×
10.11.2013
216.012.7f92

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ДАЛЬНОСТИ ДО ОДНОФАЗНОГО ЗАМЫКАНИЯ НА ЗЕМЛЮ В ЛИНИЯХ ЭЛЕКТРОПЕРЕДАЧИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к электротехнике и электроэнергетике и может быть использовано в устройствах защиты для определения дальности до места однофазного замыкания на землю (ОЗЗ) в трехфазных распределительных сетях среднего класса напряжений с изолированной, компенсированной или заземленной через резистор нейтралью. Сущность: в сетях среднего напряжения при возникновении ОЗЗ возникает переходный процесс разряда емкости поврежденной фазы на землю. Расстояние от шин, питающих линию электропередачи, до места однофазного замыкания на землю определяют по суммарной емкости нулевой последовательности всех линий, подключенных к шинам, по значению мгновенного напряжения на поврежденной фазе в момент возникновения однофазного замыкания на землю, по погонному индуктивному сопротивлению нулевой последовательности линии электропередачи, на которой возникло однофазное замыкание на землю, по скорости нарастания напряжения нулевой последовательности после возникновения однофазного замыкания на землю. Технический результат: повышение точности. 2 ил.
Основные результаты: Способ определения дальности до однофазного замыкания на землю в линиях электропередачи путем одностороннего измерения напряжений и токов доаварийного и аварийного режимов, отличающийся тем, что по суммарной емкости нулевой последовательности всех линий, подключенных к шинам, по значению мгновенного напряжения на поврежденной фазе в момент возникновения однофазного замыкания на землю, по погонному индуктивному сопротивлению нулевой последовательности линии электропередачи, на которой возникло однофазное замыкание на землю, по скорости нарастания напряжения нулевой последовательности после возникновения однофазного замыкания на землю определяют расстояние от шин, питающих линию электропередачи, до места однофазного замыкания на землю.

Предлагаемое изобретение относится к электротехнике и электроэнергетике и может быть использовано в устройствах защиты для определения дальности до места однофазного замыкания на землю (ОЗЗ) в трехфазных распределительных сетях среднего класса напряжений с изолированной, компенсированной или заземленной через резистор нейтралью.

Известен «Способ определения место и характера повреждения линии электропередачи с использованием ее моделей», который заключается в том, что выделяют напряжения и токи основных гармоник, подают напряжения основных гармоник на входы моделей, измеряют токи на указанных входах и сравнивают их с выделенными токами, подключают к каждой модели комплексную нагрузку в месте предполагаемого повреждения, устанавливают активные и реактивные проводимости комплексных нагрузок такими, чтобы токи основных гармоник на входах моделей и выделенных токов линии совпали, определяют углы комплексных нагрузок, выбирают нагрузку с нулевым углом и принимают, что место и характер повреждения соответствуют месту подключения указанной нагрузки и величинам ее активных проводимостей (Лямец Ю.Я., Антонов В.И., Ефремов В.А., Нудельман Г.С, Подшивалин Н.В. Патент РФ №RU 2033622, МПК G01R 31/11, Н02Н 3/28, 20.04.1995).

Известен «Способ определения места повреждения на воздушных линиях электропередачи», взятый за прототип, который заключается в том, что по измеренным фазным токам и напряжениям в момент короткого замыкания и току нагрузки в предаварийном режиме при помощи телеграфных уравнений получают приближенное расстояние до места повреждения. Далее посредством итерационного процесса, меняя переходное сопротивление в месте повреждения, учитывая поперечные емкости линии, волновые процессы и критерий того, что мнимая часть расстояния до места повреждения стремится к нулю, уточняют расстояние до места повреждения (Висящев А.Н., Устинов А.А. Патент РФ №RU 2426998, МПК G01R 31/08, 20.11.2009).

Недостатки обоих способов связаны с тем, что для определения места повреждения используются напряжения и токи, связанные с промышленной частотой 50 Гц. Рабочие частоты данного метода малы, что приводит к малой точности данного метода. Кроме того, основными характеристиками модели являются сопротивления линии электропередачи, и переходное сопротивление места повреждения. При этом величина переходного сопротивления места повреждения не известна, и она является источником погрешностей. Кроме того, измерительные трансформаторы промышленной частоты 50 Гц имеют большие угловые погрешности (угловые погрешности порядка 60° для трансформаторов тока нулевой последовательности типа ТЗЛМ и ТЗРЛ), что также является источником погрешности.

