×
10.11.2013
216.012.8038

Результат интеллектуальной деятельности: ВЫСОКОДИНАМИЧНЫЙ БЕЗДАТЧИКОВЫЙ АСИНХРОННЫЙ ЭЛЕКТРОПРИВОД С НЕПОСРЕДСТВЕННЫМ УПРАВЛЕНИЕМ МОМЕНТОМ

Вид РИД

Изобретение

Аннотация: Изобретение относится к электротехнике и может быть использовано в электроприводах различного отраслевого применения, построенных на основе асинхронного короткозамкнутого двигателя. Технический результат заключается в снижении пульсаций электромагнитного момента за счет обеспечения плавного движения вектора напряжения и повышения динамических характеристик и упрощении конструкции заявленного устройства. Для этого заявленное устройство состоит из силового блока, в который входят последовательно соединенные выпрямитель напряжения сети, сглаживающий фильтр с датчиком напряжения, инвертор напряжения и электродвигатель, обмотки которого подключены через блок датчиков фазных токов к выходу инвертора напряжения, также содержит задатчик текущей угловой скорости электродвигателя, регулятор частоты вращения и задатчик потокосцепления электродвигателя, наблюдательный блок состояния электропривода, сумматоры, координатный преобразователь напряжений, и блок деления, и введено в соответствие с заявленным решением - вычислитель проекций вектора напряжения, формирователь проекций вектора напряжений и векторный модулятор. 4 ил.
Основные результаты: Высокодинамичный бездатчиковый асинхронный электропривод с непосредственным управлением моментом, содержащий силовой блок с входящими в него последовательно соединенными выпрямителем напряжения сети, сглаживающим фильтром с датчиком напряжения, инвертор напряжения, электродвигатель, обмотки которого подключены через блок датчиков фазных токов к выходу инвертора напряжения, задатчик текущей угловой скорости электродвигателя, регулятор частоты вращения, задатчик потокосцепления электродвигателя, наблюдательный блок состояния электропривода, сумматоры, координатный преобразователь напряжений, и блок деления, отличающийся тем, что электропривод снабжен вычислителем проекций вектора напряжения, формирователем проекций вектора напряжений, векторным модулятором, при этом наблюдательный блок состояния электропривода снабжен преобразователем фаз, вычислителем текущего значения потокосцепления, вычислителем текущего значения тока, вычислителем текущего значения угла вектора потокосцепления, вычислителем текущего значения электромагнитного момента, вычислителем модуля потокосцепления статора, вычислителем угловой скорости, блок формирователя проекций вектора напряжений снабжен первым, вторым, третьим, четвертым и пятым масштабным усилителем, сумматором, первым и вторым делителем, первым и вторым перемножителем, при этом задатчик текущей угловой скорости электродвигателя подключен к первому входу сумматора и пятому входу формирователя проекций вектора напряжений, а ко второму входу сумматора подключен четвертый выход наблюдательного блока состояния электропривода, выход сумматора подключен ко входу регулятор частоты вращения, выход которого подключен к первому входу сумматора и первому входу формирователя проекций вектора напряжений, второй вход сумматора подключен ко второму выходу наблюдательного блока состояния электропривода, а выход сумматора подключен ко второму входу формирователя проекций вектора напряжений, выход задатчика потокосцепления электродвигателя подключен к первому входу сумматора и третьему входу формирователя проекций вектора напряжений, второй вход сумматора подключен к третьему выходу наблюдательного блока состояния электропривода, выход сумматора подключен к четвертому входу формирователя проекций вектора напряжений, первый и второй выход формирователя проекций вектора напряжений соответственно подключен к первому и второму входам координатного преобразователя напряжений, третий вход которого соединен с первым выходом наблюдательного блока состояния электропривода, первый и второй выходы координатного преобразователя напряжений подключены соответственно к первому и второму входу векторного модулятора, третий вход которого подключен к датчику напряжения, первый выход к инвертору напряжения, а второй выход к первому входу вычислителя проекций вектора напряжения, второй вход которого подключен к датчику напряжения, а первый и второй выход к первому и второму входу наблюдательного блока состояния электропривода, третий и четвертый вход наблюдательного блока состояния электропривода подключены к блоку датчиков фазных токов, первый и второй вход наблюдательного блока состояния электропривода подключены соответственно к первому и второму входу вычислителя текущего значения потокосцепления, а третий и четвертый вход - к первому и второму входу преобразователя фаз, все выходы вычислителя текущего значения потокосцепления подключены в входам вычислителя текущего значения тока, при этом первый и второй выход также подключены ко входам вычислителя текущего значения угла вектора потокосцепления, первому и второму входу вычислителя текущего значения электромагнитного момента и ко входам вычислителя модуля потокосцепления статора, первый и второй выход преобразователя фаз подключены к третьему и четвертому входу вычислителя текущего значения электромагнитного момента и пятому и шестому входу вычислителя угловой скорости, первый и четвертый вход которого подключен к третьему и четвертому выходу вычислителя текущего значения потокосцепления, а второй и третий вход - к первому и второму выходу вычислителя текущего значения тока, к первому выходу наблюдательного блока состояния электропривода подключен выход вычислителя текущего значения угла вектора потокосцепления, ко второму выходу - выход вычислителя текущего значения электромагнитного момента, к третьему - выход вычислителя модуля потокосцепления статора, к четвертому - выход вычислителя угловой скорости, а также к третьему входу вычислителя текущего значения потокосцепления, четвертый вход блока формирователя проекций вектора напряжений подключен к входу первого масштабного усилителя и первому входу второго перемножителя, пятый вход блока формирователя проекций вектора напряжений подключен к первому входу первого перемножителя, второй вход блока формирователя проекций вектора напряжений подключен ко второму входу второго перемножителя и к входу четвертого масштабного усилителя, третий вход блока формирователя проекций вектора напряжений подключен ко входу третьего масштабного усилителя, второму входу первого перемножителя и второму входу первого делителя, а первый вход блока формирователя проекций вектора напряжений подключен к первому входу первого делителя, к первому входу сумматора подключен выход второго масштабного усилителя, вход которого подключен к выходу первого перемножителя, второй вход сумматора подключен к выходу второго делителя, первый и второй вход которого подключены к выходу второго перемножителя и третьего масштабного усилителя соответственно, третий вход сумматора подключен к выходу четвертого масштабного усилителя, четвертый вход сумматора подключен к выходу пятого масштабного усилителя, вход которого подключен к выходу первого делителя, первый выход блока формирователя проекций вектора напряжений подключен к выходу первого масштабного усилителя, в второй - к выходу сумматора.

