиг.5).

Корпус 2 уплотняющих блоков 3, может быть выполнен либо из легированной коррозионностойкой пластичной стали или меди или сплава на основе меди.. Уплотняющие блоки 3, присоединяются к корпусам 2 путем пайки. Корпус 2 имеет прямоугольную или трапецеидальную в поперечном сечении внешнюю и внутреннюю формы и небольшую площадь поперечного сечения. Совокупность малой площади поперечного сечения и изготовления из пластичной стали позволяет деформировать сегменты 1 в холодном состоянии. Корпус 2 имеет дополнительные уплотняющие гребни 4 (выступающие над поверхностью уплотняющего блока боковые стенки), выполненные заодно с корпусом 2. Для осуществления монтажа составной сегмент уплотнения 1 вставляется в кольцевой паз со стороны продольного горизонтального разъема статора турбины. Между корпусом уплотняющего блока 3 и кольцевым пазом имеется минимальный зазор, позволяющий при механическом воздействии на корпус уплотняющего блока 3 перемещать его вдоль паза.

Пример 1. В качестве материалов для получения уплотняющего блока и корпуса уплотняющего блока использовался металлический порошок следующих составов: 1) [Cr - 9,0%, Мо - 0,6%, Fe - остальное] - неудовлетворительный результат (Н.Р.); 2) [Cr - 10,0%, Мо - от 0,8%, Fe - остальное] - удовлетворительный результат (У.Р.); 3) [Cr - 14,3%, Мо - 2,6%, Fe - остальное] - (У.Р.); 4) [Cr - 18,0%, Мо - 3,7%, Fe - остальное] -(У.Р.); 5) [Cr - 8,0%, Мо - 0,7%, Ti - остальное] - (Н.Р.); 6) [Cr - 10,0%, Мо - от 0,8%, Ti - остальное] - (У.Р.); 7) [Cr - 14,3%, Мо - 2,6%, Ti - остальное] - (У.Р.); 8) [Cr - 18,0%, Мо - 3,7%, Ti - остальное] - (У.Р.); 9) [Cr - 9,0%, Мо - 0,7%, Cu - остальное] - (Н.Р.); 10) [Cr - 10,0%, Мо - от 0,8%, Cu - остальное] - (У.Р.); 11) [Cr - 15,2%, Мо - 2,4%, Cu - остальное] - (У.Р.); 12) [Cr - 18,0%, Мо - 3,7%, Cu - остальное] - (У.Р.); 13) [Cr - от 16%; Al - 2,5%; Y - от 0,1%; Ni - остальное] - (Н.Р.); 14) [Cr - от 18%; Al - 3%; Y - 0,2%; Ni - остальное] - (У.P.); 15) [Cr - 34%; Al - 16%; Y - 0,7%; Ni - остальное] - (У.P.); 16) [Cr -16%; Al - от 2%; Y - 0,1%; Co - 14%; Ni - остальное] - (H.P.); 17) Cr - 18%; Al - 3%; Y - 0,2%; Co - 16%; Ni - остальное] - (У.Р.); 18) Cr - 34%; Al - 16%; Y - 0,7%; Co 30%; Ni - остальное] - (У.P.).

Размеры частиц составляли величины: 10 мкм; 30 мкм; 63 мкм; 100 мкм; 160 мкм; 180 мкм. Наилучшие результаты при содержании фракций порошка размерами: менее 40 мкм - от 30% до 40%, от 40 мкм до 70 мкм - 40% до 50%, от 70 мкм до 140 мкм - 10% до 20%, более 140 мкм - остальное. Механическая смесь из металлического порошка состава, в вес.%: Cr - от 10,0 до 18,0%, Мо - от 0,8 до 3,7%, Fe или Ti или Cu или их комбинации - остальное или из сплава состава, в вес.%: Cr - от 18% до 34%; Al - от 3% до 16%; Y - от 0,2% до 0,7%; Ni - остальное или из сплава состава, в вес.%: Cr - от 18% до 34%; Al - от 3% до 16%; Y - от 0, 2% до 0,7%; Со - от 16% до 30%; Ni - остальное, содержала гексагональный нитрид бора (BN) размерами частиц порошка менее 1 мкм в количестве: 0,5% - (Н.Р.);; 1,0% - (У.Р.); 1,5% - (У.Р.) - (Н.Р.) и фторид кальция - CaF2, с размерами частиц порошка от 1 мкм до 25 мкм, в количестве от общего объема смеси: 5% - (Н.Р.); 6,0% - (У.Р.); 8,0% - (У.Р.); 9% - (Н.Р.);, Кроме того, были использованы порошковые материалы вышеуказанных составов с дополнительными добавками следующих компонентов: 1) BaSO4: 0,4%; 1,2%; 3%. 2) углерод: 0,4%; 0,8%; 2,1%; 3%. 3) Са: 0,01%; 0,2%.