Задача изобретения заключается в повышении точности определения места повреждения линии электропередачи, за счет того, что в качестве исходных сигналов в предлагаемом способе используют сигналы переходного процесса, которые возникают при однофазном замыкании на землю.

Технический результат достигается тем, что в способе определения дальности до однофазного замыкания на землю в линиях электропередачи путем одностороннего измерения напряжений и токов доаварийного и аварийного режимов, согласно заявляемому изобретению, по суммарной емкости нулевой последовательности всех линий, подключенных к шинам, по значению мгновенного напряжения на поврежденной фазе в момент возникновения однофазного замыкания на землю, по погонному индуктивному сопротивлению нулевой последовательности линии электропередачи, на которой возникло однофазное замыкание на землю, по скорости нарастания напряжения нулевой последовательности после возникновения однофазного замыкания на землю - определяют расстояние от шин, питающих линию электропередачи, до места однофазного замыкания на землю.

Таким образом, для определения расстояния от шин, питающих линию электропередачи, до места однофазного замыкания на землю определяют суммарную емкость нулевой последовательности всех линий, подключенных к шинам, значение мгновенного напряжения на поврежденной фазе в момент возникновения однофазного замыкания на землю, погонное индуктивное сопротивление нулевой последовательности линии электропередачи, скорость нарастания напряжения нулевой последовательности на поврежденной линии после возникновения однофазного замыкания на землю.

Сущность изобретения поясняется чертежами, где на фиг.1 изображена общая схема подстанции, на линии которой происходит ОЗЗ, на фиг.2 изображена упрощенная схема переходного процесса.

При повреждении линии электропередачи, скорость возникновения дугового высоковольтного разряда в месте повреждения весьма высока, обычно указывают величину времени возникновения τ<100 нс. Благодаря весьма крутому фронту изменения напряжения в месте повреждения, генерируются высокие частоты переходных процессов F<(1/τ)~10 МГц. Таким образом, частоты переходных процессов значительно больше промышленной частоты 50 Гц.

Это, во-первых, повышает точность определения места повреждения в предлагаемом способе.

Во-вторых, большая разность частот переходных процессов F<10 МГц и промышленной частоты 50 Гц позволяет достаточно легко выделить сигналы переходных процессов на фоне промышленной частоты 50 Гц.

Рассмотрим весь переходный процесс, начиная с момента непосредственно до повреждения. Трехфазный источник питания 1 (фиг.1) подключен к шинам 2 (в однолинейной модели). От шин 2 отходят неповрежденные линии электропередачи 3, ток нулевой последовательности на линиях измеряется трансформаторами 4. От этих же шин 2 отходит линия электропередачи 5, на которой произошло повреждение - OЗЗ 6. Провода поврежденной линии электропередачи проходят через трансформатор тока 7, который измеряет ток Iо. В исходном состоянии (до повреждения, до ОЗЗ) напряжение на нейтрали источника питания 1 равно нулю (напряжение нулевой последовательности Uo=0). Напряжения на шинах 2 контролируются трансформатором напряжения 8, который выдает фазные напряжения 9 и напряжение нулевой последовательности 10.

При замыкании на землю одной фазы поврежденной линии электропередачи 5 (например, фазы С) происходит разряд суммарной емкости Со нулевой последовательности всех линий, подключенных к шинам этой фазы. Обычно основной вклад в сопротивление нулевой последовательности линии вносит индуктивное сопротивление линии. Поэтому упрощенную схему (фиг.2) переходного процесса можно представить в виде разряда суммарной емкости 11 Со нулевой последовательности всех линий, подключенных к шинам, через индуктивность нулевой последовательности 12 Lo поврежденной линии на отрезке от шин 2 до точки повреждения, до ОЗЗ 6.

В исходном состоянии, до повреждения, емкость 11 Со заряжена до напряжения Uc, которое было на поврежденной фазе С в момент повреждения. При этом ток разряда Iо регистрирует трансформатор тока 7.

Индуктивность нулевой последовательности 12 Lo пропорционально длине Д поврежденной линии на отрезке от шин 2 до точки повреждения, до ОЗЗ 6:

Lo=Д*Lпогонное, где: Lпогонное - погонное индуктивное сопротивление нулевой последовательности поврежденной линии.