Изобретение относится к электротехнике и может быть использовано в электроприводах различного отраслевого применения, построенных на основе асинхронного короткозамкнутого двигателя.

Известен электропривод переменного тока (патент RU №2101846, опубл. 10.01.1998), содержащий m-фазный асинхронный двигатель с короткозамкнутым ротором, в котором статорная обмотка соединена в m/3 трехфазные системы, подключенный к преобразователю частоты, первый управляющий вход которого подсоединен к выходу вычислителя амплитуды, два входа которого подключены соответственно к выходам первого и второго регуляторов напряжения, причем вход первого регулятора напряжения подключен к выходу первого трехвходового сумматора, первый вход которого подсоединен к первому выходу датчика напряжения, второй вход первого сумматора подсоединен к выходу регулятора тока, вход которого подключен к выходу второго сумматора, первый вход которого соединен с первым выходом датчика тока, а второй вход соединен с выходом блока определения модуля тока статора, первый вход которого соединен с выходом блока задания начального тока статора, а второй вход через регулятор скорости с выходом третьего сумматора, первый вход которого подключен к выходу блока задания частоты вращения, а второй вход подключен к выходу датчика частоты вращения, установленного на валу асинхронного двигателя, причем выход регулятора скорости подключен также к первому входу четвертого сумматора, второй вход которого соединен с выходом вычислителя момента, первый вход которого соединен с первым выходом датчика тока, а выход четвертого сумматора соединен с входом регулятора момента, выход которого соединен с первым входом пятого трехвходового сумматора, второй вход которого соединен с вторым выходом датчика напряжения, выход пятого сумматора соединен с входом второго регулятора напряжения, причем второй и третий выходы датчика тока соединены с соответствующими входами датчика напряжения, входы датчика тока и напряжения включены в соответствующие фазные цепи двигателя, отличающийся тем, что в него дополнительно введены блок компенсации перекрестных нелинейных связей, первый вход которого соединен с первым выходом датчика тока, второй вход соединен с выходом датчика частоты вращения, а третий вход соединен с выходом шестого сумматора, причем первый выход блока компенсации соединен с третьим входом первого сумматора, второй выход соединен с третьим входом пятого сумматора, а третий выход соединен с входом блока возведения в квадрат, выход которого соединен с первым входом седьмого сумматора, второй вход которого соединен с выходом блока задания квадрата потокосцепления ротора, а выход седьмого сумматора соединен с входом блока извлечения квадратного корня, выход которого соединен с первым входом первого блока деления, второй вход которого соединен с выходом второго блока деления, а выход первого блока деления соединен с первым входом шестого сумматора и с вторым входом вычислителя момента, первый вход второго делителя соединен с первым выходом датчика тока статора, а второй вход через линейный блок соединен с выходом регулятора скорости, причем второй вход шестого сумматора соединен с выходом датчика частоты вращения, а выход шестого сумматора соединен с первым входом восьмого сумматора, второй вход которого подключен к выходу первого сумматора, а третий вход к выходу пятого сумматора, выход восьмого сумматора соединен с вторым управляющим входом преобразователя частоты.

Недостатком данного электропривода является сложная структура, большое количество настроечных элементов, что влечет в сложность в настройке. Так электропривод содержит четыре регулятора: два регулятора напряжений, регулятор скорости, регулятор тока. Большое количество регуляторов влечет за собой сложность в их настройке. В электроприводе используется большое количество датчиков: три датчика тока, три датчика напряжения; датчик скорости. Большое количество датчиков существенно снижает надежность электропривода.

