×
20.11.2013
216.012.8199

Результат интеллектуальной деятельности: ЦЕОЛИТСОДЕРЖАЩИЙ КАТАЛИЗАТОР, СПОСОБ ЕГО ПОЛУЧЕНИЯ И СПОСОБ ПЕРЕРАБОТКИ ПРЯМОГОННОГО БЕНЗИНА В ВЫСОКООКТАНОВЫЙ КОМПОНЕНТ БЕНЗИНА С ПОНИЖЕННЫМ СОДЕРЖАНИЕМ БЕНЗОЛА

Вид РИД

Изобретение

Аннотация: Изобретение относится к нефтеперерабатывающей и нефтехимической промышленности, в частности к способам получения катализаторов переработки прямогонного бензина в высокооктановый компонент бензина с пониженным содержанием бензола. Описан катализатор, содержащий, мас.%: высококремнеземный цеолит типа H-ZSM-5 с силикатным модулем SiO/AlO=30-50 - 94,0-99,0 и гетерополисоединения на основе вольфрамовисмутата или вольфрамофосфата кобальта - 1,0-6,0, сформированный в процессе термообработки. Описан способ получения катализатора механохимической обработкой Н-формы высококремнеземного цеолита типа H-ZSM-5 с силикатным модулем SiO/AlO=30÷50 в вибромельнице в течение 0,1-24 ч, формовкой катализаторной массы в гранулы, сушкой и пропиткой солянокислыми растворами соответствующих гетерополисоединений вольфрамовисмутата кобальта или вольфрамофосфата кобальта с последующей сушкой и катализатор сформирован в процессе термообработки при 540÷550°C в течение 0,1÷12 ч. Описан способ переработки прямогонного бензина в высокооктановый компонент бензина в присутствии описанного выше катализатора при 350÷425°C, объемной скорости 1,0÷2,0 ч и давлении 0,1÷1,0 МПа. Технический эффект - получение активного и селективного катализатора для переработки прямогонного бензина в высокооктановый компонент бензина с пониженным содержанием бензола не более 2,0 мас.%. 3 н.п. ф-лы, 1 табл., 6 пр.

Изобретение относится к нефтеперерабатывающей и нефтехимической промышленности, в частности, к способам получения катализаторов для переработки прямогонных бензинов в высокооктановый компонент бензина с пониженным содержанием бензола.

Основным промышленным процессом получения высокооктановых бензинов и ароматических углеводородов является каталитический риформинг прямогонных бензинов на модифицированных алюмоплатиновых катализаторах, который проводится при высоких температурах 450÷570°С, высоком давлении 0,1÷3,5 МПа и в среде водородсодержащего газа. Недостатками процесса каталитического риформинга прямогонных бензинов являются высокая температура и давление процесса, использование дорогостоящего Pt - содержащего катализатора, водородсодержащего газа и повышенное содержание бензола и ароматических углеводородов в продуктах реакции.

Известен способ приготовления катализатора для олигомеризации и ароматизации низкомолекулярных углеводородов C2÷C12, содержащий цеолит семейства пентасил с силикатным модулем SiO2/Al2O3=20÷80, модифицированный оксидом цинка, платиной и оксидом бора, связующее вещество - оксид алюминия (Пат. RU №2144845, B01J 29/44, C10G 35/095, 1998).

Недостатками данного катализатора являются использование дорогостоящего Pt - модификатора и не высокий выход 34,7 мас.% жидких продуктов реакции превращения ШФЛУ при 600°С.

Известен способ получения катализатора для превращения низкомолекулярных углеводородов в высокооктановый бензин или ароматические углеводороды, содержащий цеолит семейства пентасил с силикатным модулем SiO2/Al2O3=20÷80, модифицированный оксидом цинка, платиной и оксидом фосфора, связующее вещество - оксид алюминия (Пат. RU №2144846, B01J 29/44, C10G 35/095, 1998).

Недостатками данного катализатора являются использование дорогостоящего Pt - модификатора и не высокий выход 54,2 мас.% жидких продуктов реакции превращения ШФЛУ при 600°С.

Известен способ получения высокооктанового бензина с низким содержанием бензола из сырья, включающий каталитический риформинг бензинового сырья с получением катализата, выделение из катализата водородсодержащего газа и выделение из полученного нестабильного продукта риформинга высокооктанового бензина и газов стабилизации (Пат. RU №2213124, C10G 35/095, 59/02, 2002).