Пример 2. В качестве материалов для получения уплотняющего блока и корпуса уплотняющего блока использовался металлический порошок следующих составов: 1) [Cr - 11,0%, Мо - 0,6%, Fe - остальное] - (Н.Р.); 2) [Cr - 12,0%, Мо - от 1,0%, Fe - остальное] - (У.Р.); 3) [Cr - 14,0%, Мо - 3,0%, Fe - остальное] - (У.Р.); 4) [Cr - 15,0%, Мо - 3,7%, Fe - остальное] - (Н.Р.).

Размеры частиц составляли величины: 10 мкм; 30 мкм; 63 мкм; 100 мкм; 160 мкм; 180 мкм. Наилучшие результаты при содержании фракций порошка размерами: менее 40 мкм - от 30% до 40%, от 40 мкм до 70 мкм - 40% до 50%, от 70 мкм до 160 мкм - 10% до 20%, более 160 мкм - остальное - (У.Р.); при содержании частиц 180 мкм и больше - (Н.Р.). Гексагональный нитрид бора (BN) размерами частиц порошка менее 1 мкм в количестве вес.% от общего объема материала уплотнения: 4,0% - (Н.Р.); 5,0% - (У.Р.); 6,5% - (У.Р.); 7,0% - (Н.Р.). Стеарат цинка - Zn(C18H35O2)2 с размерами частиц порошка от 1 мкм до 75 мкм - (У.Р.); более 85 мкм - (Н.Р.); в вес.% от общего объема материала уплотнения: 0,7% (Н.Р.); 0,9% - (У.Р.); 1,1% - (У.Р.); 1,3% (Н.Р.).

Уплотняющие блоки были выполнены по следующим вариантам: по одному - (У.Р.), по два - (У.Р.), по три - (У.Р.), по четыре - (Н.Р.) бокового опорного выступа с каждой стороны, сегмента. Уплотняющие блоки выполнены размерами, мм: длина - 50 мм - (У.Р.),, ширина основания - 11,7 мм - (У.Р.),, ширина рабочей части, - 11,5 мм - (У.Р.),, ширина средней части с боковыми выступами - 12,6 мм - (У.Р.),, высота - 6 мм - (У.Р.), радиус кривизна блока по основанию - 843 мм - (У.Р.),, радиус окружности сегмента бокового выступа: 0,5 мм - (У.Р.); 1 мм - (У.Р.); 2 мм - (У.Р.); 3 мм - (Н.Р.); высота бокового выступа: 0,3 мм - (Н.Р.); 0,5 мм - (У.Р.); 1,0 мм - (Н.Р.); расстояние от края выступа до поверхности рабочей части блока: 0,5 мм - (У.Р.); 1 мм - (У.Р.); 2,0 мм - (У.Р.); продольная ось сегмента параллельна продольной оси блока.

Размеры уплотнительного блока составляли: длина: 20 мм; 50 мм; 100 мм; 200 мм; 500 мм; 700 мм; ширина: 10 мм; 20 мм; 40 мм; 70 мм; высота: 5 мм; 10 мм; 30 мм; 50 мм; радиус кривизны по длине элемента, по его притираемой поверхности: 200 мм; 400 мм; 1200 мм; 2300 мм; 2500 мм.

Уплотнительные блоки был изготовлены спеканием в вакууме и в среде смеси аргона и аммиака при температуре от 1050 до 1150°С. Спекание заготовок, полученных методом холодного прессования, проводили при температуре 1200±100°С в электропечи ОКБ 8086 в среде смеси газов аргона и аммиака, при содержании аргона в смеси в объемных процентах от общей смеси аргона с аммиаком: 5% - (Н.Р.); 6% - (У.Р.); 12% - (У.Р.); 25% - (У.Р.); 50% - (У.Р.); 55% - (Н.Р.). Давление прессования при изготовлении заготовок уплотнительного блока было равным: 40 кгс/мм; 50 кгс/мм; 60 кгс/мм; 70 кгс/мм. Механические свойства полученного материала представлены в таблице