Известен частотно-регулируемый асинхронный электропривод (патент RU №2313894, опубл. 27.12.2007), принятый за прототип, который содержит силовой блок с входящими в него последовательно соединенными выпрямителем напряжения сети, сглаживающим фильтром с датчиком напряжения, инвертор напряжения, управляющие входы которого соединены с выходами блока векторной ШИМ, электродвигатель, обмотки которого подключены через блок датчиков фазных токов к выходу инвертора напряжения, а выходной вал к датчику скорости вращения его ротора и к передаточному механизму, задатчик текущей угловой скорости электродвигателя, подключенный к первому входу регулятора частоты вращения, ко второму входу которого подключен выход датчика скорости вращения ротора, задатчик потокосцепления электродвигателя, подключенный через масштабный усилитель к первому входу регулятора реактивного тока, выход которого подключен к первому входу координатного преобразователя напряжений, ко второму входу которого подключен регулятор активного тока, выходы координатного преобразователя напряжений подключены ко входам блока векторной ШИМ, координатный преобразователь токов, соединенный входами к выходам блока датчиков фазных токов, а выходами со вторым входом регулятора реактивного тока и с первым входом регулятора активного тока, отличающийся тем, что в него введены блок деления и наблюдательный блок состояния электропривода, снабженный первым и вторым масштабными усилителями, апериодическим звеном, делителем, интегратором и сумматором, при этом выход первого масштабного усилителя подключен к первому входу делителя, выход которого через интегратор подключен к первому входу сумматора, ко второму входу которого подключен выход второго масштабного усилителя, выход сумматора подключен к одному из входов блока векторной ШИМ, к входу координатного преобразователя токов и к входу координатного преобразователя напряжений, выход апериодического звена соединен со вторым входом делителя и первым входом блока деления, ко второму входу которого подключен выход регулятора частоты вращения, выход блока деления подключен ко второму входу регулятора активного тока и ко входу первого масштабного усилителя, а датчик скорости вращения ротора электродвигателя выполнен в виде импульсного датчика с двумя выходами, первый из которых является выходом углового положения ротора электродвигателя, а второй - выходом скорости вращения ротора электродвигателя, при этом первый выход импульсного датчика соединен с входом второго масштабного усилителя.

Недостатком данного электропривода является сложная структура, большое количество настроечных элементов, что влечет в сложность в настройке. Так электропривод содержит три регулятора: регулятор частоты вращения, реактивного и активного тока. Большое количество регуляторов влечет за собой сложность в их настройке. В электроприводе используется большое количество датчиков: три датчика тока, датчик напряжения; датчик скорости. Большое количество датчиков существенно снижает надежность электропривода.

Техническим результатом изобретения является снижение пульсаций электромагнитного момента за счет обеспечения плавного движения вектора напряжения и повышение динамических характеристик, упрощение конструкции.

Технический результат достигается тем, что высокодинамичный бездатчиковый асинхронный электропривод с непосредственным управлением моментом, состоящий из силового блока с входящими в него последовательно соединенными выпрямителем напряжения сети, сглаживающего фильтра с датчиком напряжения, инвертора напряжения, электродвигателя, обмотки которого подключены через блок датчиков фазных токов 6 к выходу инвертора напряжения, задатчика текущей угловой скорости электродвигателя, регулятора частоты вращения, задатчика потокосцепления электродвигателя, наблюдательный блока состояния электропривода, сумматоров, координатного преобразователя напряжений, блоков деления, вычислителя проекций вектора напряжения, формирователя проекций вектора напряжений, векторного модулятора, при этом наблюдательный блок состояния электропривода снабжен преобразователем фаз, вычислителем текущего значения потокосцепления, вычислителем текущего значения тока, вычислителем текущего значения угла вектора потокосцепления, вычислителем текущего значения электромагнитного момента, вычислителем модуля потокосцепления статора, вычислителем угловой скорости, блок формирователя проекций вектора напряжений снабжен первым, вторым, третьим, четвертым и пятым масштабным усилителем, сумматором, первым и вторым делителем, первым и вторым перемножителем, при этом задатчик текущей угловой скорости электродвигателя подключен к первому входу сумматора и пятому входу формирователя проекций вектора напряжений, а ко второму входу сумматора подключен четвертый выход наблюдательного блока состояния электропривода выход сумматора подключен ко входу регулятор частоты вращения, выход которого подключен к первому входу сумматора и первому входу формирователя проекций вектора напряжений, второй вход сумматора подключен ко второму выходу наблюдательного блока состояния электропривода, а выход сумматора подключен ко второму входу формирователя проекций вектора напряжений, выход задатчика потокосцепления электродвигателя подключен к первому входу сумматора и третьему входу формирователя проекций вектора напряжений, второй вход сумматора подключен к третьему выходу наблюдательного блока состояния электропривода, выход сумматора подключен к четвертому входу формирователя проекций вектора напряжений, первый и второй выход формирователя проекций вектора напряжений соответственно подключен к первому и второму входам координатного преобразователя напряжений, третий вход которого соединен с первым выходом наблюдательного блока состояния электропривода, первый и второй выходы координатного преобразователя напряжений подключены соответственно к первому и второму входу векторного модулятора, третий вход которого подключен к датчику напряжения, первый выход к инвертору напряжения, а второй выход к первому входу вычислителя проекций вектора напряжения, второй вход которого подключен к датчику напряжения, а первый и второй выход к первому и второму входу наблюдательного блока состояния электропривода, третий и четвертый вход наблюдательного блока состояния электропривода подключены к блоку датчиков фазных токов, первый и второй вход наблюдательного блока состояния электропривода подключены соответственно к первому и второму входу вычислителя текущего значения потокосцепления, а третий и четвертый вход - к первому и второму входу преобразователя фаз все выходы вычислителя текущего значения потокосцепления подключены в входам вычислителя текущего значения тока, при этом первый и второй выход также подключены ко входам вычислителя текущего значения угла вектора потокосцепления, первому и второму входу вычислителя текущего значения электромагнитного момента и ко входам вычислителя модуля потокосцепления статора, первый и второй выход преобразователя фаз подключены к третьему и четвертому вход вычислителя текущего значения электромагнитного момента и пятому и шестому входу вычислителя угловой скорости, первый и четвертый вход которого подключен к третьему и четвертому выходу вычислителя текущего значения потокосцепления, а второй и третий вход - к первому и второму выходу вычислителя текущего значения тока, к первому выходу наблюдательного блока состояния электропривода подключен выход вычислителя текущего значения угла вектора потокосцепления, ко второму выходу - выход вычислителя текущего значения электромагнитного момента, к третьему - выход вычислителя модуля потокосцепления статора, к четвертому - выход вычислителя угловой скорости, а также к третьему входу вычислителя текущего значения потокосцепления, четвертый вход блока формирователя проекций вектора напряжений подключен к входу первого масштабного усилителя и первому входу второго перемножителя, пятый вход блока формирователя проекций вектора напряжений подключен к первому входу первого перемножителя, второй вход блока формирователя проекций вектора напряжений подключен ко второму входу второго перемножителя и к входу четвертого масштабного усилителя, третий вход блока формирователя проекций вектора напряжений подключен ко входу третьего масштабного усилителя, второму входу первого перемножителя и второму входу первого делителя, а первый вход блока формирователя проекций вектора напряжений подключен к первому входу первого делителя, к первому входу сумматора подключен выход второго масштабного усилителя, вход которого подключен к выходу первого перемножителя, второй вход сумматора подключен к выводу второго делителя, первый и второй вход которого подключены к выходу второго перемножителя и третьего масштабного усилителя соответственно, третий вход сумматора подключен к выходу четвертого масштабного усилителя, четвертый вход сумматора подключен к выходу пятого масштабного усилителя, вход которого подключен к выходу первого делителя, первый выход блока формирователя проекций вектора напряжений подключен к выходу первого масштабного усилителя, в второй - к выходу сумматорами.