Затем из высокооктанового катализата выделяют бензиновую фракцию, содержащую более 5,0 мас.% бензола и алифатические углеводороды, и осуществляют ее контакт с катализатором, включающим цеолит группы пентасилов, в условиях образования ароматических углеводородов из алифатических компонентов фракции и превращения хотя бы части бензола, и полученный продукт смешивают с нестабильным продуктом риформинга.

Недостатками данного способа являются многостадийность и сложность проведения процесса получения высокооктановых бензинов.

Известен цеолитный катализатор и способ превращения прямогонной бензиновой фракции нефти в высокооктановый компонент бензина (Пат. RU №2323778, B01J 29/42, 2006). Катализатор содержит высококремнеземный цеолит с мольным отношением SiO2/Al2O3=60 с остаточным содержанием Na2O не более 0,02 мас.%, модифицированный металлами Pt, Ni, Zn или Fe, которые входят в состав катализатора в виде наноразмерных порошков и их содержание составляет не более 1,5 мас.%.

Способ превращения бензиновой фракции нефти в высокооктановый компонент бензина осуществляется путем контакта их с катализатором при 300÷400°С, атмосферном давлении и нагрузке катализатора по сырью 2,0 ч-1.

Недостатком данного способа является достаточно высокое содержание ароматических углеводородов в катализате.

Известен катализатор для превращения алифатических углеводородов C2÷C12, способ его получения и способ превращения алифатических углеводородов C2÷C12 в высокооктановый бензин и/или ароматические углеводороды (Пат. RU №2235590, B01J 29/46, 2003). Катализатор содержит железоалюмосиликат со структурой цеолита типа H-ZSM-5 с силикатным модулем SiO2/Al2O3=20÷160, SiO2/Fe2O3=30÷5000, который получают гидротермальной кристаллизацией реакционной смеси при 120-180°С в течение 1÷6 сут, содержащей источники окиси кремния, окиси алюминия, окиси щелочного металла, гексаметилендиамин и воду, с дальнейшим смешением железоалюмосиликата с соединениями модифицирующих металлов, упрочняющих добавок и связующим, с последующей механохимической обработкой, формовкой катализаторной массы, сушкой и прокалкой. В качестве модифицирующего компонента содержит по крайней мере один оксид элемента, выбранный из группы медь, цинк, галлий, лантан, молибден, рений в количестве 0,1÷10,0 мас.%.

Способ превращения алифатических углеводородов C2÷C12 в высокооктановый бензин и/или ароматические углеводороды в присутствии катализатора проводят при 300÷550°С, объемной скорости 0,5÷5,0 ч-1 и давлении 0,1÷1,5 МПа.

Недостатком данного способа является высокое содержание бензола и ароматических углеводородов в катализате.

Наиболее близким по сущности техническим решением является цеолитсодержащий катализатор, способ его получения и способ конверсии прямогонной бензиновой фракции в высокооктановый компонент бензина с низким содержанием бензола, принятый за прототип, (Пат. RU №2446882, B01J 29/40, 2010). Цеолитсодержащий катализатор содержит высококремнеземный цеолит типа H-ZSM-5 с силикатным модулем SiO2/Al2O3=30÷50, в качестве модифицирующего компонента содержит металл, по крайней мере, один из группы: медь, вольфрам, молибден, введенный в высококремнеземный цеолит в виде наноразмерных порошков металлов, в количестве 1,0÷3,0 мас.%; катализатор сформирован в процессе термообработки.

Цеолитсодержащий катализатор получают гидротермальной кристаллизацией реакционной смеси при 120-180°С в течение 1÷6 сут, содержащей источники окиси кремния, окиси алюминия, окиси щелочного металла, гексаметилендиамин и воду, с дальнейшим смешением высококремнеземного цеолита с наноразмерными порошками металлов, полученных методом электрического взрыва проволоки металла в среде инертного газа аргона, последующей механохимической обработкой, формовкой катализаторной массы, сушкой и прокалкой.

Способ конверсии прямогонной бензиновой фракции в высокооктановый компонент бензина с низким содержанием бензола в присутствии катализатора проводят при 350÷425°С, объемной скорости 1,0÷2,0 ч-1 и давлении 0,1÷1,0 МПа.

Недостатком способа, принятого за прототип, является не достаточно высокий выход высокооктанового компонента бензина в продуктах реакции.

Задача изобретения - получение активного и селективного катализатора для процесса переработки прямогонных бензинов в высокооктановый компонент бензина с пониженным содержанием бензола.