Таблица
№ п/п Механические, эксплуатационные и физические свойства Значение
1 Твердость 60НВ - 120НВ
2 Предел прочности (σв) при температуре 600oС 5-11 кгс/мм2
3 Коэффициент линейного расширения (α), при 100-600oС Диапазон от 1,1 до 1,4·10-5
4 Ударная вязкость (КС) 0,1-0,35 кгс·м/см2
5 Механическая обрабатываемость и изнашиваемость Мех. обрабатываемость хорошая, режущий инструмент не разогревается, хорошо срабатываемый при 2 об/мин и при 300 об/мин

Результаты испытаний образцов уплотнительного составного сегмента в условиях эксплуатации показали сочетание высоких прочностных характеристик уплотнений, с хорошей прирабатываемостью и минимальным износом кольцевых гребешков на бандаже лопаток.

Таким образом, составной сегмент прирабатываемого уплотнения турбины, включающий следующие признаки: составной сегмент прирабатываемого уплотнения турбины, содержащий уплотняющий блок, выполненный в виде призмы из адгезионно соединенных между собой частиц прирабатываемого порошкового материала; составной сегмент закрепленный внутри металлического коробчатого корпуса, открытого с рабочей стороны уплотняющего блока и имеющего выступающие над поверхностью уплотняющего блока боковые стенки; уплотняющий блок закреплен внутри металлического коробчатого корпуса паяным соединением; уплотняющий блок выполнен в виде призмы с трапециидальным или прямоугольным поперечным сечением с боковыми опорными выступами, контактирующими с боковыми стенками коробчатого корпуса и обеспечивающими равномерное распределение припоя в зазоре между уплотняющим блоком и корпусом уплотняющего блока; боковые опорные выступы выполнены монолитно с материалом уплотняющего блока, в виде, по крайней мере одной сплошной полосы с каждой его стороны, с сечением в виде кругового сегмента и ориентированы вдоль продольной оси уплотняющего блока; уплотняющий блок имеет с каждой стороны по одному боковому опорному выступу, симметрично расположенных друг к другу относительно радиальной оси сегмента; уплотняющий блок выполнен размерами, мм: длина - 50 мм, ширина основания - 11,7 мм, ширина рабочей части, - 11,5 мм, ширина средней части с боковыми выступами - 12,6 мм, высота - 6 мм, радиус кривизна блока по основанию - 843 мм, радиус окружности сегмента бокового выступа - 2 мм, высота бокового выступа - 0,5 мм, расстояние от края выступа до поверхности рабочей части блока - 1 мм, причем продольная ось сегмента параллельна продольной оси блока; уплотняющий блок имеет с каждой стороны по два бокового опорного выступа, попарно симметрично расположенных друг к другу относительно радиальной оси сегмента; уплотняющий блок выполнен размерами, мм: длина - 50 мм, ширина основания - 11,7 мм, ширина рабочей части, - 11,5 мм, ширина средней части с боковыми выступами - 12,6 мм, высота - 6 мм, радиус кривизна блока по основанию - 843 мм, радиус окружности сегмента бокового выступа - 0,5 мм, высота бокового выступа - 0,5 мм, расстояние от края выступа до основания блока - 1 мм, шаг расположения выступов - 2,5 мм, причем продольная ось сегмента параллельна продольной оси блока; уплотняющий блок имеет с каждой стороны по три бокового опорного выступа, симметрично расположенных друг к другу относительно радиальной оси сегмента; уплотняющий блок выполнен размерами, мм: длина - 50 мм, ширина основания - 11,7 мм, ширина рабочей части, - 11,5 мм, ширина средней части с боковыми выступами - 12,6 мм, высота - 6 мм, радиус кривизна блока по основанию - 843 мм, радиус окружности сегмента бокового выступа - 0,5 мм, высота бокового выступа - 0,5 мм, расстояние от края выступа до основания блока - 1 мм, шаг расположения выступов - 1,5 мм, причем продольная ось сегмента параллельна продольной оси блока; в качестве прирабатываемого порошкового материала используют материал состава, в вес.%: Cr - от 10,0 до 18,0%, Мо - от 0,8 до 3,7%, Fe или Ti или Cu или их комбинации - остальное или материал состава, в вес.%: Cr - от 18% до 34%; Al - от 3% до 16%; Y - от 0, 2% до 0,7% ; Ni - остальное или материал состава, в вес.% : Cr - от 18% до 34%; Al - от 3% до 16%; Y - от 0, 2% до 0,7%; Со - от 16% до 30%; Ni - остальное, с размерами частиц порошка от 15 мкм до 180 мкм в механической смеси с порошковым, с размерами частиц порошка менее 1 мкм, гексагональным нитридом бора - BN в количестве от 1,0% до 1,5% от общего объема смеси и фторидом кальция - CaF2, с размерами частиц порошка от 1 мкм до 25 мкм, в количестве от 6,0% до 8,0% от общего объема материала уплотнения; прирабатываемый порошковый материал дополнительно в качестве добавки содержит от 0,4% до 3% BaSO4 в виде порошка, размерами частиц от 1 мкм до 25 мкм; в качестве прирабатываемого порошкового материала используют материал состава, в вес.%: Cr - от 12,0 до 14,0%, Мо - от 1,0 до 3,0%, Fe - остальное, с размерами частиц порошка от 10 мкм до 160 мкм в механической смеси с порошковым, с размерами частиц порошка менее 1 мкм, гексагональным нитридом бора - BN в количестве в вес.%: от 5,0% до 6,5% от общего объема смеси и стеарат цинка - Zn(C18H35O2)2 с размерами частиц порошка от 1 мкм до 75 мкм, в вес.%: 0,9% до 1,1% от общего объема материала уплотнения; уплотняющий блок выполнен холодным прессованием с последующим спеканием в вакууме или в защитной среде при температуре от 1050°C до 1150°C, причем в качестве защитной среды использована газовая смесь, состава, в объем.%: аргон от 6% до 50%, аммиак - остальное; размеры уплотнительного блока составляют: длина: 20 мм; 50 мм; 100 мм; 200 мм; 500 мм; 700 мм; ширина: 10 мм; 20 мм; 40 мм; 70 мм; высота: 5 мм; 10 мм; 30 мм; 50 мм; радиус кривизны по длине элемента, по его рабочей притираемой поверхности: 200 мм; 400 мм; 1200 мм; 2300 мм; 2500 мм; корпус уплотняющего блока выполнен из пластичной легированной стали или меди или сплавов на основе меди, позволяет достичь поставленного в изобретении технического результата - одновременного обеспечения высокой прирабатываемости, механической прочности и износостойкости уплотнения, а также снижения трудоемкости его изготовления.