Структурная схема высокодинамичного бездатчикового асинхронного электропривода с непосредственным управлением моментом представлена на фиг.1. Структурная схема наблюдательного блока состояния электропривода представлена на фиг.2. Структурная схема формирователя проекций вектора напряжений представлена на фиг.3.

Высокодинамичный бездатчиковый асинхронный электропривод с непосредственным управлением моментом включает силовой блок 1, в который входят последовательно соединенными выпрямитель напряжения сети 2, сглаживающий фильтр 3 с датчиком напряжения 4, инвертор напряжения 5 и электродвигатель 7, обмотки которого подключены через блок датчиков фазных токов 6 к выходу инвертора напряжения. Задатчик текущей угловой скорости электродвигателя 8, регулятор частоты вращения 10 и задатчик потокосцепления электродвигателя 15. Наблюдательный блок состояния электропривода 17, сумматоры, координатный преобразователь напряжений 13, и блок деления. Также электропривод снабжен вычислителем проекций вектора напряжения 18, формирователем проекций вектора напряжений 12 и векторным модулятором 14.

Наблюдательный блок состояния электропривода 17 снабжен преобразователем фаз 19, вычислителем текущего значения потокосцепления 20, вычислителем текущего значения тока 21, вычислителем текущего значения угла вектора потокосцепления 22, вычислителем текущего значения электромагнитного момента 23, вычислителем модуля потокосцепления статора 24 и вычислителем угловой скорости 25.

Блок формирователя проекций вектора напряжений 12 снабжен первым, вторым, третьим, четвертым и пятым масштабным усилителем, сумматором (34), первым и вторым делителем (26, 33), первым и вторым перемножителем (35, 29). Задатчик текущей угловой скорости электродвигателя 8 подключен к первому входу сумматора 9 и пятому входу формирователя проекций вектора напряжений 12, а ко второму входу сумматора 9 подключен четвертый выход наблюдательного блока состояния электропривода 17. Выход сумматора 9 подключен ко входу регулятор частоты вращения 10, выход которого подключен к первому входу сумматора 11 и первому входу формирователя проекций вектора напряжений 12. Второй вход сумматора 11 подключен ко второму выходу наблюдательного блока состояния электропривода 17. Выход сумматора 11 подключен ко второму входу формирователя проекций вектора напряжений 12. Выход задатчика потокосцепления электродвигателя 15 подключен к первому входу сумматора 16 и третьему входу формирователя проекций вектора напряжений 12. Второй вход сумматора 16 подключен к третьему выходу наблюдательного блока состояния электропривода 17. Выход сумматора 16 подключен к четвертому входу формирователя проекций вектора напряжений 12. Первый и второй выход формирователя проекций вектора напряжений 12 соответственно подключен к первому и второму входам координатного преобразователя напряжений 13, третий вход которого соединен с первым выходом наблюдательного блока состояния электропривода 17. Первый и второй выходы координатного преобразователя напряжений 13 подключены соответственно к первому и второму входу векторного модулятора 14, третий вход которого подключен к датчику напряжения 4, первый выход к инвертору напряжения 5, а второй выход к первому входу вычислителя проекций вектора напряжения 18, второй вход которого подключен к датчику напряжения 4, а первый и второй выход к первому и второму входу наблюдательного блока состояния электропривода 17.

Третий и четвертый вход наблюдательного блока состояния электропривода 17 подключены к блоку датчиков фазных токов 6, первый и второй вход - наблюдательного блока состояния электропривода 17 подключены соответственно к первому и второму входу вычислителя текущего значения потокосцепления 20, а третий и четвертый вход - к первому и второму входу преобразователя фаз 19. Все выходы вычислителя текущего значения потокосцепления 20 подключены к входам вычислителя текущего значения тока 21.