Технический результат достигается тем, что предлагаемый цеолитсодержащий катализатор для переработки прямогонных бензинов в высокооктановый компонент бензина с пониженным содержанием бензола получают механохимической обработкой Н-формы высококремнеземного цеолита типа H-ZSM-5 с силикатным модулем SiO2/Al2O3=30÷50 в вибромельнице в течение 0,1÷24 ч, формовкой катализаторной массы в гранулы, сушкой и пропиткой катализаторной массы солянокислыми растворами соответствующих гетерополисоединений вольфрамовисмутата кобальта или вольфрамофосфата кобальта, в качестве модифицирующей добавки, в количестве 1,0÷6,0 мас.%, с последующей сушкой и катализатор сформирован в процессе термообработки при 540÷550°С в течение 0,1÷12 ч.

Под действием механохимической и высокотемпературной обработок цеолита с нанесенными гетерополисоединениями вольфрамовисмутата кобальта или вольфрамофосфата кобальта происходит модифицирование высококремнеземного цеолита H-ZSM-5 активными компонентами гетерополисоединений вольфрамовисмутата кобальта или вольфрамофосфата кобальта, формирование и образование активного и селективного катализатора.

Предлагаемое изобретение иллюстрируется следующими примерами.

Пример 1 (по прототипу). К 200 г жидкого стекла (29% SiO2, 9% Na2O, 62% H2O) при перемешивании добавляют 11,8 г гексаметилендиамина (R) в 100 мл H2O, 24,15 г Al(NO3)3·9 H2O в 160 мл H2O, 1 г "затравки" высококремнеземного цеолита и приливают 0,1 н раствор NHO3. Полученную смесь загружают в автоклавы из нержавеющей стали, нагревают до 175÷180°С и выдерживают при перемешивании 2÷6 сут, а затем охлаждают. Синтезированный продукт промывают водой, сушат и прокаливают при 550÷600°С 12 ч. Для перевода в Н-форму цеолиты декатионируют обработкой 25% раствором NH4Cl (10 мл раствора на 1 г цеолита) при 90°С 2 ч, затем промывают водой, сушат при 110°С и прокаливают при 540°С 6 ч. Получают H-ZSM-5 с силикатным модулем SiO2/Al2O3=30, степень кристалличности продукта 96%.

Затем 10 г H-ZSM-5 с силикатным модулем SiO2/Al2O3=30 подвергают механохимической обработке в вибромельнице в течение 8 ч, после этого катализаторную массу формуют в гранулы, сушат 2 ч при 20÷30°С, затем при 110°С 4 ч и прокаливают 8 ч при 540÷550°С.

Пример 2 (по прототипу). H-ZSM-5 с силикатным модулем SiO2/Al2O3=50 получают так же, как в примере 1, но вместо 24,15 г Al(NO3)3·9 H2O берут 14,475 г Al(NO3)3·9 H2O.

Затем 9,9 г H-ZSM-5 с силикатным модулем SiO2/Al2O3=50 смешивают с 0,1 г наноразмерным порошком W и подвергают механохимической обработке в вибромельнице в течение 4 ч. Полученную катализаторную массу формуют в гранулы, сушат 2 ч при 110°С и прокаливают 8 ч при 540÷550°С.

Полученный цеолитсодержащий катализатор имеет состав, мас.%:

H-ZSM-5 (SiO2/Al2O3=50) - 99,0;
W - 1,0.

Пример 3. Так же, как в примере 2, но вместо 9,9 г H-ZSM-5 берут 3,96 г H-ZSM-5 с силикатным модулем SiO2/Al2O3=50 и пропитывают гранулы цеолита солянокислым раствором, в котором растворены 0,04 г гетерополисоединения (ГПС) кристаллогидрата вольфрамовисмутата кобальта [Co[H3BiW12O40]·13H2O]·12H2O по влагоемкости цеолита. Пропитку цеолита проводят при 40÷50°С и перемешивании 3 ч, после чего цеолит сушат при 110°С 6 ч и прокаливают 8 ч при 540÷550°С.

Полученный цеолитсодержащий катализатор имеет состав, мас.%:

H-ZSM-5 (SiO2/Al2O3=50) - 99,0;
ГПС кристаллогидрат вольфрамовисмутата кобальта - 1,0.