СОСТАВНОЙ СЕГМЕНТ ПРИРАБАТЫВАЕМОГО УПЛОТНЕНИЯ ТУРБИНЫ
СОСТАВНОЙ СЕГМЕНТ ПРИРАБАТЫВАЕМОГО УПЛОТНЕНИЯ ТУРБИНЫ
СОСТАВНОЙ СЕГМЕНТ ПРИРАБАТЫВАЕМОГО УПЛОТНЕНИЯ ТУРБИНЫ
СОСТАВНОЙ СЕГМЕНТ ПРИРАБАТЫВАЕМОГО УПЛОТНЕНИЯ ТУРБИНЫ
СОСТАВНОЙ СЕГМЕНТ ПРИРАБАТЫВАЕМОГО УПЛОТНЕНИЯ ТУРБИНЫ
Источник поступления информации: Роспатент

Показаны записи 61-70 из 83.
19.01.2018
№218.016.082f

Способ нанесения многослойного ионно-плазменного покрытия на поверхность гравюры штампа из жаропрочной стали

Изобретение относится к способу нанесения многослойного ионно-плазменного покрытия на поверхность гравюры штампа из жаропрочной стали и может быть использовано при изготовлении лопаток газотурбинных двигателей горячей штамповкой. Способ включает помещение штампа в вакуумную камеру, создание...
Тип: Изобретение
Номер охранного документа: 0002631572
Дата охранного документа: 25.09.2017
20.01.2018
№218.016.0fe9

Способ изготовления пустотелой лопатки турбомашины

Изобретение относится к способам изготовления пустотелых лопаток турбомашин. Способ получения пустотелой лопатки турбомашины, заключающийся в формировании элементов спинки и корыта лопатки путем придания пластинам заданного профиля и размеров, их фиксации, обеспечивающей заданный профиль и...
Тип: Изобретение
Номер охранного документа: 0002633564
Дата охранного документа: 13.10.2017
20.01.2018
№218.016.12f4