Первый и второй выход также подключены ко входам вычислителя текущего значения угла вектора потокосцепления 22, первому и второму входу вычислителя текущего значения электромагнитного момента 23 и ко входам вычислителя модуля потокосцепления статора 24. Первый и второй выход преобразователя фаз 19 подключены к третьему и четвертому вход вычислителя текущего значения электромагнитного момента 23 и пятому и шестому входу вычислителя угловой скорости 25. Первый и четвертый вход которого подключен к третьему и четвертому выходу вычислителя текущего значения потокосцепления 20, а второй и третий вход - к первому и второму выходу вычислителя текущего значения тока 21. К первому выходу наблюдательного блока состояния электропривода 17 подключен выход вычислителя текущего значения угла вектора потокосцепления 22, ко второму выходу - выход вычислителя текущего значения электромагнитного момента 23, к третьему - выход вычислителя модуля потокосцепления статора 24, к четвертому - выход вычислителя угловой скорости 25, а также к третьему входу вычислителя текущего значения потокосцепления 20.

Четвертый вход блока формирователя проекций вектора напряжений 12 подключен к входу первого масштабного усилителя 27 и первому входу второго перемножителя 29, пятый вход блока формирователя проекций вектора напряжений 12 подключен к первому входу первого перемножителя 35, второй вход блока формирователя проекций вектора напряжений 12 подключен ко второму входу второго перемножителя 29 и к входу четвертого масштабного усилителя 31, третий вход блока формирователя проекций вектора напряжений 12 подключен ко входу третьего масштабного усилителя 30, второму входу первого перемножителя 35 и второму входу первого делителя 26, а первый вход блока формирователя проекций вектора напряжений 12 подключен к первому входу первого делителя 26.

К первому входу сумматора 34 подключен выход второго масштабного усилителя 28, вход которого подключен к выходу первого перемножителя 35, второй вход сумматора 34 подключен к выводу второго делителя 33, первый и второй вход которого подключены к выходу второго перемножителя 29 и третьего масштабного усилителя 30 соответственно, третий вход сумматора 34 подключен к выходу четвертого масштабного усилителя 31, четвертый вход сумматора 34 подключен к выходу пятого масштабного усилителя 31, вход которого подключен к выходу первого делителя 26. Первый выход блока формирователя проекций вектора напряжений 12 подключен к выходу первого масштабного усилителя 27, в второй - к выходу сумматорами 34.

Электропривод работает следующим образом. В силовой блок 1, на вход выпрямителя напряжения сети 2, подводят трехфазное переменное напряжения питания. На выходе выпрямителя напряжения сети 2 получают постоянное напряжение. Через сглаживающего фильтра 3, с помощью которого устраняют пульсации постоянного напряжения, последнее подводят к инвертору напряжения 5.

С помощью задатчика текущей угловой скорости электродвигателя 8 устанавливают заданное значение угловой скорости электродвигателя, а с помощью задатчика потокосцепления электродвигателя 15 - заданное значение потокосцепления электродвигателя.

К наблюдательному блоку состояния электропривода 17, подводят текущее значение тока фаз статора и текущее значение проекцией вектора напряжения статора. Текущее значение тока фаз статора получают с помощью блока датчиков фазных токов 6.

Текущее значение проекцией вектора напряжения статора определяют с помощью вычислителя текущего значения выпрямленного напряжения 18 по текущего значения выпрямленного напряжения Ud, которое получают от датчика напряжения 4, и коммутационной функций K1, K2, К3, которую получают от векторного модулятора 14. Для этого сначала определяют значение фазных напряжений по выражениям:

а затем текущие значения проекцией вектора напряжения статора:

В наблюдательном блоке состояния электропривода 17 по текущем значениям тока фаз статора Isa, Isc в преобразователе фаз 19 определяют текущее значение проекций тока статора по формулам:

В вычислителе текущего значения потокосцепления 20 по текущему значению проекцией вектора напряжения статора и текущей угловой скорости электродвигателя определяют текущие значения проекцией вектора потокосцеплений статора и ротора путем решения полной системы уравнений двигателя:

где: , , . Параметры роторной цепи определяются аналогично.

На основании выходных сигналов преобразователя фаз 19 о текущих значениях проекций тока статора и вычислителя текущего значения потокосцепления 20 о текущие значения проекцией вектора потокосцеплений статора и ротора определяют:

текущее значение угла поворота вектора потокосцепления статора в вычислителе текущего значения угла вектора потокосцепления 22:

текущее значение электромагнитного момента в вычислителе текущего значения электромагнитного момента 23

текущее значение модуля вектора потокосцепления статора в вычислителе модуля потокосцепления статора 24

текущее значение угловой скорость электродвигателя в вычислителе угловой скорость электродвигателя

Текущее значение угловой скорость электродвигателя с помощью сумматора 9 сравнивают с заданной значений угловой скоростью электродвигателя. После чего сигнал рассогласования по угловой скорости поступает на вход регулятора частоты вращения 10, на выходе которого формируется задание на электромагнитный момент электродвигателя. Этот сигнал поступает на вход сумматора 11 и формирователя проекций вектора напряжений 12. Также на вход сумматора 11 поступает текущее значение электромагнитного момента. Сумматор 11 формирует сигнал рассогласования по электромагнитному моменту, который поступает на вход формирователя проекций вектора напряжений 12.

Текущее значение модуля вектора потокосцепления статора с помощью сумматора 1 6 сравнивают с заданным значением потокосцепления электродвигателя и формируют сигнал рассогласования по потокосцеплению, которое поступают на вход формирователя проекций вектора напряжений 12. Заданное значение потокосцепления электродвигателя с выхода задатчика потокосцепления электродвигателя 15 также поступает на вход формирователя проекций вектора напряжений 12.