Пример 4. Так же, как в примере 3, но вместо 3,96 г H-ZSM-5 берут 3,76 г Н-ZSM-5 с силикатным модулем SiO2/Al2O3=50 и пропитывают гранулы цеолита солянокислым раствором, в котором растворены 0,24 г гетерополисоединения (ГПС) кристаллогидрата вольфрамовисмутата кобальта [Co[H3BiW12O40]·13H2O]·12H2O по влагоемкости цеолита. Пропитку цеолита проводят при 40÷50°С и перемешивании 2 ч, после чего цеолит сушат при 110°С 6 ч и прокаливают при 540÷550°С 8 ч.

Полученный цеолитсодержащий катализатор имеет состав, мас.%:

H-ZSM-5 (SiO2/Al2O3=50) - 94,0;
ГПС кристаллогидрат вольфрамовисмутата кобальта - 6,0.

Пример 5. Так же, как в примере 2, но вместо 9,9 г H-ZSM-5 берут 3,96 г H-ZSM-5 с силикатным модулем SiO2/Al2O3=50 и пропитывают гранулы цеолита солянокислым раствором, в котором растворены 0,04 г гетерополисоединения (ГПС) кристаллогидрата вольфрамофосфата кобальта [Co3[PW12O40]·14H2O по влагоемкости цеолита. Пропитку цеолита проводят при 40÷50°С и перемешивании 3 ч, после чего цеолит сушат при 110°С 4 ч и прокаливают при 540÷550°С 8 ч.

Полученный цеолитсодержащий катализатор имеет состав, мас.%:

H-ZSM-5 (SiO2/Al2O3=50) - 99,0;
ГПС кристаллогидрат вольфрамофосфата кобальта - 1,0.

Пример 6. Так же, как в примере 5, но вместо 3,96 г H-ZSM-5 берут 3,76 г Н-ZSM-5 с силикатным модулем SiO2/Al2O3=50 и пропитывают гранулы цеолита солянокислым раствором, в котором растворены 0,24 г гетерополисоединения (ГПС) кристаллогидрата вольфрамофосфата кобальта [Со3[PW12O40]·14H2O по влагоемкости цеолита. Пропитку цеолита проводят при 40÷50°С и перемешивании 2 ч, после чего цеолит сушат при 100°С 6 ч и прокаливают 8 ч при 540÷550°С.

Полученный цеолитсодержащий катализатор имеет состав, мас.%:

H-ZSM-5 (SiO2/Al2O3=50) - 94,0;
ГПС кристаллогидрат вольфрамофосфата кобальта - 6,0.

Полученные катализаторы испытывают в процессе переработки алифатических углеводородов (прямогонной бензиновой фракции 40÷185°С) в высокооктановый компонент бензина на автоматизированной установке проточного типа со стационарным слоем катализатора при температурах 350÷425°С, объемной скорости подачи сырья 1,0÷2,0 ч-1 и давлении 0,1÷1,0 Мпа.

В процессе переработки смеси алифатических углеводородов (прямогонной бензиновой фракции 40÷185°С) с повышением температуры реакции от 350 до 425°С на высококремнеземном цеолите типа H-ZSM-5 протекают реакции крекинга, дегидрирования, изомеризации, дегидроциклизации и ароматизации парафиновых углеводородов с образованием преимущественно на первых стадиях процесса олефиновых углеводородов, которые в дальнейшем превращаются в изопарафиновые и алкилароматические углеводороды.

Введение в высококремнеземный цеолит типа H-ZSM-5 модифицирующих добавок в виде гетерополисоединений вольфрамовисмутата или вольфрамофосфата кобальта в количестве 1,0÷6,0 мас.% позволяет значительно повысить выход высокооктанового компонента бензина, выход алкилароматических углеводородов и понизить выход бензола до 1,0÷2,0 мас.% из прямогонных бензинов, по сравнению с не модифицированным цеолитом.

Приведенные в таблице примеры уточняют изобретение, не ограничивая его.

Как видно из примеров катализаторов 1÷6 таблицы катализаторы 3÷6 имеют более высокий выход (65÷79%) жидких продуктов реакции - высокооктанового бензина из прямогонных бензинов, чем катализаторы по прототипу (примеры 1 и 2).

Таким образом, предлагаемые катализаторы для превращения алифатических углеводородов прямогонной бензинов в высокооктановый компонент бензина и ароматические углеводороды на основе высококремнеземного цеолита типа H-ZSM-5 с силикатным модулем SiO2/Al2O3=30-50 и модифицированные гетерополисоединениями вольфрамовисмутата или вольфрамофосфата кобальта в количестве 1,0÷6,0 мас.% позволяют увеличить выход высокооктанового бензина до 65÷79% и выход алкилароматических углеводородов из алифатических углеводородов прямогонной бензиновой фракции 40÷185°С и понизить содержание бензола в катализате до 1,0÷2,0 мас.%.