При приложении напряжения Uc к индуктивности Lo ток Iо линейно нарастает со временем:

dIo/dt=Uc/Lo=Uc/(Д*Lпогонное), где: dIo/dt - скорость нарастания тока Iо.

Поэтому, измерив величину скорости dIo/dt сразу после возникновения ОЗЗ, зная напряжение Uc в момент повреждения и параметр линии L погонное, - определяем дальность Д от шин 2 до места повреждения 6:

Д=Uc/(dIo/dt*L погонное).

В общем случае, закон изменения тока dIo/dt будет более сложный, но в любом случае, измерив скорость нарастания тока dIo/dt со временем, можно определить дальность Д от шин до места повреждения.

Ток нулевой последовательности 1о изменяет напряжение Uo на шинах 2:

dUo/dt=Io/Co.

Поэтому скорость нарастания тока dIo/dt равна:

dIo/dt=Co*(d2Uo/dt2).

Соответственно, по скорости нарастания напряжения нулевой последовательности Uo на шинах 2, получим дальность Д от шин 2 до места повреждения 6:

Д=Uc/[(d2Uo/dt2)*Со*Lпогонное].

Полный разряд емкости Со 11 на индуктивность Lo 12 приводит к перекачке энергии заряженного конденсатора Со 11 в энергию тока Iо, mах (максимальное значение тока нулевой последовательности) на индуктивности Lo 12:

Io, max2*Lo=Uc2*Co

Поэтому, замерив Io, max переходного процесса, определяем Lo=Д*Lпогонное, и, соответственно, находим дальность до OЗЗ:

Д=Uc2*Co/(Io, max2* Lпогонное).

Максимальное значение тока нулевой последовательности Io,max определим из максимальной величины скорости нарастания напряжения dUo/dt,max; и, соответственно, из скорости нарастания напряжения нулевой последовательности Uo на шинах 2, находим дальность до OЗЗ:

Д=Uc2/[(dUo/dt, max)2* Со*Lпогонное]

Таким образом, предлагаемый способ определения дальности до однофазного замыкания на землю в линиях электропередачи имеет следующие особенности:

1. Контролируется напряжение нулевой последовательности Uo на шинах.

2. Контролируется напряжение каждой фазы (А, В, С) на шинах.

3. По данным контрольным величинам, по суммарной емкости Со нулевой последовательности всех линий, подключенных к шинам, и по параметрам поврежденной линии - определяется дальность до ОЗЗ.

4. В нормальном режиме напряжение нулевой последовательности Uo на шинах Uo~0, поэтому поврежденный режим с ОЗЗ (когда Uo начинает изменяться) легко отличим от нормального режима работы линии.

5. Особенностью предлагаемого способа является то, что необходимо контролировать только напряжения на шинах, питающих отходящие линии, и нет необходимости контролировать большое число отходящих линий (ток нулевой последовательности на этих линиях).

6. Длительность переходного процесса при ОЗЗ весьма мала: меньше миллисекунды. Поэтому для записи переходного процесса (скорости изменения напряжения нулевой последовательности Uo на шинах) требуется высокая частота дискретизации (сотни тысяч измерений в секунду).

Способ определения дальности до однофазного замыкания на землю в линиях электропередачи путем одностороннего измерения напряжений и токов доаварийного и аварийного режимов, отличающийся тем, что по суммарной емкости нулевой последовательности всех линий, подключенных к шинам, по значению мгновенного напряжения на поврежденной фазе в момент возникновения однофазного замыкания на землю, по погонному индуктивному сопротивлению нулевой последовательности линии электропередачи, на которой возникло однофазное замыкание на землю, по скорости нарастания напряжения нулевой последовательности после возникновения однофазного замыкания на землю определяют расстояние от шин, питающих линию электропередачи, до места однофазного замыкания на землю.
СПОСОБ ОПРЕДЕЛЕНИЯ ДАЛЬНОСТИ ДО ОДНОФАЗНОГО ЗАМЫКАНИЯ НА ЗЕМЛЮ В ЛИНИЯХ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ ДАЛЬНОСТИ ДО ОДНОФАЗНОГО ЗАМЫКАНИЯ НА ЗЕМЛЮ В ЛИНИЯХ ЭЛЕКТРОПЕРЕДАЧИ
Источник поступления информации: Роспатент