Формирователь проекций вектора напряжений 12 формирует заданные значения проекцией напряжения статора на основании выражений

где ω0 заданное значение угловой скорости электродвигателя, М0 - задание на электромагнитный момент электродвигателя, ΔМ0 - рассогласования по электромагнитному моменту, - заданное значение потокосцепления электродвигателя, - рассогласования по потокосцеплению, ΔT - шаг счета, k - коэффициент, р - число пар полюсов, формирует заданные значение проекцией напряжения статора.

Затем с помощью блока координатного преобразователя напряжений 13 полученные от формирователя проекций вектора напряжений 12 заданные значения проекцией напряжения статора преобразуют из вращающейся с произвольной скоростью системы координат с в систему координат вращающеюся синхронно статору. В векторном модуляторе 14, который реализует пространственно-векторный алгоритм модулирования, на основе последних формируют коммутационные функции управления инвертором напряжения и передают к нему на вход. В результате на выходе инвертора формируется напряжение пинания электродвигателя с необходимой амплитудой и частотой.

На фиг.4 приведена графики переходных процессов в высокодинамичном асинхронном электроприводе с непосредственным вычислением вектора напряжения. Асинхронный двигатель разгоняется с номинальной нагрузкой до номинальной скорости за 1 с. После разгона производится наброс и сброс дополнительной номинальной нагрузки, торможение за 1 с и реверс.

Таким образом, устройство обеспечивает снижение пульсаций электромагнитного момента за счет обеспечения плавного движения вектора напряжения и повышение динамических характеристик, упрощение конструкции.

Высокодинамичный бездатчиковый асинхронный электропривод с непосредственным управлением моментом, содержащий силовой блок с входящими в него последовательно соединенными выпрямителем напряжения сети, сглаживающим фильтром с датчиком напряжения, инвертор напряжения, электродвигатель, обмотки которого подключены через блок датчиков фазных токов к выходу инвертора напряжения, задатчик текущей угловой скорости электродвигателя, регулятор частоты вращения, задатчик потокосцепления электродвигателя, наблюдательный блок состояния электропривода, сумматоры, координатный преобразователь напряжений, и блок деления, отличающийся тем, что электропривод снабжен вычислителем проекций вектора напряжения, формирователем проекций вектора напряжений, векторным модулятором, при этом наблюдательный блок состояния электропривода снабжен преобразователем фаз, вычислителем текущего значения потокосцепления, вычислителем текущего значения тока, вычислителем текущего значения угла вектора потокосцепления, вычислителем текущего значения электромагнитного момента, вычислителем модуля потокосцепления статора, вычислителем угловой скорости, блок формирователя проекций вектора напряжений снабжен первым, вторым, третьим, четвертым и пятым масштабным усилителем, сумматором, первым и вторым делителем, первым и вторым перемножителем, при этом задатчик текущей угловой скорости электродвигателя подключен к первому входу сумматора и пятому входу формирователя проекций вектора напряжений, а ко второму входу сумматора подключен четвертый выход наблюдательного блока состояния электропривода, выход сумматора подключен ко входу регулятор частоты вращения, выход которого подключен к первому входу сумматора и первому входу формирователя проекций вектора напряжений, второй вход сумматора подключен ко второму выходу наблюдательного блока состояния электропривода, а выход сумматора подключен ко второму входу формирователя проекций вектора напряжений, выход задатчика потокосцепления электродвигателя подключен к первому входу сумматора и третьему входу формирователя проекций вектора напряжений, второй вход сумматора подключен к третьему выходу наблюдательного блока состояния электропривода, выход сумматора подключен к четвертому входу формирователя проекций вектора напряжений, первый и второй выход формирователя проекций вектора напряжений соответственно подключен к первому и второму входам координатного преобразователя напряжений, третий вход которого соединен с первым выходом наблюдательного блока состояния электропривода, первый и второй выходы координатного преобразователя напряжений подключены соответственно к первому и второму входу векторного модулятора, третий вход которого подключен к датчику напряжения, первый выход к инвертору напряжения, а второй выход к первому входу вычислителя проекций вектора напряжения, второй вход которого подключен к датчику напряжения, а первый и второй выход к первому и второму входу наблюдательного блока состояния электропривода, третий и четвертый вход наблюдательного блока состояния электропривода подключены к блоку датчиков фазных токов, первый и второй вход наблюдательного блока состояния электропривода подключены соответственно к первому и второму входу вычислителя текущего значения потокосцепления, а третий и четвертый вход - к первому и второму входу преобразователя фаз, все выходы вычислителя текущего значения потокосцепления подключены в входам вычислителя текущего значения тока, при этом первый и второй выход также подключены ко входам вычислителя текущего значения угла вектора потокосцепления, первому и второму входу вычислителя текущего значения электромагнитного момента и ко входам вычислителя модуля потокосцепления статора, первый и второй выход преобразователя фаз подключены к третьему и четвертому входу вычислителя текущего значения электромагнитного момента и пятому и шестому входу вычислителя угловой скорости, первый и четвертый вход которого подключен к третьему и четвертому выходу вычислителя текущего значения потокосцепления, а второй и третий вход - к первому и второму выходу вычислителя текущего значения тока, к первому выходу наблюдательного блока состояния электропривода подключен выход вычислителя текущего значения угла вектора потокосцепления, ко второму выходу - выход вычислителя текущего значения электромагнитного момента, к третьему - выход вычислителя модуля потокосцепления статора, к четвертому - выход вычислителя угловой скорости, а также к третьему входу вычислителя текущего значения потокосцепления, четвертый вход блока формирователя проекций вектора напряжений подключен к входу первого масштабного усилителя и первому входу второго перемножителя, пятый вход блока формирователя проекций вектора напряжений подключен к первому входу первого перемножителя, второй вход блока формирователя проекций вектора напряжений подключен ко второму входу второго перемножителя и к входу четвертого масштабного усилителя, третий вход блока формирователя проекций вектора напряжений подключен ко входу третьего масштабного усилителя, второму входу первого перемножителя и второму входу первого делителя, а первый вход блока формирователя проекций вектора напряжений подключен к первому входу первого делителя, к первому входу сумматора подключен выход второго масштабного усилителя, вход которого подключен к выходу первого перемножителя, второй вход сумматора подключен к выходу второго делителя, первый и второй вход которого подключены к выходу второго перемножителя и третьего масштабного усилителя соответственно, третий вход сумматора подключен к выходу четвертого масштабного усилителя, четвертый вход сумматора подключен к выходу пятого масштабного усилителя, вход которого подключен к выходу первого делителя, первый выход блока формирователя проекций вектора напряжений подключен к выходу первого масштабного усилителя, в второй - к выходу сумматора.
ВЫСОКОДИНАМИЧНЫЙ БЕЗДАТЧИКОВЫЙ АСИНХРОННЫЙ ЭЛЕКТРОПРИВОД С НЕПОСРЕДСТВЕННЫМ УПРАВЛЕНИЕМ МОМЕНТОМ
ВЫСОКОДИНАМИЧНЫЙ БЕЗДАТЧИКОВЫЙ АСИНХРОННЫЙ ЭЛЕКТРОПРИВОД С НЕПОСРЕДСТВЕННЫМ УПРАВЛЕНИЕМ МОМЕНТОМ
ВЫСОКОДИНАМИЧНЫЙ БЕЗДАТЧИКОВЫЙ АСИНХРОННЫЙ ЭЛЕКТРОПРИВОД С НЕПОСРЕДСТВЕННЫМ УПРАВЛЕНИЕМ МОМЕНТОМ
ВЫСОКОДИНАМИЧНЫЙ БЕЗДАТЧИКОВЫЙ АСИНХРОННЫЙ ЭЛЕКТРОПРИВОД С НЕПОСРЕДСТВЕННЫМ УПРАВЛЕНИЕМ МОМЕНТОМ
Источник поступления информации: Роспатент