Предварительная механохимическая активация высококремнеземного цеолита типа H-ZSM-5, введение в цеолит гетерополисоединений вольфрамовисмутата или вольфрамофосфата кобальта в количестве 1,0÷6,0 мас.% и последующая сушка и прокалка при 540÷550°С приводит к формированию активных компонентов из гетерополисоединений вольфрамовисмутата или вольфрамофосфата кобальта на поверхности цеолита и позволяет получить высокодисперсный, активный и селективный катализатор.

Введение в цеолит гетерополисоединений вольфрамовисмутата или вольфрамофосфата кобальта в количестве 1,0÷6,0 мас.% позволяет увеличить выход высокооктанового бензина до 65÷79% и выход алкилароматических углеводородов из алифатических углеводородов прямогонной бензиновой фракции.

Способ получения высокооктанового компонента бензина с пониженным содержанием бензола из прямогонного бензина в присутствии катализаторов на основе высококремнеземного цеолита типа H-ZSM-5 с силикатным модулем SiO2/Al2O3=30÷50 и модифицированный гетерополисоединениями вольфрамовисмутата или вольфрамофосфата кобальта в количестве 1,0÷6,0 мас.%, позволяют увеличить выход высокооктанового бензина и выход алкилароматических углеводородов из алифатических углеводородов прямогонной бензиновой фракции 40÷185°С, чем в присутствии катализатора по прототипу (пример 1-2).

Таблица
Переработка прямогонного бензина на цеолитсодержащих катализаторах
Пример катализатора, № Тр, °С Vоб, ч-1 Выход продуктов, мас.% Расчетное октановое число, ИМ
газовая фаза жидкая фаза бензол арены
1 (по прототипу пат. RU №2446882) 350 2,0 34,9 65,1 1,2 21,8 92,3
375 2,0 36,8 63,2 1,5 23,4 94,7
400 2,0 42,9 57,1 2,8 26,7 95,5
425 2,0 45,1 54,9 3,6 31,5 96,5
2 (по прототипу пат. RU №2446882) 350 2,0 32,5 67,5 1,3 21,6 92,1
375 2,0 41,2 58,8 1,8 27,6 94,3
400 2,0 46,6 53,4 2,0 31,9 96,0
425 2,0 49,5 50,5 2,0 33,8 96,6
3 350 2,0 28,0 72,0 1,2 25,4 95,5
375 2,0 34,1 65,9 1,9 30,6 97,5
400 2,0 39,3 60,7 2,6 34,1 99,1
425 2,0 45,6 54,4 3,5 36,6 99,9
4 350 2,0 26,7 73,3 1,1 25,0 94,7
350 1,0 28,9 71,1 1,4 27,6 95,3
375 2,0 33,4 66,6 1,9 30,8 97,5
400 2,0 36,9 63,1 2,4 32,4 98,3
425 2,0 38,8 61,2 2,9 35,2 98,8
5 350 2,0 20,6 79,4 0,8 21,1 92,1
350 1,0 23,2 76,8 1,0 23,8 92,9
375 2,0 25,4 74,6 1,3 25,3 93,6
400 2,0 29,6 70,4 1,7 27,6 95,1
425 2,0 33,9 66,1 2,1 29,6 96,4
6 350 2,0 24,2 75,8 1,0 23,8 94,4
375 2,0 28,4 71,6 1,4 26,2 95,4
400 2,0 31,5 68,5 1,8 29,3 95,8
425 2,0 34,9 65,1 2,1 31,1 97,0

Источник поступления информации: Роспатент

Показаны записи 1-2 из 2.
27.09.2013
№216.012.6e63

Цеолитсодержащий катализатор, способ его получения и способ превращения прямогонной бензиновой фракции в высокооктановый компонент бензина с низким содержанием бензола

Изобретение относится к нефтеперерабатывающей и нефтехимической промышленности, в частности к способам получения катализаторов превращения прямогонной бензиновой фракции в высокооктановый компонент бензина с низким содержанием бензола. Описан катализатор, содержащий, мас.%: высококремнеземный...
Тип: Изобретение
Номер охранного документа: 0002493910
Дата охранного документа: 27.09.2013
27.08.2015
№216.013.7553