Способ ионного азотирования режущего инструмента из легированной стали

Изобретение относится к металлургии, а именно к способам химико-термической обработки деталей из легированных инструментальных сталей, и может быть использовано в машиностроении для поверхностного упрочнения режущего инструмента. Способ ионного азотирования режущего инструмента из легированной...
Тип: Изобретение
Номер охранного документа: 0002634400
Дата охранного документа: 26.10.2017
20.01.2018
№218.016.1d36

Способ изготовления полой лопатки газотурбинного двигателя

Изобретение относится к области обработки металлов давлением и может быть использовано для изготовления полой лопатки вентилятора газотурбинного двигателя из титанового сплава. Используют трехслойные заготовки обшивок и/или заполнителя, причем внешние слои заготовок выполняют из титанового...
Тип: Изобретение
Номер охранного документа: 0002640692
Дата охранного документа: 11.01.2018
20.01.2018
№218.016.1d66

Способ формирования нанокристаллического поверхностного слоя на деталях из алюминиевых сплавов (варианты)

Изобретение относится к способу формирования нанокристаллического поверхностного слоя на деталях из алюминиевых сплавов (варианты) и может быть использовано для обработки лопаток газотурбинных двигателей. Формируют аморфный поверхностный слой путем бомбардировки его ионами одного из следующих...
Тип: Изобретение
Номер охранного документа: 0002640687
Дата охранного документа: 11.01.2018
10.05.2018
№218.016.4182

Способ обработки лопаток турбомашин из железохромоникелевых сплавов

Изобретение относится к технологии электролитно-плазменного полирования поверхности деталей. Способ включает полирование поверхности пера лопатки электролитно-плазменным методом, включающим погружение лопатки в электролит, формирование вокруг обрабатываемой поверхности лопатки парогазовой...
Тип: Изобретение
Номер охранного документа: 0002649128
Дата охранного документа: 29.03.2018
01.03.2019
№219.016.c97f

Лабиринтное уплотнение

Изобретение относится к лабиринтным уплотнениям вала турбин. Кольцевой гребень ротора турбины установлен с осевыми зазорами между кольцевыми гребнями статора. Мелкоячеистые соты установлены в статоре между его кольцевыми гребнями с кольцевым радиальным зазором относительно кольцевого гребня...
Тип: Изобретение
Номер охранного документа: 0002244182
Дата охранного документа: 10.01.2005
01.03.2019
№219.016.cd6d

Лабиринтное надбандажное уплотнение для паровой турбины

Изобретение относится к лабиринтному надбандажному уплотнению для паровой турбины, содержащему уплотнительные кольцевые гребешки ротора турбины, сегменты уплотнения, включающие в себя мелкоячеистые сотовые блоки, припаянные к корпусам сотовых блоков между уплотняющих статорных гребней,...
Тип: Изобретение
Номер охранного документа: 0002362887
Дата охранного документа: 27.07.2009
01.03.2019
№219.016.d024

Вставка сотового надбандажного уплотнения паровой турбины и способ установки вставок сотового надбандажного уплотнения

Вставка сотового надбандажного уплотнения паровой турбины состоит из корпуса, который имеет в продольном сечении плоскую (прямую) форму, а в поперечном сечении - V-образную форму. Боковые поверхности корпуса имеют экономически обоснованную точность изготовления. Заодно с корпусом выполнены...
Тип: Изобретение
Номер охранного документа: 0002447294
Дата охранного документа: 10.04.2012
08.03.2019
№219.016.d59d

Способ электролитно-плазменного удаления покрытий из нитридов титана или нитридов соединений титана с металлами

Изобретение относится к технологии электролитно-плазменного удаления защитных покрытий из нитрида титана с поверхности деталей из титановых сплавов и может быть использовано при восстановлении деталей турбомашин, в частности рабочих и направляющих лопаток паровых турбин, лопаток...
Тип: Изобретение
Номер охранного документа: 0002467098
Дата охранного документа: 20.11.2012
Показаны записи 61-70 из 148.
10.05.2018
№218.016.4182

Способ обработки лопаток турбомашин из железохромоникелевых сплавов

Изобретение относится к технологии электролитно-плазменного полирования поверхности деталей. Способ включает полирование поверхности пера лопатки электролитно-плазменным методом, включающим погружение лопатки в электролит, формирование вокруг обрабатываемой поверхности лопатки парогазовой...
Тип: Изобретение
Номер охранного документа: 0002649128
Дата охранного документа: 29.03.2018
10.05.2018
№218.016.44c8

Способ упрочняющей обработки деталей из титановых сплавов с ультрамелкозернистой структурой