Показаны записи 151-160 из 164.
20.05.2016
№216.015.3fae

Способ извлечения гольмия (iii) из растворов солей

Изобретение относится к получению редкоземельных металлов (РЗМ) или их оксидов из бедного или техногенного сырья с помощью метода флотоэкстракции. Способ извлечения гольмия (III) из водных фаз включает флотоэкстракцию с использованием органической фазы и собирателя. При этом в качестве...
Тип: Изобретение
Номер охранного документа: 0002584626
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.3fdc

Способ разработки мощных пологих калийных пластов

Изобретение относится к горному делу и может быть использовано при разработке калийных месторождений. Способ разработки включает оконтуривание выемочного блока подготовительными выработками, отработку запасов блока камерами с оставлением междукамерных податливых целиков, проходку из...
Тип: Изобретение
Номер охранного документа: 0002584485
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.4094

Способ мониторинга технического состояния подземных трубопроводов по остаточному магнитному полю

Изобретение относится к измерительной технике и представляет собой способ мониторинга технического состояния стальных подземных газонефтепроводов. При реализации способа обследуемый трубопровод намагничивают с помощью источника постоянного магнитного поля, размещенного внутри трубопровода, до...
Тип: Изобретение
Номер охранного документа: 0002584729
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.413c

Измеритель относительных амплитудно-частотных характеристик

Изобретение относится к области радиоизмерений и может быть использовано при контроле амплитудно-частотных характеристик различных радиотехнических блоков. Измеритель содержит генератор качающейся частоты (ГКЧ) 1, измеряемый объект (ИО) 2, амплитудный детектор (АД) 3, делитель (Дл) 4,...
Тип: Изобретение
Номер охранного документа: 0002584730
Дата охранного документа: 20.05.2016
20.08.2016
№216.015.4d59

Конусная роторная дробилка

Изобретение относится к строительной и горной технике, а именно к средствам для дробления полезных ископаемых. Конусная дробилка содержит корпус, дебалансные вибраторы и коническое кольцо, внутри которого помещен дробящий конус с гидроопорой, образующий с коническим кольцом дробящую камеру....
Тип: Изобретение
Номер охранного документа: 0002595145
Дата охранного документа: 20.08.2016
12.01.2017
№217.015.5833

Способ гидрометаллургической переработки цинксодержащих пылей металлургического производства

Изобретение относится к переработке отходов, содержащих цветные металлы (цинк и кадмий), агломерационного, доменного, прокатного, сталеплавильного производств и может быть использовано в черной и цветной металлургии. Способ гидрометаллургической переработки цинксодержащих пылей...
Тип: Изобретение
Номер охранного документа: 0002588218
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.5906

Система автоматизированного пылеподавления

Изобретение относится к средствам пылеподавления и может быть использовано для обеспыливания, орошения сыпучих материалов при конвейерной транспортировке в пунктах пересыпа промышленных и гражданских объектов. Предложена система автоматизированного пылеподавления, включающая блок управления,...
Тип: Изобретение
Номер охранного документа: 0002588122
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.5975