Показаны записи 51-60 из 166.
20.04.2015
№216.013.441d

Способ получения интерферограмм в когерентном свете

Изобретение может быть использовано для диагностики неоднородностей в прозрачных средах, в том числе в физике горения, экспериментальной газовой динамике, прикладной аэродинамике, гидродинамике. В способе волновой фронт разделяют по амплитуде и фазе на объектный волновой фронт нулевого порядка...
Тип: Изобретение
Номер охранного документа: 0002548935
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.444f

Установка электромембранного получения умягченного солевого раствора и концентрированного щелочного раствора из щелочных высокоминерализированных промышленных стоков

Изобретение относится к области промышленной рекуперации жидких щелочных высокоминерализованных отходов. Установка включает блок предварительной очистки промышленных стоков 1, блок рециркуляции щелочного раствора, блок многокамерных электромембранных аппаратов, состоящий из блока 2 первой...
Тип: Изобретение
Номер охранного документа: 0002548985
Дата охранного документа: 20.04.2015
27.05.2015
№216.013.4e0d

Водоподготовительная установка тепловой электроцентрали

Изобретение относится к области тепловой и промышленной энергетики и может быть использовано для обеспечения потребителей химически очищенной и химически обессоленной водой. Водоподготовительная установка тепловой электроцентрали содержит блок I предварительной очистки воды, блок II обратного...
Тип: Изобретение
Номер охранного документа: 0002551499
Дата охранного документа: 27.05.2015
10.06.2015
№216.013.51e0

Способ работы тепловой электрической станции

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях для утилизации сбросной низкопотенциальной теплоты в конденсаторах паровых турбин в зимний период времени. Раскрыт способ работы тепловой электрической станции, по которому используют...
Тип: Изобретение
Номер охранного документа: 0002552481
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.53f9

Способ работы электрического чайника

Изобретение относится к способу работы кухонной посуды для кипячения воды, а именно к способу работы электрического чайника. Способ работы электрического чайника, в котором используют бак для воды. Блок управления осуществляет получение горячей воды с помощью нагревательного элемента. Бак для...
Тип: Изобретение
Номер охранного документа: 0002553018
Дата охранного документа: 10.06.2015
10.07.2015
№216.013.5dec

Способ работы автоматического беспилотного комплекса диагностики высоковольтных воздушных линий электропередачи

Изобретение относится к способам управления беспилотным летательным комплексом. При данном способе осуществляют облет воздушной линии электропередач (ЛЭП). При этом используют пульт управления летательным аппаратом (ЛА). Устанавливают на ЛА систему автоматического управления и измеритель...
Тип: Изобретение
Номер охранного документа: 0002555585
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5df8

Способ работы тепловой электрической станции

Изобретение может быть использовано на тепловых электрических станциях. В способе работы тепловой электрической станции используют тепловой двигатель (5) с замкнутым контуром циркуляции. Тепловой двигатель (5) работает по органическому циклу Ренкина, а в качестве охлаждающей жидкости используют...
Тип: Изобретение
Номер охранного документа: 0002555597
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5dfb

Способ работы тепловой электрической станции

Изобретение может быть использовано на тепловых электрических станциях. В способе работы тепловой электрической станции используют тепловой двигатель (5) с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина. В качестве охлаждающей жидкости используют низкокипящее рабочее...
Тип: Изобретение
Номер охранного документа: 0002555600
Дата охранного документа: 10.07.2015
20.07.2015
№216.013.623c

Способ плавного пуска массива двигателей

Изобретение относится к области электротехники и может быть использовано для реализации плавного пуска асинхронных электроприводов общепромышленного назначения, применяемых для привода вентиляторов, компрессоров, насосов, транспортеров и др. Техническим результатом является уменьшение пускового...
Тип: Изобретение
Номер охранного документа: 0002556695
Дата охранного документа: 20.07.2015
20.07.2015
№216.013.64e3

Способ голографической визуализации быстропротекающих процессов

Изобретение относится к способу голографической визуализации быстропротекающих процессов - двухфазных потоков «твердые частицы - газ». При реализации способа посредством оптических элементов создают два объектных и два опорных пучка. Первый объектный пучок проходит сквозь поток, а второй -...
Тип: Изобретение
Номер охранного документа: 0002557374
Дата охранного документа: 20.07.2015
Показаны записи 51-60 из 184.
20.09.2014
№216.012.f56a