Изобретение относится к способу упрочняющей обработки деталей из титановых сплавов с ультрамелкозернистой структурой и может быть использовано в авиационном двигателестроении и энергетическом турбостроении для защитно-упрочняющей обработки пера рабочих лопаток компрессора ГТД или паровой...
Тип: Изобретение
Номер охранного документа: 0002649928
Дата охранного документа: 05.04.2018
10.05.2018
№218.016.4b27

Способ упрочнения деталей из жаропрочных сплавов

Изобретение относится к машиностроению и может быть использовано для упрочнения деталей из жаропрочных сплавов. Упрочнение деталей проводят дробеструйной обработкой шариками и микрошариками твердостью HRC 60-64, при давлении 0,6 МПа. Обработку проводят в несколько этапов: на первом этапе...
Тип: Изобретение
Номер охранного документа: 0002651847
Дата охранного документа: 24.04.2018
09.06.2018
№218.016.5aa2

Способ защиты блиска газотурбинного двигателя из титановых сплавов от пылеабразивной эрозии

Изобретение относится к способу защиты блиска газотурбинного двигателя из титановых сплавов от пылеабразивной эрозии. Осуществляют упрочняющую обработку микрошариками, полирование кромок лопаток блиска, ионно-плазменную модификацию материала поверхностного слоя лопаток блиска с последующим...
Тип: Изобретение
Номер охранного документа: 0002655563
Дата охранного документа: 28.05.2018
03.07.2018
№218.016.69c2

Способ изготовления раскатных колец с регулярной микроструктурой

Изобретение относится к способам раскатки заготовки в виде кольца. Раскатку заготовки осуществляют роликовыми инструментами. Вначале роликовым инструментом формируют регулярный микрорельеф поверхности за счет микрорельефа на его рабочей поверхности, а затем выглаживают поверхность микрорельефа...
Тип: Изобретение
Номер охранного документа: 0002659501
Дата охранного документа: 02.07.2018
13.07.2018
№218.016.70eb

Установка для ионно-плазменного модифицирования и нанесения покрытий на моноколеса с лопатками

Изобретение относится к технике для нанесения покрытий на детали машин, а именно к вакуумной ионно-плазменной обработке поверхностей, и может быть использовано для нанесения функциональных покрытий на моноколеса турбомашин. Установка для вакуумной ионно-плазменной обработки поверхности...
Тип: Изобретение
Номер охранного документа: 0002661162
Дата охранного документа: 12.07.2018
14.07.2018
№218.016.7164

Способ получения многослойной детали из титанового сплава

Использование: изобретение относится к способу получения многослойной детали из титанового сплава. Осуществляют ионно-имплантационное модифицирование листовой детали из титанового сплава путем ионной имплантации азота, углерода или бора с энергией 30-50 кэВ, плотностью тока 35-50 мкА/см и...
Тип: Изобретение
Номер охранного документа: 0002661294
Дата охранного документа: 13.07.2018
11.10.2018
№218.016.8fe7

Способ ионно-имплантационной обработки лопаток компрессора из высоколегированных сталей и сплавов на никелевой основе

Изобретение относится к машиностроению и может быть использовано в авиационном двигателестроении и энергетическом турбостроении для упрочняющей обработки пера рабочих лопаток компрессора газотурбинного двигателя или газотурбинной установки из высоколегированных сталей или сплавов на никелевой...
Тип: Изобретение
Номер охранного документа: 0002669136
Дата охранного документа: 08.10.2018
16.01.2019
№219.016.b07e

Способ нанесения защитного многослойного покрытия на лопатки блиска газотурбинного двигателя из титанового сплава от пылеабразивной эрозии

Изобретение относится к машиностроению и может быть использовано в авиационном двигателестроении и энергетическом турбостроении для защиты пера рабочих лопаток моноколеса компрессора ГТД из титановых сплавов от пылеабразивной эрозии. Способ нанесения защитного многослойного покрытия на лопатки...
Тип: Изобретение
Номер охранного документа: 0002677041
Дата охранного документа: 15.01.2019
24.01.2019
№219.016.b2d7

Способ химико-термической обработки детали из легированной стали

Изобретение относится к металлургии, в частности к способам химико-термической обработки деталей из легированных сталей, и может быть использовано в машиностроении для поверхностного упрочнения деталей машин, в том числе деталей, работающих в парах трения, режущего инструмента и штамповой...
Тип: Изобретение
Номер охранного документа: 0002677908
Дата охранного документа: 22.01.2019
+ добавить свой РИД