Теплозащитная крепь

Изобретение относится к горному делу и может быть использовано для крепления и теплоизоляции горных выработок шахт и рудников, разрабатывающих месторождения полезных ископаемых подземным способом в многолетнемерзлых породах (криолитозоне). Техническим результатом является увеличение...
Тип: Изобретение
Номер охранного документа: 0002588268
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.59be

Тампонажный раствор для крепления скважин и боковых стволов с горизонтальными участками

Изобретение относится к нефтегазовой отрасли, в частности к области бурения нефтяных и газовых скважин, и может быть использовано для крепления нефтяных и газовых скважин и боковых стволов с горизонтальными и наклонными участками в условиях нормальных температур. Технический результат -...
Тип: Изобретение
Номер охранного документа: 0002588066
Дата охранного документа: 27.06.2016
13.01.2017
№217.015.6699

Способ захоронения твердых радиоактивных отходов

Изобретение относится к атомной энергетике, в частности к выводу из эксплуатации выработавших свой ресурс объектов использования атомной энергии и захоронения твердых и отвержденных радиоактивных отходов. В качестве сыпучей массы используют каменную, калийную соли или их смесь, укладываемую...
Тип: Изобретение
Номер охранного документа: 0002592067
Дата охранного документа: 20.07.2016
Показаны записи 151-160 из 209.
10.08.2015
№216.013.6e50

Трибометр

Изобретение относится к испытательным и обкаточным стендам. Трибометр состоит из предметного стола, ограничивающей рамки, заполняемой пробой насыпного груза, навески и тягового органа для предметного стола с прибором для определения его тягового усилия. Ограничивающая рамка с помощью опорных...
Тип: Изобретение
Номер охранного документа: 0002559798
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.6f0e

Устройство для бурения горных пород

Изобретение относится к горной промышленности и может быть использовано для бурения глубоких скважин в рыхлых, слабосвязных и средне-твердых горных породах, а также для посадки свай при строительстве. Устройство для бурения горных пород, включающее долото, механизм ударного действия, элемент...
Тип: Изобретение
Номер охранного документа: 0002560000
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.6f16

Способ крепления горных выработок на удароопасных пластах

Изобретение относится к горной промышленности и предназначено для разработки удароопасных пластов. Техническим результатом изобретения является повышение и обеспечение устойчивости выработки, пройденной по пласту, опасному по горным ударам, с целью минимизации последствий разрушения в случае...
Тип: Изобретение
Номер охранного документа: 0002560008
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.6f1b

Погрузочная машина

Изобретение относится к горной промышленности и может быть использовано для погрузки горной массы при проходке горных выработок и на очистных работах. Техническим результатом является повышение производительности погрузочной машины за счет увеличения площади захвата насыпного груза, размещенной...
Тип: Изобретение
Номер охранного документа: 0002560013
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.6f59

Конусная вибрационная дробилка

Изобретение относится к строительной и горной технике, а именно к средствам для дробления полезных ископаемых. Конусная дробилка содержит корпус с дебалансными вибраторами и коническим кольцом, дробящий конус, размещенный внутри корпуса и смонтированный на станине. На стойках станины установлен...
Тип: Изобретение
Номер охранного документа: 0002560075
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.6f81

Волновой пьезодвигатель

Изобретение относится к электротехнике и может быть использовано для приводов вращения малогабаритных устройств. Технический результат состоит в повышении вращающего момента, к.п.д. и долговечности, уменьшении потерь на трение. Волновой пьезодвигатель содержит биморфное пьезоэлетрическое кольцо...
Тип: Изобретение
Номер охранного документа: 0002560115
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.6f8f

Способ укладки подводного трубопровода

Изобретение относится к строительству трубопроводов. В заявленном способе выполняют монтаж трубопровода и устанавливают заглушки по его концам. Трубопровод оснащают понтонами и размещают в створе подводного перехода. При этом понтоны соединены между собой гибкими трубами, а первый понтон...
Тип: Изобретение
Номер охранного документа: 0002560129
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.70aa

Способ обескремнивания алюминатных растворов

Изобретение относится к производству глинозема, в частности к обескремниванию алюминатных растворов в производстве глинозема из высококремнистого алюминиевого сырья. Способ обескремнивания алюминатных растворов заключается в получении алюмо-кальциевого компонента, двухстадийном обескремнивании...
Тип: Изобретение
Номер охранного документа: 0002560412
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.70ab

Способ глубокого обескремнивания алюминатных растворов

Изобретение относится к производству глинозема, в частности к обескремниванию алюминатных растворов в производстве глинозема из высококремнистого алюминиевого сырья. Способ глубокого обескремнивания алюминатных растворов заключается в обработке извести алюминатно-щелочным раствором с получением...
Тип: Изобретение
Номер охранного документа: 0002560413
Дата охранного документа: 20.08.2015
27.10.2015
№216.013.8973

Способ извлечения солей празеодима (iii)

Изобретение может быть использовано при получении редкоземельных металлов (РЗМ) из бедного или техногенного сырья с помощью ионной флотации. Способ извлечения солей празеодима (III) из нитратных растворов включает введение в раствор собирателя - додецилсульфата натрия. Додецилсульфат натрия...
Тип: Изобретение
Номер охранного документа: 0002566790
Дата охранного документа: 27.10.2015
+ добавить свой РИД