Магнитореологический амортизатор

Изобретение относится к области машиностроения. Амортизатор содержит корпус с гидравлической полостью, заполненной магнитореологической жидкостью. Канал соединяет две части полости. В штоке размещены провода и магнит. Магнит состоит из двух концентрических соленоидов. Управляющее устройство...
Тип: Изобретение
Номер охранного документа: 0002561610
Дата охранного документа: 27.08.2015
Показаны записи 151-160 из 234.
10.12.2014
№216.013.0f28

Способ защиты электродвигателей от коротких замыканий

Изобретение относится к электротехнике, а именно к технике релейной защиты, и может быть использовано для защиты электродвигателей. Технический результат - повышение чувствительности к токам двухфазных коротких замыканий. Способ защиты электродвигателей от коротких замыканий заключается в том,...
Тип: Изобретение
Номер охранного документа: 0002535297
Дата охранного документа: 10.12.2014
20.12.2014
№216.013.1195

Свч генератор с виртуальным катодом коаксиального типа

Изобретение относится к технике СВЧ и может быть использовано для генерации мощных импульсов электромагнитного излучения сильноточными электронными пучками. СВЧ-генератор с виртуальным катодом коаксиального типа содержит источник высокого напряжения (1), отрицательный электрод которого соединен...
Тип: Изобретение
Номер охранного документа: 0002535924
Дата охранного документа: 20.12.2014
10.02.2015
№216.013.2267

Способ измерения тока в проводнике с помощью герконов

Изобретение относится к измерительной технике и может быть использовано для измерения токов в электроустановках. Способ измерения тока в проводнике с помощью герконов заключается в том, что два геркона с нормально разомкнутыми контактами устанавливают вблизи проводника. Настраивают их так,...
Тип: Изобретение
Номер охранного документа: 0002540260
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.2268

Способ определения родия в водных растворах методом инверсионной вольтамперометрии по пику селективного электроокисления индия из интерметаллического соединения rhx iny

Изобретение может быть использовано в различных отраслях народного хозяйства для определения содержания в растворах различных концентраций ионов металлов. Способ определения родия в водных растворах методом инверсионной вольтамперометрии по пику селективного электроокисления индия из...
Тип: Изобретение
Номер охранного документа: 0002540261
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.22c6

Пленкообразующее вещество на основе нефтеполимерной смолы

Изобретение относится к технологии полимеров и может найти применение в лакокрасочной промышленности при производстве лаков, красок и адгезивов. Пленкообразующее вещество на основе нефтеполимерной смолы включает озонированную нефтеполимерную смолу, при этом озонированная нефтеполимерная...
Тип: Изобретение
Номер охранного документа: 0002540355
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.231d

Способ измерения фоновых концентраций веществ в болотных водах

Изобретение относится к гидрохимии болот и может быть использовано для измерения фоновых концентраций веществ в болотных водах. Сущность: выделяют однородные участки болота на основе анализа глубин торфяной залежи и болотных фитоценозов. Измеряют фоновую концентрацию вещества в болотных водах...
Тип: Изобретение
Номер охранного документа: 0002540442
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.231e

Способ определения места обрыва на воздушной линии электропередачи

Изобретение относится к области электротехники, а именно средствам обработки информации в электротехнике, и может быть использовано для определения места обрыва на воздушной линии электропередачи. Сущность: способ заключается в том, что измеряют массивы мгновенных значений напряжений и токов...
Тип: Изобретение
Номер охранного документа: 0002540443
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.231f

Способ прогнозирования износостойкости твердосплавных режущих инструментов

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования - контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации. Сущность: проводят испытание на изменение величины исходного параметра от...
Тип: Изобретение
Номер охранного документа: 0002540444
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.23ea

Когенерационная энергоустановка с топливным элементом на основе внутрицикловой конверсии органического сырья

Изобретение относится к теплоэнергетике и может быть использовано для автономного энергообеспечения малых городов, поселков городского типа и сельских поселений. Энергоустановка содержит корпус (1), покрытый теплоизоляцией (2). Внутри корпуса (1) размещена газификационная печь (3) в виде сосуда...
Тип: Изобретение
Номер охранного документа: 0002540647
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.243f

Ячеистый теплозвукоизоляционный материал

Изобретение относится к области создания пористых теплозвукоизоляционных материалов и может быть использовано в строительстве, судостроении и энергетической промышленности. Технический результат изобретения заключается в улучшении звукоизолирующих характеристик и снижении водопоглощения...
Тип: Изобретение
Номер охранного документа: 0002540732
Дата охранного документа: 10.02.2015
+ добавить свой РИД