Лазерное терапевтическое устройство

Изобретение относится к медицинской технике и может найти применение в терапевтических целях. Технический результат - обеспечение стабильности параметров воздействующих факторов и упрощение конструкции терапевтического устройства. Лазерное терапевтическое устройство включает в себя источник...
Тип: Изобретение
Номер охранного документа: 0002528659
Дата охранного документа: 20.09.2014
27.09.2014
№216.012.f7dc

Способ повышения эффективности работы осевого многоступенчатого компрессора

Изобретение относится к компрессоростроению и может быть использовано в теплоэнергетике, газоперекачивающих станциях, наземных и судовых транспортных средствах в стационарных газотурбинных установках, имеющих в своем составе осевой многоступенчатый компрессор. Способ повышения эффективности...
Тип: Изобретение
Номер охранного документа: 0002529289
Дата охранного документа: 27.09.2014
20.10.2014
№216.012.ffa3

Способ подготовки топочного мазута к сжиганию

Изобретение относится к теплоэнергетике и может быть использовано для улучшения физико-химических и эксплуатационных характеристик топочных мазутов на тепловых электрических станциях, в котельных промышленных предприятий, котельных агропромышленного комплекса и ЖКХ. В способе подготовки...
Тип: Изобретение
Номер охранного документа: 0002531299
Дата охранного документа: 20.10.2014
27.10.2014
№216.013.01ea

Электрический чайник

Изобретение относится к кухонной посуде для кипячения воды, а именно к чайникам. Электрический чайник содержит корпус, нагревательный элемент, соединенный с блоком управления. В него введен сосуд с двойными стенками и вакуумом между ними, а также отражатель, при этом указанный сосуд является...
Тип: Изобретение
Номер охранного документа: 0002531888
Дата охранного документа: 27.10.2014
27.11.2014
№216.013.0be8

Метеодатчик системы контроля температуры

Изобретение относится к устройствам для измерения метеорологических параметров в системах контроля температуры нагреваемого оборудования. Сущность: устройство содержит шарообразный датчик (1), внутри которого расположены датчик (2) температуры и нагревательный элемент (3) с постоянной мощностью...
Тип: Изобретение
Номер охранного документа: 0002534456
Дата охранного документа: 27.11.2014
10.12.2014
№216.013.0d08

Способ косвенного контроля температуры провода воздушных линий электропередачи

Использование: в области электроэнергетики. Технический результат - обеспечение точного контроля без необходимости непосредственных измерений и снижение числа контролируемых факторов с обеспечением точности контроля. Согласно способу измеряют токи, протекающие по проводу, и с использованием...
Тип: Изобретение
Номер охранного документа: 0002534753
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0fd2

Адаптивное цифровое дифференцирующее и прогнозирующее устройство

Изобретение относится к автоматике и вычислительной технике и может быть использовано для прогнозирования стационарных и нестационарных случайных процессов. Технический результат заключается в повышении точности прогноза на этапе восстановления заданного времени прогноза после завершения...
Тип: Изобретение
Номер охранного документа: 0002535467
Дата охранного документа: 10.12.2014
10.01.2015
№216.013.1740

Способ обнаружения гололеда на проводах воздушных линий электропередачи

Использование: в области электроэнергетики для обнаружения гололеда на проводах линии электропередачи. Технический результат - расширение функциональных возможностей. Способ включает передачу от начала линии до конца линии электропередачи высокочастотного сигнала и контроль параметров,...
Тип: Изобретение
Номер охранного документа: 0002537380
Дата охранного документа: 10.01.2015
20.02.2015
№216.013.2b62

Способ работы теплового пункта

Изобретение относится к области тепловой энергетики и может быть использовано в системах централизованного теплоснабжения для предотвращения образования илистых отложений на внутренних поверхностях водоподогревателей и трубопроводов. Способе работы теплового пункта, согласно которому холодная...
Тип: Изобретение
Номер охранного документа: 0002542563
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2b84

Способ контроля качества проводов воздушной линии электропередачи

Изобретение относится к электроэнергетике и может быть использовано для непрерывного контроля качества проводов воздушной линии электропередачи. Измеряют напряжение и ток в первом и втором местоположениях на линии электропередачи. При этом измеренные напряжения и токи в первом и втором...
Тип: Изобретение
Номер охранного документа: 0002542597
Дата охранного документа: 20.02.2015
+ добавить свой РИД